Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
David S. Miller | 5476 | 41.42% | 82 | 41.21% |
Linus Torvalds | 4029 | 30.47% | 5 | 2.51% |
Linus Torvalds (pre-git) | 2561 | 19.37% | 68 | 34.17% |
Khalid Aziz | 304 | 2.30% | 4 | 2.01% |
Kirill V Tkhai | 234 | 1.77% | 1 | 0.50% |
Liam R. Howlett | 222 | 1.68% | 1 | 0.50% |
Rob Gardner | 163 | 1.23% | 2 | 1.01% |
Eric W. Biedermann | 68 | 0.51% | 4 | 2.01% |
Prasanna S. Panchamukhi | 20 | 0.15% | 1 | 0.50% |
Dmitry Safonov | 16 | 0.12% | 2 | 1.01% |
Bob Picco | 15 | 0.11% | 1 | 0.50% |
Sam Ravnborg | 15 | 0.11% | 3 | 1.51% |
Steven Rostedt | 14 | 0.11% | 1 | 0.50% |
Benjamin Collins | 12 | 0.09% | 2 | 1.01% |
Jane Chu | 10 | 0.08% | 1 | 0.50% |
Roman Zippel | 10 | 0.08% | 1 | 0.50% |
Al Viro | 9 | 0.07% | 1 | 0.50% |
Dave Kleikamp | 7 | 0.05% | 1 | 0.50% |
Pavel Emelyanov | 5 | 0.04% | 1 | 0.50% |
Ingo Molnar | 4 | 0.03% | 2 | 1.01% |
Pete Zaitcev | 3 | 0.02% | 1 | 0.50% |
Alexey Dobriyan | 3 | 0.02% | 1 | 0.50% |
Avi Kivity | 3 | 0.02% | 1 | 0.50% |
Christoph Hellwig | 3 | 0.02% | 1 | 0.50% |
Arnaldo Carvalho de Melo | 2 | 0.02% | 1 | 0.50% |
Paul Mackerras | 2 | 0.02% | 1 | 0.50% |
Dan Carpenter | 2 | 0.02% | 1 | 0.50% |
Rusty Russell | 2 | 0.02% | 1 | 0.50% |
Thomas Gleixner | 1 | 0.01% | 1 | 0.50% |
Dmitry V. Levin | 1 | 0.01% | 1 | 0.50% |
Uwe Kleine-König | 1 | 0.01% | 1 | 0.50% |
Kirill A. Shutemov | 1 | 0.01% | 1 | 0.50% |
Vegard Nossum | 1 | 0.01% | 1 | 0.50% |
Akinobu Mita | 1 | 0.01% | 1 | 0.50% |
Paul Gortmaker | 1 | 0.01% | 1 | 0.50% |
Total | 13221 | 199 |
// SPDX-License-Identifier: GPL-2.0-only /* arch/sparc64/kernel/traps.c * * Copyright (C) 1995,1997,2008,2009,2012 David S. Miller (davem@davemloft.net) * Copyright (C) 1997,1999,2000 Jakub Jelinek (jakub@redhat.com) */ /* * I like traps on v9, :)))) */ #include <linux/extable.h> #include <linux/sched/mm.h> #include <linux/sched/debug.h> #include <linux/linkage.h> #include <linux/kernel.h> #include <linux/signal.h> #include <linux/smp.h> #include <linux/mm.h> #include <linux/init.h> #include <linux/kallsyms.h> #include <linux/kdebug.h> #include <linux/ftrace.h> #include <linux/reboot.h> #include <linux/gfp.h> #include <linux/context_tracking.h> #include <asm/smp.h> #include <asm/delay.h> #include <asm/ptrace.h> #include <asm/oplib.h> #include <asm/page.h> #include <asm/unistd.h> #include <linux/uaccess.h> #include <asm/fpumacro.h> #include <asm/lsu.h> #include <asm/dcu.h> #include <asm/estate.h> #include <asm/chafsr.h> #include <asm/sfafsr.h> #include <asm/psrcompat.h> #include <asm/processor.h> #include <asm/timer.h> #include <asm/head.h> #include <asm/prom.h> #include <asm/memctrl.h> #include <asm/cacheflush.h> #include <asm/setup.h> #include "entry.h" #include "kernel.h" #include "kstack.h" /* When an irrecoverable trap occurs at tl > 0, the trap entry * code logs the trap state registers at every level in the trap * stack. It is found at (pt_regs + sizeof(pt_regs)) and the layout * is as follows: */ struct tl1_traplog { struct { unsigned long tstate; unsigned long tpc; unsigned long tnpc; unsigned long tt; } trapstack[4]; unsigned long tl; }; static void dump_tl1_traplog(struct tl1_traplog *p) { int i, limit; printk(KERN_EMERG "TRAPLOG: Error at trap level 0x%lx, " "dumping track stack.\n", p->tl); limit = (tlb_type == hypervisor) ? 2 : 4; for (i = 0; i < limit; i++) { printk(KERN_EMERG "TRAPLOG: Trap level %d TSTATE[%016lx] TPC[%016lx] " "TNPC[%016lx] TT[%lx]\n", i + 1, p->trapstack[i].tstate, p->trapstack[i].tpc, p->trapstack[i].tnpc, p->trapstack[i].tt); printk("TRAPLOG: TPC<%pS>\n", (void *) p->trapstack[i].tpc); } } void bad_trap(struct pt_regs *regs, long lvl) { char buffer[36]; if (notify_die(DIE_TRAP, "bad trap", regs, 0, lvl, SIGTRAP) == NOTIFY_STOP) return; if (lvl < 0x100) { sprintf(buffer, "Bad hw trap %lx at tl0\n", lvl); die_if_kernel(buffer, regs); } lvl -= 0x100; if (regs->tstate & TSTATE_PRIV) { sprintf(buffer, "Kernel bad sw trap %lx", lvl); die_if_kernel(buffer, regs); } if (test_thread_flag(TIF_32BIT)) { regs->tpc &= 0xffffffff; regs->tnpc &= 0xffffffff; } force_sig_fault_trapno(SIGILL, ILL_ILLTRP, (void __user *)regs->tpc, lvl); } void bad_trap_tl1(struct pt_regs *regs, long lvl) { char buffer[36]; if (notify_die(DIE_TRAP_TL1, "bad trap tl1", regs, 0, lvl, SIGTRAP) == NOTIFY_STOP) return; dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); sprintf (buffer, "Bad trap %lx at tl>0", lvl); die_if_kernel (buffer, regs); } #ifdef CONFIG_DEBUG_BUGVERBOSE void do_BUG(const char *file, int line) { bust_spinlocks(1); printk("kernel BUG at %s:%d!\n", file, line); } EXPORT_SYMBOL(do_BUG); #endif static DEFINE_SPINLOCK(dimm_handler_lock); static dimm_printer_t dimm_handler; static int sprintf_dimm(int synd_code, unsigned long paddr, char *buf, int buflen) { unsigned long flags; int ret = -ENODEV; spin_lock_irqsave(&dimm_handler_lock, flags); if (dimm_handler) { ret = dimm_handler(synd_code, paddr, buf, buflen); } else if (tlb_type == spitfire) { if (prom_getunumber(synd_code, paddr, buf, buflen) == -1) ret = -EINVAL; else ret = 0; } else ret = -ENODEV; spin_unlock_irqrestore(&dimm_handler_lock, flags); return ret; } int register_dimm_printer(dimm_printer_t func) { unsigned long flags; int ret = 0; spin_lock_irqsave(&dimm_handler_lock, flags); if (!dimm_handler) dimm_handler = func; else ret = -EEXIST; spin_unlock_irqrestore(&dimm_handler_lock, flags); return ret; } EXPORT_SYMBOL_GPL(register_dimm_printer); void unregister_dimm_printer(dimm_printer_t func) { unsigned long flags; spin_lock_irqsave(&dimm_handler_lock, flags); if (dimm_handler == func) dimm_handler = NULL; spin_unlock_irqrestore(&dimm_handler_lock, flags); } EXPORT_SYMBOL_GPL(unregister_dimm_printer); void spitfire_insn_access_exception(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar) { enum ctx_state prev_state = exception_enter(); if (notify_die(DIE_TRAP, "instruction access exception", regs, 0, 0x8, SIGTRAP) == NOTIFY_STOP) goto out; if (regs->tstate & TSTATE_PRIV) { printk("spitfire_insn_access_exception: SFSR[%016lx] " "SFAR[%016lx], going.\n", sfsr, sfar); die_if_kernel("Iax", regs); } if (test_thread_flag(TIF_32BIT)) { regs->tpc &= 0xffffffff; regs->tnpc &= 0xffffffff; } force_sig_fault(SIGSEGV, SEGV_MAPERR, (void __user *)regs->tpc); out: exception_exit(prev_state); } void spitfire_insn_access_exception_tl1(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar) { if (notify_die(DIE_TRAP_TL1, "instruction access exception tl1", regs, 0, 0x8, SIGTRAP) == NOTIFY_STOP) return; dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); spitfire_insn_access_exception(regs, sfsr, sfar); } void sun4v_insn_access_exception(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx) { unsigned short type = (type_ctx >> 16); unsigned short ctx = (type_ctx & 0xffff); if (notify_die(DIE_TRAP, "instruction access exception", regs, 0, 0x8, SIGTRAP) == NOTIFY_STOP) return; if (regs->tstate & TSTATE_PRIV) { printk("sun4v_insn_access_exception: ADDR[%016lx] " "CTX[%04x] TYPE[%04x], going.\n", addr, ctx, type); die_if_kernel("Iax", regs); } if (test_thread_flag(TIF_32BIT)) { regs->tpc &= 0xffffffff; regs->tnpc &= 0xffffffff; } force_sig_fault(SIGSEGV, SEGV_MAPERR, (void __user *) addr); } void sun4v_insn_access_exception_tl1(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx) { if (notify_die(DIE_TRAP_TL1, "instruction access exception tl1", regs, 0, 0x8, SIGTRAP) == NOTIFY_STOP) return; dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); sun4v_insn_access_exception(regs, addr, type_ctx); } bool is_no_fault_exception(struct pt_regs *regs) { unsigned char asi; u32 insn; if (get_user(insn, (u32 __user *)regs->tpc) == -EFAULT) return false; /* * Must do a little instruction decoding here in order to * decide on a course of action. The bits of interest are: * insn[31:30] = op, where 3 indicates the load/store group * insn[24:19] = op3, which identifies individual opcodes * insn[13] indicates an immediate offset * op3[4]=1 identifies alternate space instructions * op3[5:4]=3 identifies floating point instructions * op3[2]=1 identifies stores * See "Opcode Maps" in the appendix of any Sparc V9 * architecture spec for full details. */ if ((insn & 0xc0800000) == 0xc0800000) { /* op=3, op3[4]=1 */ if (insn & 0x2000) /* immediate offset */ asi = (regs->tstate >> 24); /* saved %asi */ else asi = (insn >> 5); /* immediate asi */ if ((asi & 0xf6) == ASI_PNF) { if (insn & 0x200000) /* op3[2], stores */ return false; if (insn & 0x1000000) /* op3[5:4]=3 (fp) */ handle_ldf_stq(insn, regs); else handle_ld_nf(insn, regs); return true; } } return false; } void spitfire_data_access_exception(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar) { enum ctx_state prev_state = exception_enter(); if (notify_die(DIE_TRAP, "data access exception", regs, 0, 0x30, SIGTRAP) == NOTIFY_STOP) goto out; if (regs->tstate & TSTATE_PRIV) { /* Test if this comes from uaccess places. */ const struct exception_table_entry *entry; entry = search_exception_tables(regs->tpc); if (entry) { /* Ouch, somebody is trying VM hole tricks on us... */ #ifdef DEBUG_EXCEPTIONS printk("Exception: PC<%016lx> faddr<UNKNOWN>\n", regs->tpc); printk("EX_TABLE: insn<%016lx> fixup<%016lx>\n", regs->tpc, entry->fixup); #endif regs->tpc = entry->fixup; regs->tnpc = regs->tpc + 4; goto out; } /* Shit... */ printk("spitfire_data_access_exception: SFSR[%016lx] " "SFAR[%016lx], going.\n", sfsr, sfar); die_if_kernel("Dax", regs); } if (is_no_fault_exception(regs)) return; force_sig_fault(SIGSEGV, SEGV_MAPERR, (void __user *)sfar); out: exception_exit(prev_state); } void spitfire_data_access_exception_tl1(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar) { if (notify_die(DIE_TRAP_TL1, "data access exception tl1", regs, 0, 0x30, SIGTRAP) == NOTIFY_STOP) return; dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); spitfire_data_access_exception(regs, sfsr, sfar); } void sun4v_data_access_exception(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx) { unsigned short type = (type_ctx >> 16); unsigned short ctx = (type_ctx & 0xffff); if (notify_die(DIE_TRAP, "data access exception", regs, 0, 0x8, SIGTRAP) == NOTIFY_STOP) return; if (regs->tstate & TSTATE_PRIV) { /* Test if this comes from uaccess places. */ const struct exception_table_entry *entry; entry = search_exception_tables(regs->tpc); if (entry) { /* Ouch, somebody is trying VM hole tricks on us... */ #ifdef DEBUG_EXCEPTIONS printk("Exception: PC<%016lx> faddr<UNKNOWN>\n", regs->tpc); printk("EX_TABLE: insn<%016lx> fixup<%016lx>\n", regs->tpc, entry->fixup); #endif regs->tpc = entry->fixup; regs->tnpc = regs->tpc + 4; return; } printk("sun4v_data_access_exception: ADDR[%016lx] " "CTX[%04x] TYPE[%04x], going.