Contributors: 71
Author Tokens Token Proportion Commits Commit Proportion
Kan Liang 9907 31.82% 101 22.80%
Peter Zijlstra 5894 18.93% 89 20.09%
Andi Kleen 4544 14.59% 42 9.48%
Ingo Molnar 3160 10.15% 21 4.74%
Stéphane Eranian 1701 5.46% 38 8.58%
Yan Zheng 1121 3.60% 10 2.26%
Jiri Olsa 975 3.13% 18 4.06%
Maria Dimakopoulou 835 2.68% 3 0.68%
Like Xu 720 2.31% 18 4.06%
Gleb Natapov 447 1.44% 3 0.68%
Lin Ming 257 0.83% 5 1.13%
Harish Chegondi 214 0.69% 1 0.23%
Song Liu 205 0.66% 1 0.23%
Robert Richter 127 0.41% 12 2.71%
Alexander Shishkin 115 0.37% 6 1.35%
Thomas Gleixner 104 0.33% 6 1.35%
Yanmin Zhang 92 0.30% 1 0.23%
David Carrillo-Cisneros 77 0.25% 2 0.45%
Kevin Winchester 54 0.17% 1 0.23%
Imre Palik 52 0.17% 2 0.45%
Adrian Hunter 49 0.16% 1 0.23%
Vince Weaver 46 0.15% 4 0.90%
Avi Kivity 37 0.12% 2 0.45%
Jaswinder Singh Rajput 32 0.10% 2 0.45%
Dapeng Mi 31 0.10% 2 0.45%
Jim Mattson 28 0.09% 2 0.45%
Cyrill V. Gorcunov 27 0.09% 1 0.23%
Andrew Lutomirski 26 0.08% 1 0.23%
Joshua Hunt 25 0.08% 1 0.23%
Alexey Budankov 22 0.07% 1 0.23%
Dave Hansen 21 0.07% 2 0.45%
Zhou Chengming 19 0.06% 1 0.23%
Namhyung Kim 18 0.06% 2 0.45%
Christoph Lameter 16 0.05% 1 0.23%
Paul Mackerras 14 0.04% 2 0.45%
Joel A Fernandes 12 0.04% 1 0.23%
Joe Perches 12 0.04% 1 0.23%
Sebastian Andrzej Siewior 11 0.04% 2 0.45%
Pawan Gupta 7 0.02% 1 0.23%
Daisuke Hatayama 7 0.02% 1 0.23%
Liu ShuoX 6 0.02% 1 0.23%
Gustavo A. R. Silva 6 0.02% 1 0.23%
Lukasz Odzioba 5 0.02% 2 0.45%
Yinghai Lu 4 0.01% 1 0.23%
Luwei Kang 4 0.01% 1 0.23%
Tejun Heo 3 0.01% 1 0.23%
Paul Gortmaker 3 0.01% 1 0.23%
Takao Indoh 3 0.01% 1 0.23%
H. Peter Anvin 3 0.01% 1 0.23%
Hiroshi Shimamoto 3 0.01% 1 0.23%
Duan Zhenzhong 3 0.01% 1 0.23%
Yuanfang Chen 3 0.01% 1 0.23%
Piotr Luc 2 0.01% 1 0.23%
Carsten Otte 2 0.01% 1 0.23%
Linus Torvalds (pre-git) 2 0.01% 1 0.23%
Paolo Bonzini 2 0.01% 1 0.23%
Bartosz Golaszewski 2 0.01% 1 0.23%
Akinobu Mita 2 0.01% 1 0.23%
Yunying Sun 2 0.01% 1 0.23%
Jordan Borgner 2 0.01% 1 0.23%
Youquan Song 2 0.01% 1 0.23%
Linus Torvalds 1 0.00% 1 0.23%
Borislav Petkov 1 0.00% 1 0.23%
Sean Christopherson 1 0.00% 1 0.23%
Markus Metzger 1 0.00% 1 0.23%
Reinette Chatre 1 0.00% 1 0.23%
kbuild test robot 1 0.00% 1 0.23%
Andrey Ryabinin 1 0.00% 1 0.23%
Frédéric Weisbecker 1 0.00% 1 0.23%
Guenter Roeck 1 0.00% 1 0.23%
Andre Przywara 1 0.00% 1 0.23%
Total 31135 443


// SPDX-License-Identifier: GPL-2.0-only
/*
 * Per core/cpu state
 *
 * Used to coordinate shared registers between HT threads or
 * among events on a single PMU.
 */

#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

#include <linux/stddef.h>
#include <linux/types.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/export.h>
#include <linux/nmi.h>
#include <linux/kvm_host.h>

#include <asm/cpufeature.h>
#include <asm/hardirq.h>
#include <asm/intel-family.h>
#include <asm/intel_pt.h>
#include <asm/apic.h>
#include <asm/cpu_device_id.h>

#include "../perf_event.h"