\n", addr, ctx, type); die_if_kernel("Dax", regs); } if (test_thread_flag(TIF_32BIT)) { regs->tpc &= 0xffffffff; regs->tnpc &= 0xffffffff; } if (is_no_fault_exception(regs)) return; /* MCD (Memory Corruption Detection) disabled trap (TT=0x19) in HV * is vectored thorugh data access exception trap with fault type * set to HV_FAULT_TYPE_MCD_DIS. Check for MCD disabled trap. * Accessing an address with invalid ASI for the address, for * example setting an ADI tag on an address with ASI_MCD_PRIMARY * when TTE.mcd is not set for the VA, is also vectored into * kerbel by HV as data access exception with fault type set to * HV_FAULT_TYPE_INV_ASI. */ switch (type) { case HV_FAULT_TYPE_INV_ASI: force_sig_fault(SIGILL, ILL_ILLADR, (void __user *)addr); break; case HV_FAULT_TYPE_MCD_DIS: force_sig_fault(SIGSEGV, SEGV_ACCADI, (void __user *)addr); break; default: force_sig_fault(SIGSEGV, SEGV_MAPERR, (void __user *)addr); break; } } void sun4v_data_access_exception_tl1(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx) { if (notify_die(DIE_TRAP_TL1, "data access exception tl1", regs, 0, 0x8, SIGTRAP) == NOTIFY_STOP) return; dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); sun4v_data_access_exception(regs, addr, type_ctx); } #ifdef CONFIG_PCI #include "pci_impl.h" #endif /* When access exceptions happen, we must do this. */ static void spitfire_clean_and_reenable_l1_caches(void) { unsigned long va; if (tlb_type != spitfire) BUG(); /* Clean 'em. */ for (va = 0; va < (PAGE_SIZE << 1); va += 32) { spitfire_put_icache_tag(va, 0x0); spitfire_put_dcache_tag(va, 0x0); } /* Re-enable in LSU. */ __asm__ __volatile__("flush %%g6\n\t" "membar #Sync\n\t" "stxa %0, [%%g0] %1\n\t" "membar #Sync" : /* no outputs */ : "r" (LSU_CONTROL_IC | LSU_CONTROL_DC | LSU_CONTROL_IM | LSU_CONTROL_DM), "i" (ASI_LSU_CONTROL) : "memory"); } static void spitfire_enable_estate_errors(void) { __asm__ __volatile__("stxa %0, [%%g0] %1\n\t" "membar #Sync" : /* no outputs */ : "r" (ESTATE_ERR_ALL), "i" (ASI_ESTATE_ERROR_EN)); } static char ecc_syndrome_table[] = { 0x4c, 0x40, 0x41, 0x48, 0x42, 0x48, 0x48, 0x49, 0x43, 0x48, 0x48, 0x49, 0x48, 0x49, 0x49, 0x4a, 0x44, 0x48, 0x48, 0x20, 0x48, 0x39, 0x4b, 0x48, 0x48, 0x25, 0x31, 0x48, 0x28, 0x48, 0x48, 0x2c, 0x45, 0x48, 0x48, 0x21, 0x48, 0x3d, 0x04, 0x48, 0x48, 0x4b, 0x35, 0x48, 0x2d, 0x48, 0x48, 0x29, 0x48, 0x00, 0x01, 0x48, 0x0a, 0x48, 0x48, 0x4b, 0x0f, 0x48, 0x48, 0x4b, 0x48, 0x49, 0x49, 0x48, 0x46, 0x48, 0x48, 0x2a, 0x48, 0x3b, 0x27, 0x48, 0x48, 0x4b, 0x33, 0x48, 0x22, 0x48, 0x48, 0x2e, 0x48, 0x19, 0x1d, 0x48, 0x1b, 0x4a, 0x48, 0x4b, 0x1f, 0x48, 0x4a, 0x4b, 0x48, 0x4b, 0x4b, 0x48, 0x48, 0x4b, 0x24, 0x48, 0x07, 0x48, 0x48, 0x36, 0x4b, 0x48, 0x48, 0x3e, 0x48, 0x30, 0x38, 0x48, 0x49, 0x48, 0x48, 0x4b, 0x48, 0x4b, 0x16, 0x48, 0x48, 0x12, 0x4b, 0x48, 0x49, 0x48, 0x48, 0x4b, 0x47, 0x48, 0x48, 0x2f, 0x48, 0x3f, 0x4b, 0x48, 0x48, 0x06, 0x37, 0x48, 0x23, 0x48, 0x48, 0x2b, 0x48, 0x05, 0x4b, 0x48, 0x4b, 0x48, 0x48, 0x32, 0x26, 0x48, 0x48, 0x3a, 0x48, 0x34, 0x3c, 0x48, 0x48, 0x11, 0x15, 0x48, 0x13, 0x4a, 0x48, 0x4b, 0x17, 0x48, 0x4a, 0x4b, 0x48, 0x4b, 0x4b, 0x48, 0x49, 0x48, 0x48, 0x4b, 0x48, 0x4b, 0x1e, 0x48, 0x48, 0x1a, 0x4b, 0x48, 0x49, 0x48, 0x48, 0x4b, 0x48, 0x08, 0x0d, 0x48, 0x02, 0x48, 0x48, 0x49, 0x03, 0x48, 0x48, 0x49, 0x48, 0x4b, 0x4b, 0x48, 0x49, 0x48, 0x48, 0x49, 0x48, 0x4b, 0x10, 0x48, 0x48, 0x14, 0x4b, 0x48, 0x4b, 0x48, 0x48, 0x4b, 0x49, 0x48, 0x48, 0x49, 0x48, 0x4b, 0x18, 0x48, 0x48, 0x1c, 0x4b, 0x48, 0x4b, 0x48, 0x48, 0x4b, 0x4a, 0x0c, 0x09, 0x48, 0x0e, 0x48, 0x48, 0x4b, 0x0b, 0x48, 0x48, 0x4b, 0x48, 0x4b, 0x4b, 0x4a }; static char *syndrome_unknown = "<Unknown>"; static void spitfire_log_udb_syndrome(unsigned long afar, unsigned long udbh, unsigned long udbl, unsigned long bit) { unsigned short scode; char memmod_str[64], *p; if (udbl & bit) { scode = ecc_syndrome_table[udbl & 0xff]; if (sprintf_dimm(scode, afar, memmod_str, sizeof(memmod_str)) < 0) p = syndrome_unknown; else p = memmod_str; printk(KERN_WARNING "CPU[%d]: UDBL Syndrome[%x] " "Memory Module \"%s\"\n", smp_processor_id(), scode, p); } if (udbh & bit) { scode = ecc_syndrome_table[udbh & 0xff]; if (sprintf_dimm(scode, afar, memmod_str, sizeof(memmod_str)) < 0) p = syndrome_unknown; else p = memmod_str; printk(KERN_WARNING "CPU[%d]: UDBH Syndrome[%x] " "Memory Module \"%s\"\n", smp_processor_id(), scode, p); } } static void spitfire_cee_log(unsigned long afsr, unsigned long afar, unsigned long udbh, unsigned long udbl, int tl1, struct pt_regs *regs) { printk(KERN_WARNING "CPU[%d]: Correctable ECC Error " "AFSR[%lx] AFAR[%016lx] UDBL[%lx] UDBH[%lx] TL>1[%d]\n", smp_processor_id(), afsr, afar, udbl, udbh, tl1); spitfire_log_udb_syndrome(afar, udbh, udbl, UDBE_CE); /* We always log it, even if someone is listening for this * trap. */ notify_die(DIE_TRAP, "Correctable ECC Error", regs, 0, TRAP_TYPE_CEE, SIGTRAP); /* The Correctable ECC Error trap does not disable I/D caches. So * we only have to restore the ESTATE Error Enable register. */ spitfire_enable_estate_errors(); } static void spitfire_ue_log(unsigned long afsr, unsigned long afar, unsigned long udbh, unsigned long udbl, unsigned long tt, int tl1, struct pt_regs *regs) { printk(KERN_WARNING "CPU[%d]: Uncorrectable Error AFSR[%lx] " "AFAR[%lx] UDBL[%lx] UDBH[%ld] TT[%lx] TL>1[%d]\n", smp_processor_id(), afsr, afar, udbl, udbh, tt, tl1); /* XXX add more human friendly logging of the error status * XXX as is implemented for cheetah */ spitfire_log_udb_syndrome(afar, udbh, udbl, UDBE_UE); /* We always log it, even if someone is listening for this * trap. */ notify_die(DIE_TRAP, "Uncorrectable Error", regs, 0, tt, SIGTRAP); if (regs->tstate & TSTATE_PRIV) { if (tl1) dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); die_if_kernel("UE", regs); } /* XXX need more intelligent processing here, such as is implemented * XXX for cheetah errors, in fact if the E-cache still holds the * XXX line with bad parity this will loop */ spitfire_clean_and_reenable_l1_caches(); spitfire_enable_estate_errors(); if (test_thread_flag(TIF_32BIT)) { regs->tpc &= 0xffffffff; regs->tnpc &= 0xffffffff; } force_sig_fault(SIGBUS, BUS_OBJERR, (void *)0); } void spitfire_access_error(struct pt_regs *regs, unsigned long status_encoded, unsigned long afar) { unsigned long afsr, tt, udbh, udbl; int tl1; afsr = (status_encoded & SFSTAT_AFSR_MASK) >> SFSTAT_AFSR_SHIFT; tt = (status_encoded & SFSTAT_TRAP_TYPE) >> SFSTAT_TRAP_TYPE_SHIFT; tl1 = (status_encoded & SFSTAT_TL_GT_ONE) ? 1 : 0; udbl = (status_encoded & SFSTAT_UDBL_MASK) >> SFSTAT_UDBL_SHIFT; udbh = (status_encoded & SFSTAT_UDBH_MASK) >> SFSTAT_UDBH_SHIFT; #ifdef CONFIG_PCI if (tt == TRAP_TYPE_DAE && pci_poke_in_progress && pci_poke_cpu == smp_processor_id()) { spitfire_clean_and_reenable_l1_caches(); spitfire_enable_estate_errors(); pci_poke_faulted = 1; regs->tnpc = regs->tpc + 4; return; } #endif if (afsr & SFAFSR_UE) spitfire_ue_log(afsr, afar, udbh, udbl, tt, tl1, regs); if (tt == TRAP_TYPE_CEE) { /* Handle the case where we took a CEE trap, but ACK'd * only the UE state in the UDB error registers. */ if (afsr & SFAFSR_UE) { if (udbh & UDBE_CE) { __asm__ __volatile__( "stxa %0, [%1] %2\n\t" "membar #Sync" : /* no outputs */ : "r" (udbh & UDBE_CE), "r" (0x0), "i" (ASI_UDB_ERROR_W)); } if (udbl & UDBE_CE) { __asm__ __volatile__( "stxa %0, [%1] %2\n\t" "membar #Sync" : /* no outputs */ : "r" (udbl & UDBE_CE), "r" (0x18), "i" (ASI_UDB_ERROR_W)); } } spitfire_cee_log(afsr, afar, udbh, udbl, tl1, regs); } } int cheetah_pcache_forced_on; void cheetah_enable_pcache(void) { unsigned long dcr; printk("CHEETAH: Enabling P-Cache on cpu %d.\n", smp_processor_id()); __asm__ __volatile__("ldxa [%%g0] %1, %0" : "=r" (dcr) : "i" (ASI_DCU_CONTROL_REG)); dcr |= (DCU_PE | DCU_HPE | DCU_SPE | DCU_SL); __asm__ __volatile__("stxa %0, [%%g0] %1\n\t" "membar #Sync" : /* no outputs */ : "r" (dcr), "i" (ASI_DCU_CONTROL_REG)); } /* Cheetah error trap handling. */ static unsigned long ecache_flush_physbase; static unsigned long ecache_flush_linesize; static unsigned long ecache_flush_size; /* This table is ordered in priority of errors and matches the * AFAR overwrite policy as well. */ struct afsr_error_table { unsigned long mask; const char *name; }; static const char CHAFSR_PERR_msg[] = "System interface protocol error"; static const char CHAFSR_IERR_msg[] = "Internal processor error"; static const char CHAFSR_ISAP_msg[] = "System request parity error on incoming address"; static const char CHAFSR_UCU_msg[] = "Uncorrectable E-cache ECC error for ifetch/data"; static const char CHAFSR_UCC_msg[] = "SW Correctable E-cache ECC error for ifetch/data"; static const char CHAFSR_UE_msg[] = "Uncorrectable system bus data ECC error for read"; static const char CHAFSR_EDU_msg[] = "Uncorrectable E-cache ECC error for stmerge/blkld"; static const char CHAFSR_EMU_msg[] = "Uncorrectable system bus MTAG error"; static const char CHAFSR_WDU_msg[] = "Uncorrectable E-cache ECC error for writeback"; static const char CHAFSR_CPU_msg[] = "Uncorrectable ECC error for copyout"; static const char CHAFSR_CE_msg[] = "HW corrected system bus data ECC error for read"; static const char CHAFSR_EDC_msg[] = "HW corrected E-cache ECC error for stmerge/blkld"; static const char CHAFSR_EMC_msg[] = "HW corrected system bus MTAG ECC error"; static const char CHAFSR_WDC_msg[] = "HW corrected E-cache ECC error for writeback"; static const char CHAFSR_CPC_msg[] = "HW corrected ECC error for copyout"; static const char CHAFSR_TO_msg[] = "Unmapped error from system bus"; static const char CHAFSR_BERR_msg[] = "Bus error response from system bus"; static const char CHAFSR_IVC_msg[] = "HW corrected system bus data ECC error for ivec read"; static const char CHAFSR_IVU_msg[] = "Uncorrectable system bus data ECC error for ivec read"; static struct afsr_error_table __cheetah_error_table[] = { { CHAFSR_PERR, CHAFSR_PERR_msg }, { CHAFSR_IERR, CHAFSR_IERR_msg }, { CHAFSR_ISAP, CHAFSR_ISAP_msg }, { CHAFSR_UCU, CHAFSR_UCU_msg }, { CHAFSR_UCC, CHAFSR_UCC_msg }, { CHAFSR_UE, CHAFSR_UE_msg }, { CHAFSR_EDU, CHAFSR_EDU_msg }, { CHAFSR_EMU, CHAFSR_EMU_msg }, { CHAFSR_WDU, CHAFSR_WDU_msg }, { CHAFSR_CPU, CHAFSR_CPU_msg }, { CHAFSR_CE, CHAFSR_CE_msg }, { CHAFSR_EDC, CHAFSR_EDC_msg }, { CHAFSR_EMC, CHAFSR_EMC_msg }, { CHAFSR_WDC, CHAFSR_WDC_msg }, { CHAFSR_CPC, CHAFSR_CPC_msg }, { CHAFSR_TO, CHAFSR_TO_msg }, { CHAFSR_BERR, CHAFSR_BERR_msg }, /* These two do not update the AFAR. */ { CHAFSR_IVC, CHAFSR_IVC_msg }, { CHAFSR_IVU, CHAFSR_IVU_msg }, { 0, NULL }, }; static const char CHPAFSR_DTO_msg[] = "System bus unmapped error for prefetch/storequeue-read"; static const char CHPAFSR_DBERR_msg[] = "System bus error for prefetch/storequeue-read"; static const char CHPAFSR_THCE_msg[] = "Hardware corrected E-cache Tag ECC error"; static const char CHPAFSR_TSCE_msg[] = "SW handled correctable E-cache Tag ECC error"; static const char CHPAFSR_TUE_msg[] = "Uncorrectable E-cache Tag ECC error"; static const char CHPAFSR_DUE_msg[] = "System bus uncorrectable data ECC error due to prefetch/store-fill"; static struct afsr_error_table __cheetah_plus_error_table[] = { { CHAFSR_PERR, CHAFSR_PERR_msg }, { CHAFSR_IERR, CHAFSR_IERR_msg }, { CHAFSR_ISAP, CHAFSR_ISAP_msg }, { CHAFSR_UCU, CHAFSR_UCU_msg }, { CHAFSR_UCC, CHAFSR_UCC_msg }, { CHAFSR_UE, CHAFSR_UE_msg }, { CHAFSR_EDU, CHAFSR_EDU_msg }, { CHAFSR_EMU, CHAFSR_EMU_msg }, { CHAFSR_WDU, CHAFSR_WDU_msg }, { CHAFSR_CPU, CHAFSR_CPU_msg }, { CHAFSR_CE, CHAFSR_CE_msg }, { CHAFSR_EDC, CHAFSR_EDC_msg }, { CHAFSR_EMC, CHAFSR_EMC_msg }, { CHAFSR_WDC, CHAFSR_WDC_msg }, { CHAFSR_CPC, CHAFSR_CPC_msg }, { CHAFSR_TO, CHAFSR_TO_msg }, { CHAFSR_BERR, CHAFSR_BERR_msg }, { CHPAFSR_DTO, CHPAFSR_DTO_msg }, { CHPAFSR_DBERR, CHPAFSR_DBERR_msg }, { CHPAFSR_THCE, CHPAFSR_THCE_msg }, { CHPAFSR_TSCE, CHPAFSR_TSCE_msg }, { CHPAFSR_TUE, CHPAFSR_TUE_msg }, { CHPAFSR_DUE, CHPAFSR_DUE_msg }, /* These two do not update the AFAR. */ { CHAFSR_IVC, CHAFSR_IVC_msg }, { CHAFSR_IVU, CHAFSR_IVU_msg }, { 0, NULL }, }; static const char JPAFSR_JETO_msg[] = "System interface protocol error, hw timeout caused"; static const char JPAFSR_SCE_msg[] = "Parity error on system snoop results"; static const char JPAFSR_JEIC_msg[] = "System interface protocol error, illegal command detected"; static const char JPAFSR_JEIT_msg[] = "System interface protocol error, illegal ADTYPE detected"; static const char JPAFSR_OM_msg[] = "Out of range memory error has occurred"; static const char JPAFSR_ETP_msg[] = "Parity error on L2 cache tag SRAM"; static const char JPAFSR_UMS_msg[] = "Error due to unsupported store"; static const char JPAFSR_RUE_msg[] = "Uncorrectable ECC error from remote cache/memory"; static const char JPAFSR_RCE_msg[] = "Correctable ECC error from remote cache/memory"; static const char JPAFSR_BP_msg[] = "JBUS parity error on returned read data"; static const char JPAFSR_WBP_msg[] = "JBUS parity error on data for writeback or block store"; static const char JPAFSR_FRC_msg[] = "Foreign read to DRAM incurring correctable ECC error"; static const char JPAFSR_FRU_msg[] = "Foreign read to DRAM incurring uncorrectable ECC error"; static struct afsr_error_table __jalapeno_error_table[] = { { JPAFSR_JETO, JPAFSR_JETO_msg }, { JPAFSR_SCE, JPAFSR_SCE_msg }, { JPAFSR_JEIC, JPAFSR_JEIC_msg }, { JPAFSR_JEIT, JPAFSR_JEIT_msg }, { CHAFSR_PERR, CHAFSR_PERR_msg }, { CHAFSR_IERR, CHAFSR_IERR_msg }, { CHAFSR_ISAP, CHAFSR_ISAP_msg }, { CHAFSR_UCU, CHAFSR_UCU_msg }, { CHAFSR_UCC, CHAFSR_UCC_msg }, { CHAFSR_UE, CHAFSR_UE_msg }, { CHAFSR_EDU, CHAFSR_EDU_msg }, { JPAFSR_OM, JPAFSR_OM_msg }, { CHAFSR_WDU, CHAFSR_WDU_msg }, { CHAFSR_CPU, CHAFSR_CPU_msg }, { CHAFSR_CE, CHAFSR_CE_msg }, { CHAFSR_EDC, CHAFSR_EDC_msg }, { JPAFSR_ETP, JPAFSR_ETP_msg }, { CHAFSR_WDC, CHAFSR_WDC_msg }, { CHAFSR_CPC, CHAFSR_CPC_msg }, { CHAFSR_TO, CHAFSR_TO_msg }, { CHAFSR_BERR, CHAFSR_BERR_msg }, { JPAFSR_UMS, JPAFSR_UMS_msg }, { JPAFSR_RUE, JPAFSR_RUE_msg }, { JPAFSR_RCE, JPAFSR_RCE_msg }, { JPAFSR_BP, JPAFSR_BP_msg }, { JPAFSR_WBP, JPAFSR_WBP_msg }, { JPAFSR_FRC, JPAFSR_FRC_msg }, { JPAFSR_FRU, JPAFSR_FRU_msg }, /* These two do not update the AFAR. */ { CHAFSR_IVU, CHAFSR_IVU_msg }, { 0, NULL }, }; static struct afsr_error_table *cheetah_error_table; static unsigned long cheetah_afsr_errors; struct cheetah_err_info *cheetah_error_log; static inline struct cheetah_err_info *cheetah_get_error_log(unsigned long afsr) { struct cheetah_err_info *p; int cpu = smp_processor_id(); if (!cheetah_error_log) return NULL; p = cheetah_error_log + (cpu * 2); if ((afsr & CHAFSR_TL1) != 0UL) p++; return p; } extern unsigned int tl0_icpe[], tl1_icpe[]; extern unsigned int tl0_dcpe[], tl1_dcpe[]; extern unsigned int tl0_fecc[], tl1_fecc[]; extern unsigned int tl0_cee[], tl1_cee[]; extern unsigned int tl0_iae[], tl1_iae[]; extern unsigned int tl0_dae[], tl1_dae[]; extern unsigned int cheetah_plus_icpe_trap_vector[], cheetah_plus_icpe_trap_vector_tl1[]; extern unsigned int cheetah_plus_dcpe_trap_vector[], cheetah_plus_dcpe_trap_vector_tl1[]; extern unsigned int cheetah_fecc_trap_vector[], cheetah_fecc_trap_vector_tl1[]; extern unsigned int cheetah_cee_trap_vector[], cheetah_cee_trap_vector_tl1[]; extern unsigned int cheetah_deferred_trap_vector[], cheetah_deferred_trap_vector_tl1[]; void __init cheetah_ecache_flush_init(void) { unsigned long largest_size, smallest_linesize, order, ver; int i, sz; /* Scan all cpu device tree nodes, note two values: * 1) largest E-cache size * 2) smallest E-cache line size */ largest_size = 0UL; smallest_linesize = ~0UL; for (i = 0; i < NR_CPUS; i++) { unsigned long val; val = cpu_data(i).ecache_size; if (!val) continue; if (val > largest_size) largest_size = val; val = cpu_data(i).ecache_line_size; if (val < smallest_linesize) smallest_linesize = val; } if (largest_size == 0UL || smallest_linesize == ~0UL) { prom_printf("cheetah_ecache_flush_init: Cannot probe cpu E-cache " "parameters.\n"); prom_halt(); } ecache_flush_size = (2 * largest_size); ecache_flush_linesize = smallest_linesize; ecache_flush_physbase = find_ecache_flush_span(ecache_flush_size); if (ecache_flush_physbase == ~0UL) { prom_printf("cheetah_ecache_flush_init: Cannot find %ld byte " "contiguous physical memory.\n", ecache_flush_size); prom_halt(); } /* Now allocate error trap reporting scoreboard. */ sz = NR_CPUS * (2 * sizeof(struct cheetah_err_info)); for (order = 0; order <= MAX_ORDER; order++) { if ((PAGE_SIZE << order) >= sz) break; } cheetah_error_log = (struct cheetah_err_info *) __get_free_pages(GFP_KERNEL, order); if (!cheetah_error_log) { prom_printf("cheetah_ecache_flush_init: Failed to allocate " "error logging scoreboard (%d bytes).\n", sz); prom_halt(); } memset(cheetah_error_log, 0, PAGE_SIZE << order); /* Mark all AFSRs as invalid so that the trap handler will * log new new information there. */ for (i = 0; i < 2 * NR_CPUS; i++) cheetah_error_log[i].afsr = CHAFSR_INVALID; __asm__ ("rdpr %%ver, %0" : "=r" (ver)); if ((ver >> 32) == __JALAPENO_ID || (ver >> 32) == __SERRANO_ID) { cheetah_error_table = &__jalapeno_error_table[0]; cheetah_afsr_errors = JPAFSR_ERRORS; } else if ((ver >> 32) == 0x003e0015) { cheetah_error_table = &__cheetah_plus_error_table[0]; cheetah_afsr_errors = CHPAFSR_ERRORS; } else { cheetah_error_table = &__cheetah_error_table[0]; cheetah_afsr_errors = CHAFSR_ERRORS; } /* Now patch trap tables. */ memcpy(tl0_fecc, cheetah_fecc_trap_vector, (8 * 4)); memcpy(tl1_fecc, cheetah_fecc_trap_vector_tl1, (8 * 4)); memcpy(tl0_cee, cheetah_cee_trap_vector, (8 * 4)); memcpy(tl1_cee, cheetah_cee_trap_vector_tl1, (8 * 4)); memcpy(tl0_iae, cheetah_deferred_trap_vector, (8 * 4)); memcpy(tl1_iae, cheetah_deferred_trap_vector_tl1, (8 * 4)); memcpy(tl0_dae, cheetah_deferred_trap_vector, (8 * 4)); memcpy(tl1_dae, cheetah_deferred_trap_vector_tl1, (8 * 4)); if (tlb_type == cheetah_plus) { memcpy(tl0_dcpe, cheetah_plus_dcpe_trap_vector, (8 * 4)); memcpy(tl1_dcpe, cheetah_plus_dcpe_trap_vector_tl1, (8 * 4)); memcpy(tl0_icpe, cheetah_plus_icpe_trap_vector, (8 * 4)); memcpy(tl1_icpe, cheetah_plus_icpe_trap_vector_tl1, (8 * 4)); } flushi(PAGE_OFFSET); } static void cheetah_flush_ecache(void) { unsigned long flush_base = ecache_flush_physbase; unsigned long flush_linesize = ecache_flush_linesize; unsigned long flush_size = ecache_flush_size; __asm__ __volatile__("1: subcc %0, %4, %0\n\t" " bne,pt %%xcc, 1b\n\t" " ldxa [%2 + %0] %3, %%g0\n\t" : "=&r" (flush_size) : "0" (flush_size), "r" (flush_base), "i" (ASI_PHYS_USE_EC), "r" (flush_linesize)); } static void cheetah_flush_ecache_line(unsigned long physaddr) { unsigned long alias; physaddr &= ~(8UL - 1UL); physaddr = (ecache_flush_physbase + (physaddr & ((ecache_flush_size>>1UL) - 1UL))); alias = physaddr + (ecache_flush_size >> 1UL); __asm__ __volatile__("ldxa [%0] %2, %%g0\n\t" "ldxa [%1] %2, %%g0\n\t" "membar #Sync" : /* no outputs */ : "r" (physaddr), "r" (alias), "i" (ASI_PHYS_USE_EC)); } /* Unfortunately, the diagnostic access to the I-cache tags we need to * use to clear the thing interferes with I-cache coherency transactions. * * So we must only flush the I-cache when it is disabled. */ static void __cheetah_flush_icache(void) { unsigned int icache_size, icache_line_size; unsigned long addr; icache_size = local_cpu_data().icache_size; icache_line_size = local_cpu_data().icache_line_size; /* Clear the valid bits in all the tags. */ for (addr = 0; addr < icache_size; addr += icache_line_size) { __asm__ __volatile__("stxa %%g0, [%0] %1\n\t" "membar #Sync" : /* no outputs */ : "r" (addr | (2 << 3)), "i" (ASI_IC_TAG)); } } static void cheetah_flush_icache(void) { unsigned long dcu_save; /* Save