/*
 * Intel PerfMon, used on Core and later.
 */
static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
{
	[PERF_COUNT_HW_CPU_CYCLES]		= 0x003c,
	[PERF_COUNT_HW_INSTRUCTIONS]		= 0x00c0,
	[PERF_COUNT_HW_CACHE_REFERENCES]	= 0x4f2e,
	[PERF_COUNT_HW_CACHE_MISSES]		= 0x412e,
	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS]	= 0x00c4,
	[PERF_COUNT_HW_BRANCH_MISSES]		= 0x00c5,
	[PERF_COUNT_HW_BUS_CYCLES]		= 0x013c,
	[PERF_COUNT_HW_REF_CPU_CYCLES]		= 0x0300, /* pseudo-encoding */
};

static struct event_constraint intel_core_event_constraints[] __read_mostly =
{
	INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
	INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
	INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
	INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
	INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
	INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
	EVENT_CONSTRAINT_END
};

static struct event_constraint intel_core2_event_constraints[] __read_mostly =
{
	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
	INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
	INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
	INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
	INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
	INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
	INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
	INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
	INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
	INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
	INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
	EVENT_CONSTRAINT_END
};

static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
{
	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
	INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
	INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
	INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
	INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
	INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
	INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
	INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
	INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
	EVENT_CONSTRAINT_END
};

static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
{
	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
	EVENT_EXTRA_END
};

static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
{
	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
	INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
	INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
	INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
	INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
	EVENT_CONSTRAINT_END
};

static struct event_constraint intel_snb_event_constraints[] __read_mostly =
{
	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
	INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
	INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
	INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
	INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
	INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
	INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
	INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */

	/*
	 * When HT is off these events can only run on the bottom 4 counters
	 * When HT is on, they are impacted by the HT bug and require EXCL access
	 */
	INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
	INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
	INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
	INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */

	EVENT_CONSTRAINT_END
};

static struct event_constraint intel_ivb_event_constraints[] __read_mostly =
{
	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
	INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */
	INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMPTY */
	INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */
	INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_LDM_PENDING */
	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
	INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
	INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */
	INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
	INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
	INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */

	/*
	 * When HT is off these events can only run on the bottom 4 counters
	 * When HT is on, they are impacted by the HT bug and require EXCL access
	 */
	INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
	INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
	INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
	INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */

	EVENT_CONSTRAINT_END
};

static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
{
	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
	EVENT_EXTRA_END
};

static struct event_constraint intel_v1_event_constraints[] __read_mostly =
{
	EVENT_CONSTRAINT_END
};

static struct event_constraint intel_gen_event_constraints[] __read_mostly =
{
	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
	EVENT_CONSTRAINT_END
};

static struct event_constraint intel_v5_gen_event_constraints[] __read_mostly =
{
	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
	FIXED_EVENT_CONSTRAINT(0x0400, 3), /* SLOTS */
	FIXED_EVENT_CONSTRAINT(0x0500, 4),
	FIXED_EVENT_CONSTRAINT(0x0600, 5),
	FIXED_EVENT_CONSTRAINT(0x0700, 6),
	FIXED_EVENT_CONSTRAINT(0x0800, 7),
	FIXED_EVENT_CONSTRAINT(0x0900, 8),
	FIXED_EVENT_CONSTRAINT(0x0a00, 9),
	FIXED_EVENT_CONSTRAINT(0x0b00, 10),
	FIXED_EVENT_CONSTRAINT(0x0c00, 11),
	FIXED_EVENT_CONSTRAINT(0x0d00, 12),
	FIXED_EVENT_CONSTRAINT(0x0e00, 13),
	FIXED_EVENT_CONSTRAINT(0x0f00, 14),
	FIXED_EVENT_CONSTRAINT(0x1000, 15),
	EVENT_CONSTRAINT_END
};

static struct event_constraint intel_slm_event_constraints[] __read_mostly =
{
	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
	EVENT_CONSTRAINT_END
};

static struct event_constraint intel_grt_event_constraints[] __read_mostly = {
	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
	FIXED_EVENT_CONSTRAINT(0x013c, 2), /* CPU_CLK_UNHALTED.REF_TSC_P */
	EVENT_CONSTRAINT_END
};

static struct event_constraint intel_skl_event_constraints[] = {
	FIXED_EVENT_CONSTRAINT(0x00c0, 0),	/* INST_RETIRED.ANY */
	FIXED_EVENT_CONSTRAINT(0x003c, 1),	/* CPU_CLK_UNHALTED.CORE */
	FIXED_EVENT_CONSTRAINT(0x0300, 2),	/* CPU_CLK_UNHALTED.REF */
	INTEL_UEVENT_CONSTRAINT(0x1c0, 0x2),	/* INST_RETIRED.PREC_DIST */

	/*
	 * when HT is off, these can only run on the bottom 4 counters
	 */
	INTEL_EVENT_CONSTRAINT(0xd0, 0xf),	/* MEM_INST_RETIRED.* */
	INTEL_EVENT_CONSTRAINT(0xd1, 0xf),	/* MEM_LOAD_RETIRED.* */
	INTEL_EVENT_CONSTRAINT(0xd2, 0xf),	/* MEM_LOAD_L3_HIT_RETIRED.* */
	INTEL_EVENT_CONSTRAINT(0xcd, 0xf),	/* MEM_TRANS_RETIRED.* */
	INTEL_EVENT_CONSTRAINT(0xc6, 0xf),	/* FRONTEND_RETIRED.* */