current DCU, disable I-cache. */ __asm__ __volatile__("ldxa [%%g0] %1, %0\n\t" "or %0, %2, %%g1\n\t" "stxa %%g1, [%%g0] %1\n\t" "membar #Sync" : "=r" (dcu_save) : "i" (ASI_DCU_CONTROL_REG), "i" (DCU_IC) : "g1"); __cheetah_flush_icache(); /* Restore DCU register */ __asm__ __volatile__("stxa %0, [%%g0] %1\n\t" "membar #Sync" : /* no outputs */ : "r" (dcu_save), "i" (ASI_DCU_CONTROL_REG)); } static void cheetah_flush_dcache(void) { unsigned int dcache_size, dcache_line_size; unsigned long addr; dcache_size = local_cpu_data().dcache_size; dcache_line_size = local_cpu_data().dcache_line_size; for (addr = 0; addr < dcache_size; addr += dcache_line_size) { __asm__ __volatile__("stxa %%g0, [%0] %1\n\t" "membar #Sync" : /* no outputs */ : "r" (addr), "i" (ASI_DCACHE_TAG)); } } /* In order to make the even parity correct we must do two things. * First, we clear DC_data_parity and set DC_utag to an appropriate value. * Next, we clear out all 32-bytes of data for that line. Data of * all-zero + tag parity value of zero == correct parity. */ static void cheetah_plus_zap_dcache_parity(void) { unsigned int dcache_size, dcache_line_size; unsigned long addr; dcache_size = local_cpu_data().dcache_size; dcache_line_size = local_cpu_data().dcache_line_size; for (addr = 0; addr < dcache_size; addr += dcache_line_size) { unsigned long tag = (addr >> 14); unsigned long line; __asm__ __volatile__("membar #Sync\n\t" "stxa %0, [%1] %2\n\t" "membar #Sync" : /* no outputs */ : "r" (tag), "r" (addr), "i" (ASI_DCACHE_UTAG)); for (line = addr; line < addr + dcache_line_size; line += 8) __asm__ __volatile__("membar #Sync\n\t" "stxa %%g0, [%0] %1\n\t" "membar #Sync" : /* no outputs */ : "r" (line), "i" (ASI_DCACHE_DATA)); } } /* Conversion tables used to frob Cheetah AFSR syndrome values into * something palatable to the memory controller driver get_unumber * routine. */ #define MT0 137 #define MT1 138 #define MT2 139 #define NONE 254 #define MTC0 140 #define MTC1 141 #define MTC2 142 #define MTC3 143 #define C0 128 #define C1 129 #define C2 130 #define C3 131 #define C4 132 #define C5 133 #define C6 134 #define C7 135 #define C8 136 #define M2 144 #define M3 145 #define M4 146 #define M 147 static unsigned char cheetah_ecc_syntab[] = { /*00*/NONE, C0, C1, M2, C2, M2, M3, 47, C3, M2, M2, 53, M2, 41, 29, M, /*01*/C4, M, M, 50, M2, 38, 25, M2, M2, 33, 24, M2, 11, M, M2, 16, /*02*/C5, M, M, 46, M2, 37, 19, M2, M, 31, 32, M, 7, M2, M2, 10, /*03*/M2, 40, 13, M2, 59, M, M2, 66, M, M2, M2, 0, M2, 67, 71, M, /*04*/C6, M, M, 43, M, 36, 18, M, M2, 49, 15, M, 63, M2, M2, 6, /*05*/M2, 44, 28, M2, M, M2, M2, 52, 68, M2, M2, 62, M2, M3, M3, M4, /*06*/M2, 26, 106, M2, 64, M, M2, 2, 120, M, M2, M3, M, M3, M3, M4, /*07*/116, M2, M2, M3, M2, M3, M, M4, M2, 58, 54, M2, M, M4, M4, M3, /*08*/C7, M2, M, 42, M, 35, 17, M2, M, 45, 14, M2, 21, M2, M2, 5, /*09*/M, 27, M, M, 99, M, M, 3, 114, M2, M2, 20, M2, M3, M3, M, /*0a*/M2, 23, 113, M2, 112, M2, M, 51, 95, M, M2, M3, M2, M3, M3, M2, /*0b*/103, M, M2, M3, M2, M3, M3, M4, M2, 48, M, M, 73, M2, M, M3, /*0c*/M2, 22, 110, M2, 109, M2, M, 9, 108, M2, M, M3, M2, M3, M3, M, /*0d*/102, M2, M, M, M2, M3, M3, M, M2, M3, M3, M2, M, M4, M, M3, /*0e*/98, M, M2, M3, M2, M, M3, M4, M2, M3, M3, M4, M3, M, M, M, /*0f*/M2, M3, M3, M, M3, M, M, M, 56, M4, M, M3, M4, M, M, M, /*10*/C8, M, M2, 39, M, 34, 105, M2, M, 30, 104, M, 101, M, M, 4, /*11*/M, M, 100, M, 83, M, M2, 12, 87, M, M, 57, M2, M, M3, M, /*12*/M2, 97, 82, M2, 78, M2, M2, 1, 96, M, M, M, M, M, M3, M2, /*13*/94, M, M2, M3, M2, M, M3, M, M2, M, 79, M, 69, M, M4, M, /*14*/M2, 93, 92, M, 91, M, M2, 8, 90, M2, M2, M, M, M, M, M4, /*15*/89, M, M, M3, M2, M3, M3, M, M, M, M3, M2, M3, M2, M, M3, /*16*/86, M, M2, M3, M2, M, M3, M, M2, M, M3, M, M3, M, M, M3, /*17*/M, M, M3, M2, M3, M2, M4, M, 60, M, M2, M3, M4, M, M, M2, /*18*/M2, 88, 85, M2, 84, M, M2, 55, 81, M2, M2, M3, M2, M3, M3, M4, /*19*/77, M, M, M, M2, M3, M, M, M2, M3, M3, M4, M3, M2, M, M, /*1a*/74, M, M2, M3, M, M, M3, M, M, M, M3, M, M3, M, M4, M3, /*1b*/M2, 70, 107, M4, 65, M2, M2, M, 127, M, M, M, M2, M3, M3, M, /*1c*/80, M2, M2, 72, M, 119, 118, M, M2, 126, 76, M, 125, M, M4, M3, /*1d*/M2, 115, 124, M, 75, M, M, M3, 61, M, M4, M, M4, M, M, M, /*1e*/M, 123, 122, M4, 121, M4, M, M3, 117, M2, M2, M3, M4, M3, M, M, /*1f*/111, M, M, M, M4, M3, M3, M, M, M, M3, M, M3, M2, M, M }; static unsigned char cheetah_mtag_syntab[] = { NONE, MTC0, MTC1, NONE, MTC2, NONE, NONE, MT0, MTC3, NONE, NONE, MT1, NONE, MT2, NONE, NONE }; /* Return the highest priority error conditon mentioned. */ static inline unsigned long cheetah_get_hipri(unsigned long afsr) { unsigned long tmp = 0; int i; for (i = 0; cheetah_error_table[i].mask; i++) { if ((tmp = (afsr & cheetah_error_table[i].mask)) != 0UL) return tmp; } return tmp; } static const char *cheetah_get_string(unsigned long bit) { int i; for (i = 0; cheetah_error_table[i].mask; i++) { if ((bit & cheetah_error_table[i].mask) != 0UL) return cheetah_error_table[i].name; } return "???"; } static void cheetah_log_errors(struct pt_regs *regs, struct cheetah_err_info *info, unsigned long afsr, unsigned long afar, int recoverable) { unsigned long hipri; char unum[256]; printk("%s" "ERROR(%d): Cheetah error trap taken afsr[%016lx] afar[%016lx] TL1(%d)\n", (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(), afsr, afar, (afsr & CHAFSR_TL1) ? 1 : 0); printk("%s" "ERROR(%d): TPC[%lx] TNPC[%lx] O7[%lx] TSTATE[%lx]\n", (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(), regs->tpc, regs->tnpc, regs->u_regs[UREG_I7], regs->tstate); printk("%s" "ERROR(%d): ", (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id()); printk("TPC<%pS>\n", (void *) regs->tpc); printk("%s" "ERROR(%d): M_SYND(%lx), E_SYND(%lx)%s%s\n", (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(), (afsr & CHAFSR_M_SYNDROME) >> CHAFSR_M_SYNDROME_SHIFT, (afsr & CHAFSR_E_SYNDROME) >> CHAFSR_E_SYNDROME_SHIFT, (afsr & CHAFSR_ME) ? ", Multiple Errors" : "", (afsr & CHAFSR_PRIV) ? ", Privileged" : ""); hipri = cheetah_get_hipri(afsr); printk("%s" "ERROR(%d): Highest priority error (%016lx) \"%s\"\n", (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(), hipri, cheetah_get_string(hipri)); /* Try to get unumber if relevant. */ #define ESYND_ERRORS (CHAFSR_IVC | CHAFSR_IVU | \ CHAFSR_CPC | CHAFSR_CPU | \ CHAFSR_UE | CHAFSR_CE | \ CHAFSR_EDC | CHAFSR_EDU | \ CHAFSR_UCC | CHAFSR_UCU | \ CHAFSR_WDU | CHAFSR_WDC) #define MSYND_ERRORS (CHAFSR_EMC | CHAFSR_EMU) if (afsr & ESYND_ERRORS) { int syndrome; int ret; syndrome = (afsr & CHAFSR_E_SYNDROME) >> CHAFSR_E_SYNDROME_SHIFT; syndrome = cheetah_ecc_syntab[syndrome]; ret = sprintf_dimm(syndrome, afar, unum, sizeof(unum)); if (ret != -1) printk("%s" "ERROR(%d): AFAR E-syndrome [%s]\n", (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(), unum); } else if (afsr & MSYND_ERRORS) { int syndrome; int ret; syndrome = (afsr & CHAFSR_M_SYNDROME) >> CHAFSR_M_SYNDROME_SHIFT; syndrome = cheetah_mtag_syntab[syndrome]; ret = sprintf_dimm(syndrome, afar, unum, sizeof(unum)); if (ret != -1) printk("%s" "ERROR(%d): AFAR M-syndrome [%s]\n", (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(), unum); } /* Now dump the cache snapshots. */ printk("%s" "ERROR(%d): D-cache idx[%x] tag[%016llx] utag[%016llx] stag[%016llx]\n", (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(), (int) info->dcache_index, info->dcache_tag, info->dcache_utag, info->dcache_stag); printk("%s" "ERROR(%d): D-cache data0[%016llx] data1[%016llx] data2[%016llx] data3[%016llx]\n", (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(), info->dcache_data[0], info->dcache_data[1], info->dcache_data[2], info->dcache_data[3]); printk("%s" "ERROR(%d): I-cache idx[%x] tag[%016llx] utag[%016llx] stag[%016llx] " "u[%016llx] l[%016llx]\n", (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(), (int) info->icache_index, info->icache_tag, info->icache_utag, info->icache_stag, info->icache_upper, info->icache_lower); printk("%s" "ERROR(%d): I-cache INSN0[%016llx] INSN1[%016llx] INSN2[%016llx] INSN3[%016llx]\n", (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(), info->icache_data[0], info->icache_data[1], info->icache_data[2], info->icache_data[3]); printk("%s" "ERROR(%d): I-cache INSN4[%016llx] INSN5[%016llx] INSN6[%016llx] INSN7[%016llx]\n", (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(), info->icache_data[4], info->icache_data[5], info->icache_data[6], info->icache_data[7]); printk("%s" "ERROR(%d): E-cache idx[%x] tag[%016llx]\n", (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(), (int) info->ecache_index, info->ecache_tag); printk("%s" "ERROR(%d): E-cache data0[%016llx] data1[%016llx] data2[%016llx] data3[%016llx]\n", (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(), info->ecache_data[0], info->ecache_data[1], info->ecache_data[2], info->ecache_data[3]); afsr = (afsr & ~hipri) & cheetah_afsr_errors; while (afsr != 0UL) { unsigned long bit = cheetah_get_hipri(afsr); printk("%s" "ERROR: Multiple-error (%016lx) \"%s\"\n", (recoverable ? KERN_WARNING : KERN_CRIT), bit, cheetah_get_string(bit)); afsr &= ~bit; } if (!recoverable) printk(KERN_CRIT "ERROR: This condition is not recoverable.\n"); } static int cheetah_recheck_errors(struct cheetah_err_info *logp) { unsigned long afsr, afar; int ret = 0; __asm__ __volatile__("ldxa [%%g0] %1, %0\n\t" : "=r" (afsr) : "i" (ASI_AFSR)); if ((afsr & cheetah_afsr_errors) != 0) { if (logp != NULL) { __asm__ __volatile__("ldxa [%%g0] %1, %0\n\t" : "=r" (afar) : "i" (ASI_AFAR)); logp->afsr = afsr; logp->afar = afar; } ret = 1; } __asm__ __volatile__("stxa %0, [%%g0] %1\n\t" "membar #Sync\n\t" : : "r" (afsr), "i" (ASI_AFSR)); return ret; } void cheetah_fecc_handler(struct pt_regs *regs, unsigned long afsr, unsigned long afar) { struct cheetah_err_info local_snapshot, *p; int recoverable; /* Flush E-cache */ cheetah_flush_ecache(); p = cheetah_get_error_log(afsr); if (!p) { prom_printf("ERROR: Early Fast-ECC error afsr[%016lx] afar[%016lx]\n", afsr, afar); prom_printf("ERROR: CPU(%d) TPC[%016lx] TNPC[%016lx] TSTATE[%016lx]\n", smp_processor_id(), regs->tpc, regs->tnpc, regs->tstate); prom_halt(); } /* Grab snapshot of logged error. */ memcpy(&local_snapshot, p, sizeof(local_snapshot)); /* If the current trap snapshot does not match what the * trap handler passed along into our args, big trouble. * In such a case, mark the local copy as invalid. * * Else, it matches and we mark the afsr in the non-local * copy as invalid so we may log new error traps there. */ if (p->afsr != afsr || p->afar != afar) local_snapshot.afsr = CHAFSR_INVALID; else p->afsr = CHAFSR_INVALID; cheetah_flush_icache(); cheetah_flush_dcache(); /* Re-enable I-cache/D-cache */ __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t" "or %%g1, %1, %%g1\n\t" "stxa %%g1, [%%g0] %0\n\t" "membar #Sync" : /* no outputs */ : "i" (ASI_DCU_CONTROL_REG), "i" (DCU_DC | DCU_IC) : "g1"); /* Re-enable error reporting */ __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t" "or %%g1, %1, %%g1\n\t" "stxa %%g1, [%%g0] %0\n\t" "membar #Sync" : /* no outputs */ : "i" (ASI_ESTATE_ERROR_EN), "i" (ESTATE_ERROR_NCEEN | ESTATE_ERROR_CEEN) : "g1"); /* Decide if we can continue after handling this trap and * logging the error. */ recoverable = 1; if (afsr & (CHAFSR_PERR | CHAFSR_IERR | CHAFSR_ISAP)) recoverable = 0; /* Re-check AFSR/AFAR. What we are looking for here is whether a new * error was logged while we had error reporting traps disabled. */ if (cheetah_recheck_errors(&local_snapshot)) { unsigned long new_afsr = local_snapshot.afsr; /* If we got a new asynchronous error, die... */ if (new_afsr & (CHAFSR_EMU | CHAFSR_EDU | CHAFSR_WDU | CHAFSR_CPU | CHAFSR_IVU | CHAFSR_UE | CHAFSR_BERR | CHAFSR_TO)) recoverable = 0; } /* Log errors. */ cheetah_log_errors(regs, &local_snapshot, afsr, afar, recoverable); if (!recoverable) panic("Irrecoverable Fast-ECC error trap.\n"); /* Flush E-cache to kick the error trap handlers out. */ cheetah_flush_ecache(); } /* Try to fix a correctable error by pushing the line out from * the E-cache. Recheck error reporting registers to see if the * problem is intermittent. */ static int cheetah_fix_ce(unsigned long physaddr) { unsigned long orig_estate; unsigned long alias1, alias2; int ret; /* Make sure correctable error traps are disabled. */ __asm__ __volatile__("ldxa [%%g0] %2, %0\n\t" "andn %0, %1, %%g1\n\t" "stxa %%g1, [%%g0] %2\n\t" "membar #Sync" : "=&r" (orig_estate) : "i" (ESTATE_ERROR_CEEN), "i" (ASI_ESTATE_ERROR_EN) : "g1"); /* We calculate alias addresses that will force the * cache line in question out of the E-cache. Then * we bring it back in with an atomic instruction so * that we get it in some modified/exclusive state, * then we displace it again to try and get proper ECC * pushed back into the system. */ physaddr &= ~(8UL - 1UL); alias1 = (ecache_flush_physbase + (physaddr & ((ecache_flush_size >> 1) - 1))); alias2 = alias1 + (ecache_flush_size >> 1); __asm__ __volatile__("ldxa [%0] %3, %%g0\n\t" "ldxa [%1] %3, %%g0\n\t" "casxa [%2] %3, %%g0, %%g0\n\t" "ldxa [%0] %3, %%g0\n\t" "ldxa [%1] %3, %%g0\n\t" "membar #Sync" : /* no outputs */ : "r" (alias1), "r" (alias2), "r" (physaddr), "i" (ASI_PHYS_USE_EC)); /* Did that trigger another error? */ if (cheetah_recheck_errors(NULL)) { /* Try one more time. */ __asm__ __volatile__("ldxa [%0] %1, %%g0\n\t" "membar #Sync" : : "r" (physaddr), "i" (ASI_PHYS_USE_EC)); if (cheetah_recheck_errors(NULL)) ret = 2; else ret = 1; } else { /* No new error, intermittent problem. */ ret = 0; } /* Restore error enables. */ __asm__ __volatile__("stxa %0, [%%g0] %1\n\t" "membar #Sync" : : "r" (orig_estate), "i" (ASI_ESTATE_ERROR_EN)); return ret; } /* Return non-zero if PADDR is a valid physical memory address. */ static int cheetah_check_main_memory(unsigned long paddr) { unsigned long vaddr = PAGE_OFFSET + paddr; if (vaddr > (unsigned long) high_memory) return 0; return kern_addr_valid(vaddr); } void cheetah_cee_handler(struct pt_regs *regs, unsigned long afsr, unsigned long afar) { struct cheetah_err_info local_snapshot, *p; int recoverable, is_memory; p = cheetah_get_error_log(afsr); if (!p) { prom_printf("ERROR: Early CEE error afsr[%016lx] afar[%016lx]\n", afsr, afar); prom_printf("ERROR: CPU(%d) TPC[%016lx] TNPC[%016lx] TSTATE[%016lx]\n", smp_processor_id(), regs->tpc, regs->tnpc, regs->tstate); prom_halt(); } /* Grab snapshot of logged error. */ memcpy(&local_snapshot, p, sizeof(local_snapshot)); /* If the current trap snapshot does not match what the * trap handler passed along into our args, big trouble. * In such a case, mark the local copy as invalid. * * Else, it matches and we mark the afsr in the non-local * copy as invalid so we may log new error traps there. */ if (p->afsr != afsr || p->afar != afar) local_snapshot.afsr = CHAFSR_INVALID; else p->afsr = CHAFSR_INVALID; is_memory = cheetah_check_main_memory(afar); if (is_memory && (afsr & CHAFSR_CE) != 0UL) { /* XXX Might want to log the results of this operation * XXX somewhere... -DaveM */ cheetah_fix_ce(afar); } { int flush_all, flush_line; flush_all = flush_line = 0; if ((afsr & CHAFSR_EDC) != 0UL) { if ((afsr & cheetah_afsr_errors) == CHAFSR_EDC) flush_line = 1; else flush_all = 1; } else if ((afsr & CHAFSR_CPC) != 0UL) { if ((afsr & cheetah_afsr_errors) == CHAFSR_CPC) flush_line = 1; else flush_all = 1; } /* Trap handler only disabled I-cache, flush it. */ cheetah_flush_icache(); /* Re-enable I-cache */ __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t" "or %%g1, %1, %%g1\n\t" "stxa %%g1, [%%g0] %0\n\t" "membar #Sync" : /* no outputs */ : "i" (ASI_DCU_CONTROL_REG), "i" (DCU_IC) : "g1"); if (flush_all) cheetah_flush_ecache(); else if (flush_line) cheetah_flush_ecache_line(afar); } /* Re-enable error reporting */ __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t" "or %%g1, %1, %%g1\n\t" "stxa %%g1, [%%g0] %0\n\t" "membar #Sync" : /* no outputs */ : "i" (ASI_ESTATE_ERROR_EN), "i" (ESTATE_ERROR_CEEN) : "g1"); /* Decide if we can continue after handling this trap and * logging the error. */ recoverable = 1; if (afsr & (CHAFSR_PERR | CHAFSR_IERR | CHAFSR_ISAP)) recoverable = 0; /* Re-check AFSR/AFAR */ (void) cheetah_recheck_errors(&local_snapshot); /* Log errors. */ cheetah_log_errors(regs, &local_snapshot, afsr, afar, recoverable); if (!recoverable) panic("Irrecoverable Correctable-ECC error trap.\n"); } void cheetah_deferred_handler(struct pt_regs *regs, unsigned long afsr, unsigned long afar) { struct cheetah_err_info local_snapshot, *p; int recoverable, is_memory; #ifdef CONFIG_PCI /* Check for the special PCI poke sequence. */ if (pci_poke_in_progress && pci_poke_cpu == smp_processor_id()) { cheetah_flush_icache(); cheetah_flush_dcache(); /* Re-enable I-cache/D-cache */ __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t" "or %%g1, %1, %%g1\n\t" "stxa %%g1, [%%g0] %0\n\t" "membar #Sync" : /* no outputs */ : "i" (ASI_DCU_CONTROL_REG), "i" (DCU_DC | DCU_IC) : "g1"); /* Re-enable error reporting */ __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t" "or %%g1, %1, %%g1\n\t" "stxa %%g1, [%%g0] %0\n\t" "membar #Sync" : /* no outputs */ : "i" (ASI_ESTATE_ERROR_EN), "i" (ESTATE_ERROR_NCEEN | ESTATE_ERROR_CEEN) : "g1"); (void) cheetah_recheck_errors(NULL); pci_poke_faulted = 1; regs->tpc += 4; regs->tnpc = regs->tpc + 4; return; } #endif p = cheetah_get_error_log(afsr); if (!p) { prom_printf("ERROR: Early deferred error afsr[%016lx] afar[%016lx]\n", afsr, afar); prom_printf("ERROR: CPU(%d) TPC[%016lx] TNPC[%016lx] TSTATE[%016lx]\n", smp_processor_id(), regs->tpc, regs->tnpc, regs->tstate); prom_halt(); } /* Grab snapshot of logged error. */ memcpy(&local_snapshot, p, sizeof(local_snapshot)); /* If the current trap snapshot does not match what the * trap handler passed along into our args, big trouble. * In such a case, mark the local copy as invalid. * * Else, it matches and we mark the afsr in the non-local * copy as invalid so we may log new error traps there. */ if (p->afsr != afsr || p->afar != afar) local_snapshot.afsr = CHAFSR_INVALID; else p->afsr = CHAFSR_INVALID; is_memory = cheetah_check_main_memory(afar); { int flush_all, flush_line; flush_all = flush_line = 0; if ((afsr & CHAFSR_EDU) != 0UL) { if ((afsr & cheetah_afsr_errors) == CHAFSR_EDU) flush_line = 1; else flush_all = 1; } else if ((afsr & CHAFSR_BERR) != 0UL) { if ((afsr & cheetah_afsr_errors) == CHAFSR_BERR) flush_line = 1; else flush_all = 1; } cheetah_flush_icache(); cheetah_flush_dcache(); /* Re-enable I/D caches */ __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t" "or %%g1, %1, %%g1\n\t" "stxa %%g1, [%%g0] %0\n\t" "membar #Sync" : /* no outputs */ : "i" (ASI_DCU_CONTROL_REG), "i" (DCU_IC | DCU_DC) : "g1"); if (flush_all) cheetah_flush_ecache(); else if (flush_line) cheetah_flush_ecache_line(afar); } /* Re-enable error reporting */ __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t" "or %%g1, %1, %%g1\n\t" "stxa %%g1, [%%g0] %0\n\t" "membar #Sync" : /* no outputs */ : "i" (ASI_ESTATE_ERROR_EN), "i" (ESTATE_ERROR_NCEEN | ESTATE_ERROR_CEEN) : "g1"); /* Decide if we can continue after handling this trap and * logging the error. */ recoverable = 1; if (afsr & (CHAFSR_PERR | CHAFSR_IERR | CHAFSR_ISAP)) recoverable = 0; /* Re-check AFSR/AFAR. What we are looking for here is whether a new * error was logged while we had error reporting traps disabled. */ if (cheetah_recheck_errors(&local_snapshot)) { unsigned long new_afsr = local_snapshot.afsr; /* If we got a new asynchronous error, die... */ if (new_afsr & (CHAFSR_EMU | CHAFSR_EDU | CHAFSR_WDU | CHAFSR_CPU | CHAFSR_IVU | CHAFSR_UE | CHAFSR_BERR | CHAFSR_TO)) recoverable = 0; } /* Log errors. */ cheetah_log_errors(regs, &local_snapshot, afsr, afar, recoverable); /* "Recoverable" here means we try to yank the page from ever * being newly used again. This depends upon a few things: * 1) Must be main memory, and AFAR must be valid. * 2) If we trapped from user, OK. * 3) Else, if we trapped from kernel we must find exception * table entry (ie. we have to have been accessing user * space). * * If AFAR is not in main memory, or we trapped from kernel * and cannot find an exception table entry, it is unacceptable * to try and continue. */ if (recoverable && is_memory) { if ((regs->tstate & TSTATE_PRIV) == 0UL) { /* OK, usermode access. */ recoverable = 1; } else { const struct exception_table_entry *entry; entry = search_exception_tables(regs->tpc); if (entry) { /* OK, kernel access to userspace. */ recoverable = 1; } else { /* BAD, privileged state is corrupted. */ recoverable = 0; } if (recoverable) { if (pfn_valid(afar >> PAGE_SHIFT)) get_page(pfn_to_page(afar >> PAGE_SHIFT)); else recoverable = 0; /* Only perform fixup if we still have a * recoverable condition. */ if (recoverable) { regs->tpc = entry->fixup; regs->tnpc = regs->tpc + 4; } } } } else { recoverable = 0; } if (!recoverable) panic("Irrecoverable deferred error trap.\n"); } /* Handle a D/I cache parity error trap. TYPE is encoded as: * * Bit0: 0=dcache,1=icache * Bit1: 0=recoverable,1=unrecoverable * * The hardware has disabled both the I-cache and D-cache in * the %dcr register. */ void cheetah_plus_parity_error(int type, struct pt_regs *regs) { if (type & 0x1) __cheetah_flush_icache(); else cheetah_plus_zap_dcache_parity(); cheetah_flush_dcache(); /* Re-enable I-cache/D-cache */ __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t" "or %%g1, %1, %%g1\n\t" "stxa %%g1, [%%g0] %0\n\t" "membar #Sync" : /* no outputs */ : "i" (ASI_DCU_CONTROL_REG), "i" (DCU_DC | DCU_IC) : "g1"); if (type & 0x2) { printk(KERN_EMERG "CPU[%d]: Cheetah+ %c-cache parity error at TPC[%016lx]\n", smp_processor_id(), (type & 0x1) ? 'I' : 'D', regs->tpc); printk(KERN_EMERG "TPC<%pS>\n", (void *) regs->tpc); panic("Irrecoverable Cheetah+ parity error."); } printk(KERN_WARNING "CPU[%d]: Cheetah+ %c-cache parity error at TPC[%016lx]\n", smp_processor_id(), (type & 0x1) ? 'I' : 'D', regs->tpc); printk(KERN_WARNING "TPC<%pS>\n", (void *) regs->tpc); } struct sun4v_error_entry { /* Unique error handle */ /*0x00*/u64 err_handle; /* %stick value at the time of the error */ /*0x08*/u64 err_stick; /*0x10*/u8 reserved_1[3]; /* Error type */ /*0x13*/u8 err_type; #define SUN4V_ERR_TYPE_UNDEFINED 0 #define SUN4V_ERR_TYPE_UNCORRECTED_RES 1 #define SUN4V_ERR_TYPE_PRECISE_NONRES 2 #define SUN4V_ERR_TYPE_DEFERRED_NONRES 3 #define SUN4V_ERR_TYPE_SHUTDOWN_RQST 4 #define SUN4V_ERR_TYPE_DUMP_CORE 5 #define SUN4V_ERR_TYPE_SP_STATE_CHANGE 6 #define SUN4V_ERR_TYPE_NUM 7 /* Error attributes */ /*0x14*/u32 err_attrs; #define SUN4V_ERR_ATTRS_PROCESSOR 0x00000001 #define SUN4V_ERR_ATTRS_MEMORY 0x00000002 #define SUN4V_ERR_ATTRS_PIO 0x00000004 #define SUN4V_ERR_ATTRS_INT_REGISTERS 0x00000008 #define SUN4V_ERR_ATTRS_FPU_REGISTERS 0x00000010 #define SUN4V_ERR_ATTRS_SHUTDOWN_RQST 0x00000020 #define SUN4V_ERR_ATTRS_ASR 0x00000040 #define SUN4V_ERR_ATTRS_ASI 0x00000080 #define SUN4V_ERR_ATTRS_PRIV_REG 0x00000100 #define SUN4V_ERR_ATTRS_SPSTATE_MSK 0x00000600 #define SUN4V_ERR_ATTRS_MCD 0x00000800 #define SUN4V_ERR_ATTRS_SPSTATE_SHFT 9 #define SUN4V_ERR_ATTRS_MODE_MSK 0x03000000 #define SUN4V_ERR_ATTRS_MODE_SHFT 24 #define SUN4V_ERR_ATTRS_RES_QUEUE_FULL 0x80000000 #define SUN4V_ERR_SPSTATE_FAULTED 0 #define SUN4V_ERR_SPSTATE_AVAILABLE 1 #define SUN4V_ERR_SPSTATE_NOT_PRESENT 2 #define SUN4V_ERR_MODE_USER 1 #define SUN4V_ERR_MODE_PRIV 2 /* Real address of the memory region or PIO transaction */ /*0x18*/u64 err_raddr; /* Size of the operation triggering the error, in bytes */ /*0x20*/u32 err_size; /* ID of the CPU */ /*0x24*/u16 err_cpu; /* Grace periof for shutdown, in seconds */ /*0x26*/u16 err_secs; /* Value of the %asi register */ /*0x28*/u8 err_asi; /*0x29*/u8 reserved_2; /* Value of the ASR register number */ /*0x2a*/u16 err_asr; #define SUN4V_ERR_ASR_VALID 0x8000 /*0x2c*/u32 reserved_3; /*0x30*/u64 reserved_4; /*0x38*/u64 reserved_5; }; static atomic_t sun4v_resum_oflow_cnt = ATOMIC_INIT(0); static atomic_t sun4v_nonresum_oflow_cnt = ATOMIC_INIT(0); static const char *sun4v_err_type_to_str(u8 type) { static const char *types[SUN4V_ERR_TYPE_NUM] = { "undefined", "uncorrected resumable", "precise nonresumable", "deferred nonresumable", "shutdown request", "dump core", "SP state change", }; if (type < SUN4V_ERR_TYPE_NUM) return types[type]; return "unknown"; } static void sun4v_emit_err_attr_strings(u32 attrs) { static const char *attr_names[] = { "processor", "memory", "PIO", "int-registers", "fpu-registers", "shutdown-request", "ASR", "ASI", "priv-reg", }; static const char *sp_states[] = { "sp-faulted", "sp-available", "sp-not-present", "sp-state-reserved", }; static const char *modes[] = { "mode-reserved0", "user", "priv", "mode-reserved1", }; u32 sp_state, mode; int i; for (i = 0; i < ARRAY_SIZE(attr_names); i++) { if (attrs & (1U << i)) { const char *s = attr_names[i]; pr_cont("%s ", s); } } sp_state = ((attrs & SUN4V_ERR_ATTRS_SPSTATE_MSK) >> SUN4V_ERR_ATTRS_SPSTATE_SHFT); pr_cont("%s ", sp_states[sp_state]); mode = ((attrs & SUN4V_ERR_ATTRS_MODE_MSK) >> SUN4V_ERR_ATTRS_MODE_SHFT); pr_cont("%s ", modes[mode]); if (attrs & SUN4V_ERR_ATTRS_RES_QUEUE_FULL) pr_cont("res-queue-full "); } /* When the report contains a real-address of "-1" it means that the * hardware did not provide the address. So we compute the effective * address of the load or store instruction at regs->tpc and report * that. Usually when this happens it's a PIO and in such a case we * are using physical addresses with bypass ASIs anyways, so what we * report here is exactly what we want. */ static void sun4v_report_real_raddr(const char *pfx, struct pt_regs *regs) { unsigned int insn; u64 addr; if (!(regs->tstate & TSTATE_PRIV)) return; insn = *(unsigned int *) regs->tpc; addr = compute_effective_address(regs, insn, 0); printk("%s: insn effective address [0x%016llx]\n", pfx, addr); } static void sun4v_log_error(struct pt_regs *regs, struct sun4v_error_entry *ent, int cpu, const char *pfx, atomic_t *ocnt) { u64 *raw_ptr = (u64 *) ent; u32 attrs; int cnt; printk("%s: Reporting on cpu %d\n", pfx, cpu); printk("%s: TPC [0x%016lx] <%pS>\n", pfx, regs->tpc, (void *) regs->tpc); printk("%s: RAW [%016llx:%016llx:%016llx:%016llx\n", pfx, raw_ptr[0], raw_ptr[1], raw_ptr[2], raw_ptr[3]); printk("%s: %016llx:%016llx:%016llx:%016llx]\n", pfx, raw_ptr[4], raw_ptr[5], raw_ptr[6], raw_ptr[7]); printk("%s: handle [0x%016llx] stick [0x%016llx]\n", pfx, ent->err_handle, ent->err_stick); printk("%s: type [%s]\n", pfx, sun4v_err_type_to_str(ent->err_type)); attrs = ent->err_attrs; printk("%s: attrs [0x%08x] < ", pfx, attrs); sun4v_emit_err_attr_strings(attrs); pr_cont(">\n"); /* Various fields in the error report are only valid if * certain attribute bits are set. */ if (attrs & (SUN4V_ERR_ATTRS_MEMORY | SUN4V_ERR_ATTRS_PIO | SUN4V_ERR_ATTRS_ASI)) { printk("%s: raddr [0x%016llx]\n", pfx, ent->err_raddr); if (ent->err_raddr == ~(u64)0) sun4v_report_real_raddr(pfx, regs); } if (attrs & (SUN4V_ERR_ATTRS_MEMORY | SUN4V_ERR_ATTRS_ASI)) printk("%s: size [0x%x]\n", pfx, ent->err_size); if (attrs & (SUN4V_ERR_ATTRS_PROCESSOR | SUN4V_ERR_ATTRS_INT_REGISTERS | SUN4V_ERR_ATTRS_FPU_REGISTERS | SUN4V_ERR_ATTRS_PRIV_REG)) printk("%s: cpu[%u]\n", pfx, ent->err_cpu); if (attrs & SUN4V_ERR_ATTRS_ASI) printk("%s: asi [0x%02x]\n", pfx, ent->err_asi); if ((attrs & (SUN4V_ERR_ATTRS_INT_REGISTERS | SUN4V_ERR_ATTRS_FPU_REGISTERS | SUN4V_ERR_ATTRS_PRIV_REG)) && (ent->err_asr & SUN4V_ERR_ASR_VALID) != 0) printk("%s: reg [0x%04x]\n", pfx, ent->err_asr & ~SUN4V_ERR_ASR_VALID); show_regs(regs); if ((cnt = atomic_read(ocnt)) != 0) { atomic_set(ocnt, 0); wmb(); printk("%s: Queue overflowed %d times.\n", pfx, cnt); } } /* Handle memory corruption detected error which is vectored in * through resumable error trap. */ void do_mcd_err(struct pt_regs *regs, struct sun4v_error_entry ent) { if (notify_die(DIE_TRAP, "MCD error", regs, 0, 0x34, SIGSEGV) == NOTIFY_STOP) return; if (regs->tstate & TSTATE_PRIV) { /* MCD exception could happen because the task was * running a system call with MCD enabled and passed a * non-versioned pointer or pointer with bad version * tag to the system call. In such cases, hypervisor * places the address of offending instruction in the * resumable error report. This is a deferred error, * so the read/write that caused the trap was potentially * retired long time back and we may have no choice * but to send SIGSEGV to the process. */ const struct exception_table_entry *entry; entry = search_exception_tables(regs->tpc); if (entry) { /* Looks like a bad syscall parameter */ #ifdef DEBUG_EXCEPTIONS pr_emerg("Exception: PC<%016lx> faddr<UNKNOWN>\n", regs->tpc); pr_emerg("EX_TABLE: insn<%016lx> fixup<%016lx>\n", ent.err_raddr, entry->fixup); #endif regs->tpc = entry->fixup; regs->tnpc = regs->tpc + 4; return; } } /* Send SIGSEGV to the userspace process with the right signal * code */ force_sig_fault(SIGSEGV, SEGV_ADIDERR, (void __user *)ent.err_raddr); } /* We run with %pil set to PIL_NORMAL_MAX and PSTATE_IE enabled in %pstate. * Log the event and clear the first word of the entry. */ void sun4v_resum_error(struct pt_regs *regs, unsigned long offset) { enum ctx_state prev_state = exception_enter(); struct sun4v_error_entry *ent, local_copy; struct trap_per_cpu *tb; unsigned long paddr; int cpu; cpu = get_cpu(); tb = &trap_block[cpu]; paddr = tb->resum_kernel_buf_pa + offset; ent = __va(paddr); memcpy(&local_copy, ent, sizeof(struct sun4v_error_entry)); /* We have a local copy now, so release the entry. */ ent->err_handle = 0; wmb(); put_cpu(); if (local_copy.err_type == SUN4V_ERR_TYPE_SHUTDOWN_RQST) { /* We should really take the seconds field of * the error report and use it for the shutdown * invocation, but for now do the same thing we * do for a DS shutdown request. */ pr_info("Shutdown request, %u seconds...\n", local_copy.err_secs); orderly_poweroff(true); goto out; } /* If this is a memory corruption detected error vectored in * by HV through resumable error trap, call the handler */ if (local_copy.err_attrs & SUN4V_ERR_ATTRS_MCD) { do_mcd_err(regs, local_copy); return; } sun4v_log_error(regs, &local_copy, cpu, KERN_ERR "RESUMABLE ERROR", &sun4v_resum_oflow_cnt); out: exception_exit(prev_state); } /* If we try to printk() we'll probably make matters worse, by trying * to retake locks this cpu already holds or causing more errors. So * just bump a counter, and we'll report these counter bumps above. */ void sun4v_resum_overflow(struct pt_regs *regs) { atomic_inc(&sun4v_resum_oflow_cnt); } /* Given a set of registers, get the virtual addressi that was being accessed * by the faulting instructions at tpc. */ static unsigned long sun4v_get_vaddr(struct pt_regs *regs) { unsigned int insn; if (!copy_from_user(&insn, (void __user *)regs->tpc, 4)) { return compute_effective_address(regs, insn, (insn >> 25) & 0x1f); } return 0; } /* Attempt to handle non-resumable errors generated from userspace. * Returns true if the signal was handled, false otherwise. */ bool sun4v_nonresum_error_user_handled(struct pt_regs *regs, struct sun4v_error_entry *ent) { unsigned int attrs = ent->err_attrs; if (attrs & SUN4V_ERR_ATTRS_MEMORY) { unsigned long addr = ent->err_raddr; if (addr == ~(u64)0) { /* This seems highly unlikely to ever occur */ pr_emerg("SUN4V NON-RECOVERABLE ERROR: Memory error detected in unknown location!\n"); } else { unsigned long page_cnt = DIV_ROUND_UP(ent->err_size, PAGE_SIZE); /* Break the unfortunate news. */ pr_emerg("SUN4V NON-RECOVERABLE ERROR: Memory failed at %016lX\n", addr); pr_emerg("SUN4V NON-RECOVERABLE ERROR: Claiming %lu ages.\n", page_cnt); while (page_cnt-- > 0) { if (pfn_valid(addr >> PAGE_SHIFT)) get_page(pfn_to_page(addr >> PAGE_SHIFT)); addr += PAGE_SIZE; } } force_sig(SIGKILL); return true; } if (attrs & SUN4V_ERR_ATTRS_PIO) { force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)sun4v_get_vaddr(regs)); return true; } /* Default to doing nothing */ return false; } /* We run with %pil set to PIL_NORMAL_MAX and PSTATE_IE enabled in %pstate. * Log the event, clear the first word of the entry, and die. */ void sun4v_nonresum_error(struct pt_regs *regs, unsigned long offset) { struct sun4v_error_entry *ent, local_copy; struct trap_per_cpu *tb; unsigned long paddr; int cpu; cpu = get_cpu(); tb = &trap_block[cpu]; paddr = tb->nonresum_kernel_buf_pa + offset; ent = __va(paddr); memcpy(&local_copy, ent, sizeof(struct sun4v_error_entry)); /* We have a local copy now, so release the entry. */ ent->err_handle = 0; wmb(); put_cpu(); if (!(regs->tstate & TSTATE_PRIV) && sun4v_nonresum_error_user_handled(regs, &local_copy)) { /* DON'T PANIC: This userspace error was handled. */ return; } #ifdef CONFIG_PCI /* Check for the special PCI poke sequence. */ if (pci_poke_in_progress && pci_poke_cpu == cpu) { pci_poke_faulted = 1; regs->tpc += 4; regs->tnpc = regs->tpc + 4; return; } #endif sun4v_log_error(regs, &local_copy, cpu, KERN_EMERG "NON-RESUMABLE ERROR", &sun4v_nonresum_oflow_cnt); panic("Non-resumable error."); } /* If we try to printk() we'll probably make matters worse, by trying * to retake locks this cpu already holds or causing more errors. So * just bump a counter, and we'll report these counter bumps above. */ void sun4v_nonresum_overflow(struct pt_regs *regs) { /* XXX Actually even this can make not that much sense. Perhaps * XXX we should just pull the plug and panic directly from here? */ atomic_inc(&sun4v_nonresum_oflow_cnt); } static void sun4v_tlb_error(struct pt_regs *regs) { die_if_kernel("TLB/TSB error", regs); } unsigned long sun4v_err_itlb_vaddr; unsigned long sun4v_err_itlb_ctx; unsigned long sun4v_err_itlb_pte; unsigned long sun4v_err_itlb_error; void sun4v_itlb_error_report(struct pt_regs *regs, int tl) { dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); printk(KERN_EMERG "SUN4V-ITLB: Error at TPC[%lx], tl %d\n", regs->tpc, tl); printk(KERN_EMERG "SUN4V-ITLB: TPC<%pS>\n", (void *) regs->tpc); printk(KERN_EMERG "SUN4V-ITLB: O7[%lx]\n", regs->u_regs[UREG_I7]); printk(KERN_EMERG "SUN4V-ITLB: O7<%pS>\n", (void *) regs->u_regs[UREG_I7]); printk(KERN_EMERG "SUN4V-ITLB: vaddr[%lx] ctx[%lx] " "pte[%lx] error[%lx]\n", sun4v_err_itlb_vaddr, sun4v_err_itlb_ctx, sun4v_err_itlb_pte, sun4v_err_itlb_error); sun4v_tlb_error(regs); } unsigned long sun4v_err_dtlb_vaddr; unsigned long sun4v_err_dtlb_ctx; unsigned long sun4v_err_dtlb_pte; unsigned long sun4v_err_dtlb_error; void sun4v_dtlb_error_report(struct pt_regs *regs, int tl) { dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); printk(KERN_EMERG "SUN4V-DTLB: Error at TPC[%lx], tl %d\n", regs->tpc, tl); printk(KERN_EMERG "SUN4V-DTLB: TPC<%pS>\n", (void *) regs->tpc); printk(KERN_EMERG "SUN4V-DTLB: O7[%lx]\n", regs->u_regs[UREG_I7]); printk(KERN_EMERG "SUN4V-DTLB: O7<%pS>\n", (void *) regs->u_regs[UREG_I7]); printk(KERN_EMERG "SUN4V-DTLB: vaddr[%lx] ctx[%lx] " "pte[%lx] error[%lx]\n", sun4v_err_dtlb_vaddr, sun4v_err_dtlb_ctx, sun4v_err_dtlb_pte, sun4v_err_dtlb_error); sun4v_tlb_error(regs); } void hypervisor_tlbop_error(unsigned long err, unsigned long op) { printk(KERN_CRIT "SUN4V: TLB hv call error %lu for op %lu\n", err, op); } void hypervisor_tlbop_error_xcall(unsigned long err, unsigned long op) { printk(KERN_CRIT "SUN4V: XCALL TLB hv call error %lu for op %lu\n", err, op); } static void do_fpe_common(struct pt_regs *regs) { if (regs->tstate & TSTATE_PRIV) { regs->tpc = regs->tnpc; regs->tnpc += 4; } else { unsigned long fsr = current_thread_info()->xfsr[0]; int code; if (test_thread_flag(TIF_32BIT)) { regs->tpc &= 0xffffffff; regs->tnpc &= 0xffffffff; } code = FPE_FLTUNK; if ((fsr & 0x1c000) == (1 << 14)) { if (fsr & 0x10) code = FPE_FLTINV; else if (fsr & 0x08) code = FPE_FLTOVF; else if (fsr & 0x04) code = FPE_FLTUND; else if (fsr & 0x02) code = FPE_FLTDIV; else if (fsr & 0x01) code = FPE_FLTRES; } force_sig_fault(SIGFPE, code, (void __user *)regs->tpc); } } void do_fpieee(struct pt_regs *regs) { enum ctx_state prev_state = exception_enter(); if (notify_die(DIE_TRAP, "fpu exception ieee", regs, 0, 0x24, SIGFPE) == NOTIFY_STOP) goto out; do_fpe_common(regs); out: exception_exit(prev_state); } void do_fpother(struct pt_regs *regs) { enum ctx_state prev_state = exception_enter(); struct fpustate *f = FPUSTATE; int ret = 0; if (notify_die(DIE_TRAP, "fpu exception other", regs, 0, 0x25, SIGFPE) == NOTIFY_STOP) goto out; switch ((current_thread_info()->xfsr[0] & 0x1c000)) { case (2 << 14): /* unfinished_FPop */ case (3 << 14): /* unimplemented_FPop */ ret = do_mathemu(regs, f, false); break; } if (ret) goto out; do_fpe_common(regs); out: exception_exit(prev_state); } void do_tof(struct pt_regs *regs) { enum ctx_state prev_state = exception_enter(); if (notify_die(DIE_TRAP, "tagged arithmetic overflow", regs, 0, 0x26, SIGEMT) == NOTIFY_STOP) goto out; if (regs->tstate & TSTATE_PRIV) die_if_kernel("Penguin overflow trap from kernel mode", regs); if (test_thread_flag(TIF_32BIT)) { regs->tpc &= 0xffffffff; regs->tnpc &= 0xffffffff; } force_sig_fault(SIGEMT, EMT_TAGOVF, (void __user *)regs->tpc); out: exception_exit(prev_state); } void do_div0(struct pt_regs *regs) { enum ctx_state prev_state = exception_enter(); if (notify_die(DIE_TRAP, "integer division by zero", regs, 0, 0x28, SIGFPE) == NOTIFY_STOP) goto out; if (regs->tstate & TSTATE_PRIV) die_if_kernel("TL0: Kernel divide by zero.", regs); if (test_thread_flag(TIF_32BIT)) { regs->tpc &= 0xffffffff; regs->tnpc &= 0xffffffff; } force_sig_fault(SIGFPE, FPE_INTDIV, (void __user *)regs->tpc); out: exception_exit(prev_state); } static void instruction_dump(unsigned int *pc) { int i; if ((((unsigned long) pc) & 3)) return; printk("Instruction DUMP:"); for (i = -3; i < 6; i++) printk("%c%08x%c",i?' ':'<',pc[i],i?' ':'>'); printk("\n"); } static void user_instruction_dump(unsigned int __user *pc) { int i; unsigned int buf[9]; if ((((unsigned long) pc) & 3)) return; if (copy_from_user(buf, pc - 3, sizeof(buf))) return; printk("Instruction DUMP:"); for (i = 0; i < 9; i++) printk("%c%08x%c",i==3?' ':'<',buf[i],i==3?' ':'>'); printk("\n"); } void show_stack(struct task_struct *tsk, unsigned long *_ksp, const char *loglvl) { unsigned long fp, ksp; struct thread_info *tp; int count = 0; #ifdef CONFIG_FUNCTION_GRAPH_TRACER int graph = 0; #endif ksp = (unsigned long) _ksp; if (!tsk) tsk = current; tp = task_thread_info(tsk); if (ksp == 0UL) { if (tsk == current) asm("mov %%fp, %0" : "=r" (ksp)); else ksp = tp->ksp; } if (tp == current_thread_info()) flushw_all(); fp = ksp + STACK_BIAS; printk("%sCall Trace:\n", loglvl); do { struct sparc_stackf *sf; struct pt_regs *regs; unsigned long pc; if (!kstack_valid(tp, fp)) break; sf = (struct sparc_stackf *) fp; regs = (struct pt_regs *) (sf + 1); if (kstack_is_trap_frame(tp, regs)) { if (!(regs->tstate & TSTATE_PRIV)) break; pc = regs->tpc; fp = regs->u_regs[UREG_I6] + STACK_BIAS; } else { pc = sf->callers_pc; fp = (unsigned long)sf->fp + STACK_BIAS; } print_ip_sym(loglvl, pc); #ifdef CONFIG_FUNCTION_GRAPH_TRACER if ((pc + 8UL) == (unsigned long) &return_to_handler) { struct ftrace_ret_stack *ret_stack; ret_stack = ftrace_graph_get_ret_stack(tsk, graph); if (ret_stack) { pc = ret_stack->ret; print_ip_sym(loglvl, pc); graph++; } } #endif } while (++count < 16); } static inline struct reg_window *kernel_stack_up(struct reg_window *rw) { unsigned long fp = rw->ins[6]; if (!fp) return NULL; return (struct reg_window *) (fp + STACK_BIAS); } void __noreturn die_if_kernel(char *str, struct pt_regs *regs) { static int die_counter; int count = 0; /* Amuse the user. */ printk( " \\|/ ____ \\|/\n" " \"@'/ .. \\`@\"\n" " /_| \\__/ |_\\\n" " \\__U_/\n"); printk("%s(%d): %s [#%d]\n", current->comm, task_pid_nr(current), str, ++die_counter); notify_die(DIE_OOPS, str, regs, 0, 255, SIGSEGV); __asm__ __volatile__("flushw"); show_regs(regs); add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE); if (regs->tstate & TSTATE_PRIV) { struct thread_info *tp = current_thread_info(); struct reg_window *rw = (struct reg_window *) (regs->u_regs[UREG_FP] + STACK_BIAS); /* Stop the back trace when we hit userland or we * find some badly aligned kernel stack. */ while (rw && count++ < 30 && kstack_valid(tp, (unsigned long) rw)) { printk("Caller[%016lx]: %pS\n", rw->ins[7], (void *) rw->ins[7]); rw = kernel_stack_up(rw); } instruction_dump ((unsigned int *) regs->tpc); } else { if (test_thread_flag(TIF_32BIT)) { regs->tpc &= 0xffffffff; regs->tnpc &= 0xffffffff; } user_instruction_dump ((unsigned int __user *) regs->tpc); } if (panic_on_oops) panic("Fatal exception"); make_task_dead((regs->tstate & TSTATE_PRIV)? SIGKILL : SIGSEGV); } EXPORT_SYMBOL(die_if_kernel); #define VIS_OPCODE_MASK ((0x3 << 30) | (0x3f << 19)) #define VIS_OPCODE_VAL ((0x2 << 30) | (0x36 << 19)) void do_illegal_instruction(struct pt_regs *regs) { enum ctx_state prev_state = exception_enter(); unsigned long pc = regs->tpc; unsigned long tstate = regs->tstate; u32 insn; if (notify_die(DIE_TRAP, "illegal instruction", regs, 0, 0x10, SIGILL) == NOTIFY_STOP) goto out; if (tstate & TSTATE_PRIV) die_if_kernel("Kernel illegal instruction", regs); if (test_thread_flag(TIF_32BIT)) pc = (u32)pc; if (get_user(insn, (u32 __user *) pc) != -EFAULT) { if ((insn & 0xc1ffc000) == 0x81700000) /* POPC */ { if (handle_popc(insn, regs)) goto out; } else if ((insn & 0xc1580000) == 0xc1100000) /* LDQ/STQ */ { if (handle_ldf_stq(insn, regs)) goto out; } else if (tlb_type == hypervisor) { if ((insn & VIS_OPCODE_MASK) == VIS_OPCODE_VAL) { if (!vis_emul(regs, insn)) goto out; } else { struct fpustate *f = FPUSTATE; /* On UltraSPARC T2 and later, FPU insns which * are not implemented in HW signal an illegal * instruction trap and do not set the FP Trap * Trap in the %fsr to unimplemented_FPop. */ if (do_mathemu(regs, f, true)) goto out; } } } force_sig_fault(SIGILL, ILL_ILLOPC, (void __user *)pc); out: exception_exit(prev_state); } void mem_address_unaligned(struct pt_regs *regs, unsigned long sfar, unsigned long sfsr) { enum ctx_state prev_state = exception_enter(); if (notify_die(DIE_TRAP, "memory address unaligned", regs, 0, 0x34, SIGSEGV) == NOTIFY_STOP) goto out; if (regs->tstate & TSTATE_PRIV) { kernel_unaligned_trap(regs, *((unsigned int *)regs->tpc)); goto out; } if (is_no_fault_exception(regs)) return; force_sig_fault(SIGBUS, BUS_ADRALN, (void __user *)sfar); out: exception_exit(prev_state); } void sun4v_do_mna(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx) { if (notify_die(DIE_TRAP, "memory address unaligned", regs, 0, 0x34, SIGSEGV) == NOTIFY_STOP) return; if (regs->tstate & TSTATE_PRIV) { kernel_unaligned_trap(regs, *((unsigned int *)regs->tpc)); return; } if (is_no_fault_exception(regs)) return; force_sig_fault(SIGBUS, BUS_ADRALN, (void __user *) addr); } /* sun4v_mem_corrupt_detect_precise() - Handle precise exception on an ADI * tag mismatch. * * ADI version tag mismatch on a load from memory always results in a * precise exception. Tag mismatch on a store to memory will result in * precise exception if MCDPER or PMCDPER is set to 1. */ void sun4v_mem_corrupt_detect_precise(struct pt_regs *regs, unsigned long addr, unsigned long context) { if (notify_die(DIE_TRAP, "memory corruption precise exception", regs, 0, 0x8, SIGSEGV) == NOTIFY_STOP) return; if (regs->tstate & TSTATE_PRIV) { /* MCD exception could happen because the task was running * a system call with MCD enabled and passed a non-versioned * pointer or pointer with bad version tag to the system * call. */ const struct exception_table_entry *entry; entry = search_exception_tables(regs->tpc); if (entry) { /* Looks like a bad syscall parameter */ #ifdef DEBUG_EXCEPTIONS pr_emerg("Exception: PC<%016lx> faddr<UNKNOWN>\n", regs->tpc); pr_emerg("EX_TABLE: insn<%016lx> fixup<%016lx>\n", regs->tpc, entry->fixup); #endif regs->tpc = entry->fixup; regs->tnpc = regs->tpc + 4; return; } pr_emerg("%s: ADDR[%016lx] CTX[%lx], going.\n", __func__, addr, context); die_if_kernel("MCD precise", regs); } if (test_thread_flag(TIF_32BIT)) { regs->tpc &= 0xffffffff; regs->tnpc &= 0xffffffff; } force_sig_fault(SIGSEGV, SEGV_ADIPERR, (void __user *)addr); } void do_privop(struct pt_regs *regs) { enum ctx_state prev_state = exception_enter(); if (notify_die(DIE_TRAP, "privileged operation", regs, 0, 0x11, SIGILL) == NOTIFY_STOP) goto out; if (test_thread_flag(TIF_32BIT)) { regs->tpc &= 0xffffffff; regs->tnpc &= 0xffffffff; } force_sig_fault(SIGILL, ILL_PRVOPC, (void __user *)regs->tpc); out: exception_exit(prev_state); } void do_privact(struct pt_regs *regs) { do_privop(regs); } /* Trap level 1 stuff or other traps we should never see... */ void do_cee(struct pt_regs *regs) { exception_enter(); die_if_kernel("TL0: Cache Error Exception", regs); } void do_div0_tl1(struct pt_regs *regs) { exception_enter(); dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); die_if_kernel("TL1: DIV0 Exception", regs); } void do_fpieee_tl1(struct pt_regs *regs) { exception_enter(); dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); die_if_kernel("TL1: FPU IEEE Exception", regs); } void do_fpother_tl1(struct pt_regs *regs) { exception_enter(); dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); die_if_kernel("TL1: FPU Other Exception", regs); } void do_ill_tl1(struct pt_regs *regs) { exception_enter(); dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); die_if_kernel("TL1: Illegal Instruction Exception", regs); } void do_irq_tl1(struct pt_regs *regs) { exception_enter(); dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); die_if_kernel("TL1: IRQ Exception", regs); } void do_lddfmna_tl1(struct pt_regs *regs) { exception_enter(); dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); die_if_kernel("TL1: LDDF Exception", regs); } void do_stdfmna_tl1(struct pt_regs *regs) { exception_enter(); dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); die_if_kernel("TL1: STDF Exception", regs); } void do_paw(struct pt_regs *regs) { exception_enter(); die_if_kernel("TL0: Phys Watchpoint Exception", regs); } void do_paw_tl1(struct pt_regs *regs) { exception_enter(); dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); die_if_kernel("TL1: Phys Watchpoint Exception", regs); } void do_vaw(struct pt_regs *regs) { exception_enter(); die_if_kernel("TL0: Virt Watchpoint Exception", regs); } void do_vaw_tl1(struct pt_regs *regs) { exception_enter(); dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); die_if_kernel("TL1: Virt Watchpoint Exception", regs); } void do_tof_tl1(struct pt_regs *regs) { exception_enter(); dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); die_if_kernel("TL1: Tag Overflow Exception", regs); } void do_getpsr(struct pt_regs *regs) { regs->u_regs[UREG_I0] = tstate_to_psr(regs->tstate); regs->tpc = regs->tnpc; regs->tnpc += 4; if (test_thread_flag(TIF_32BIT)) { regs->tpc &= 0xffffffff; regs->tnpc &= 0xffffffff; } } u64 cpu_mondo_counter[NR_CPUS] = {0}; struct trap_per_cpu trap_block[NR_CPUS]; EXPORT_SYMBOL(trap_block); /* This can get invoked before sched_init() so play it super safe * and use hard_smp_processor_id(). */ void notrace init_cur_cpu_trap(struct thread_info *t) { int cpu = hard_smp_processor_id(); struct trap_per_cpu *p = &trap_block[cpu]; p->thread = t; p->pgd_paddr = 0; } extern void thread_info_offsets_are_bolixed_dave(void); extern void trap_per_cpu_offsets_are_bolixed_dave(void); extern void tsb_config_offsets_are_bolixed_dave(void); /* Only invoked on boot processor. */ void __init trap_init(void) { /* Compile time sanity check. */ BUILD_BUG_ON(TI_TASK != offsetof(struct thread_info, task) || TI_FLAGS != offsetof(struct thread_info, flags) || TI_CPU != offsetof(struct thread_info, cpu) || TI_FPSAVED != offsetof(struct thread_info, fpsaved) || TI_KSP != offsetof(struct thread_info, ksp) || TI_FAULT_ADDR != offsetof(struct thread_info, fault_address) || TI_KREGS != offsetof(struct thread_info, kregs) || TI_UTRAPS != offsetof(struct thread_info, utraps) || TI_REG_WINDOW != offsetof(struct thread_info, reg_window) || TI_RWIN_SPTRS != offsetof(struct thread_info, rwbuf_stkptrs) || TI_GSR != offsetof(struct thread_info, gsr) || TI_XFSR != offsetof(struct thread_info, xfsr) || TI_PRE_COUNT != offsetof(struct thread_info, preempt_count) || TI_NEW_CHILD != offsetof(struct thread_info, new_child) || TI_KUNA_REGS != offsetof(struct thread_info, kern_una_regs) || TI_KUNA_INSN != offsetof(struct thread_info, kern_una_insn) || TI_FPREGS != offsetof(struct thread_info, fpregs) || (TI_FPREGS & (64 - 1))); BUILD_BUG_ON(TRAP_PER_CPU_THREAD != offsetof(struct trap_per_cpu, thread) || (TRAP_PER_CPU_PGD_PADDR != offsetof(struct trap_per_cpu, pgd_paddr)) || (TRAP_PER_CPU_CPU_MONDO_PA != offsetof(struct trap_per_cpu, cpu_mondo_pa)) || (TRAP_PER_CPU_DEV_MONDO_PA != offsetof(struct trap_per_cpu, dev_mondo_pa)) || (TRAP_PER_CPU_RESUM_MONDO_PA != offsetof(struct trap_per_cpu, resum_mondo_pa)) || (TRAP_PER_CPU_RESUM_KBUF_PA != offsetof(struct trap_per_cpu, resum_kernel_buf_pa)) || (TRAP_PER_CPU_NONRESUM_MONDO_PA != offsetof(struct trap_per_cpu, nonresum_mondo_pa)) || (TRAP_PER_CPU_NONRESUM_KBUF_PA != offsetof(struct trap_per_cpu, nonresum_kernel_buf_pa)) || (TRAP_PER_CPU_FAULT_INFO != offsetof(struct trap_per_cpu, fault_info)) || (TRAP_PER_CPU_CPU_MONDO_BLOCK_PA != offsetof(struct trap_per_cpu, cpu_mondo_block_pa)) || (TRAP_PER_CPU_CPU_LIST_PA != offsetof(struct trap_per_cpu, cpu_list_pa)) || (TRAP_PER_CPU_TSB_HUGE != offsetof(struct trap_per_cpu, tsb_huge)) || (TRAP_PER_CPU_TSB_HUGE_TEMP != offsetof(struct trap_per_cpu, tsb_huge_temp)) || (TRAP_PER_CPU_IRQ_WORKLIST_PA != offsetof(struct trap_per_cpu, irq_worklist_pa)) || (TRAP_PER_CPU_CPU_MONDO_QMASK != offsetof(struct trap_per_cpu, cpu_mondo_qmask)) || (TRAP_PER_CPU_DEV_MONDO_QMASK != offsetof(struct trap_per_cpu, dev_mondo_qmask)) || (TRAP_PER_CPU_RESUM_QMASK != offsetof(struct trap_per_cpu, resum_qmask)) || (TRAP_PER_CPU_NONRESUM_QMASK != offsetof(struct trap_per_cpu, nonresum_qmask)) || (TRAP_PER_CPU_PER_CPU_BASE != offsetof(struct trap_per_cpu, __per_cpu_base))); BUILD_BUG_ON((TSB_CONFIG_TSB != offsetof(struct tsb_config, tsb)) || (TSB_CONFIG_RSS_LIMIT != offsetof(struct tsb_config, tsb_rss_limit)) || (TSB_CONFIG_NENTRIES != offsetof(struct tsb_config, tsb_nentries)) || (TSB_CONFIG_REG_VAL != offsetof(struct tsb_config, tsb_reg_val)) || (TSB_CONFIG_MAP_VADDR != offsetof(struct tsb_config, tsb_map_vaddr)) || (TSB_CONFIG_MAP_PTE != offsetof(struct tsb_config, tsb_map_pte))); /* Attach to the address space of init_task. On SMP we * do this in smp.c:smp_callin for other cpus. */ mmgrab(&init_mm); current->active_mm = &init_mm; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1