	EVENT_CONSTRAINT_END
};

static struct extra_reg intel_knl_extra_regs[] __read_mostly = {
	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x799ffbb6e7ull, RSP_0),
	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x399ffbffe7ull, RSP_1),
	EVENT_EXTRA_END
};

static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3f807f8fffull, RSP_0),
	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3f807f8fffull, RSP_1),
	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
	EVENT_EXTRA_END
};

static struct extra_reg intel_snbep_extra_regs[] __read_mostly = {
	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
	EVENT_EXTRA_END
};

static struct extra_reg intel_skl_extra_regs[] __read_mostly = {
	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
	/*
	 * Note the low 8 bits eventsel code is not a continuous field, containing
	 * some #GPing bits. These are masked out.
	 */
	INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
	EVENT_EXTRA_END
};

static struct event_constraint intel_icl_event_constraints[] = {
	FIXED_EVENT_CONSTRAINT(0x00c0, 0),	/* INST_RETIRED.ANY */
	FIXED_EVENT_CONSTRAINT(0x01c0, 0),	/* old INST_RETIRED.PREC_DIST */
	FIXED_EVENT_CONSTRAINT(0x0100, 0),	/* INST_RETIRED.PREC_DIST */
	FIXED_EVENT_CONSTRAINT(0x003c, 1),	/* CPU_CLK_UNHALTED.CORE */
	FIXED_EVENT_CONSTRAINT(0x0300, 2),	/* CPU_CLK_UNHALTED.REF */
	FIXED_EVENT_CONSTRAINT(0x0400, 3),	/* SLOTS */
	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_RETIRING, 0),
	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BAD_SPEC, 1),
	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FE_BOUND, 2),
	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BE_BOUND, 3),
	INTEL_EVENT_CONSTRAINT_RANGE(0x03, 0x0a, 0xf),
	INTEL_EVENT_CONSTRAINT_RANGE(0x1f, 0x28, 0xf),
	INTEL_EVENT_CONSTRAINT(0x32, 0xf),	/* SW_PREFETCH_ACCESS.* */
	INTEL_EVENT_CONSTRAINT_RANGE(0x48, 0x56, 0xf),
	INTEL_EVENT_CONSTRAINT_RANGE(0x60, 0x8b, 0xf),
	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xff),  /* CYCLE_ACTIVITY.STALLS_TOTAL */
	INTEL_UEVENT_CONSTRAINT(0x10a3, 0xff),  /* CYCLE_ACTIVITY.CYCLES_MEM_ANY */
	INTEL_UEVENT_CONSTRAINT(0x14a3, 0xff),  /* CYCLE_ACTIVITY.STALLS_MEM_ANY */
	INTEL_EVENT_CONSTRAINT(0xa3, 0xf),      /* CYCLE_ACTIVITY.* */
	INTEL_EVENT_CONSTRAINT_RANGE(0xa8, 0xb0, 0xf),
	INTEL_EVENT_CONSTRAINT_RANGE(0xb7, 0xbd, 0xf),
	INTEL_EVENT_CONSTRAINT_RANGE(0xd0, 0xe6, 0xf),
	INTEL_EVENT_CONSTRAINT(0xef, 0xf),
	INTEL_EVENT_CONSTRAINT_RANGE(0xf0, 0xf4, 0xf),
	EVENT_CONSTRAINT_END
};

static struct extra_reg intel_icl_extra_regs[] __read_mostly = {
	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffffbfffull, RSP_0),
	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffffbfffull, RSP_1),
	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
	INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
	EVENT_EXTRA_END
};

static struct extra_reg intel_glc_extra_regs[] __read_mostly = {
	INTEL_UEVENT_EXTRA_REG(0x012a, MSR_OFFCORE_RSP_0, 0x3fffffffffull, RSP_0),
	INTEL_UEVENT_EXTRA_REG(0x012b, MSR_OFFCORE_RSP_1, 0x3fffffffffull, RSP_1),
	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
	INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff1f, FE),
	INTEL_UEVENT_EXTRA_REG(0x40ad, MSR_PEBS_FRONTEND, 0x7, FE),
	INTEL_UEVENT_EXTRA_REG(0x04c2, MSR_PEBS_FRONTEND, 0x8, FE),
	EVENT_EXTRA_END
};

static struct event_constraint intel_glc_event_constraints[] = {
	FIXED_EVENT_CONSTRAINT(0x00c0, 0),	/* INST_RETIRED.ANY */
	FIXED_EVENT_CONSTRAINT(0x0100, 0),	/* INST_RETIRED.PREC_DIST */
	FIXED_EVENT_CONSTRAINT(0x003c, 1),	/* CPU_CLK_UNHALTED.CORE */
	FIXED_EVENT_CONSTRAINT(0x0300, 2),	/* CPU_CLK_UNHALTED.REF */
	FIXED_EVENT_CONSTRAINT(0x013c, 2),	/* CPU_CLK_UNHALTED.REF_TSC_P */
	FIXED_EVENT_CONSTRAINT(0x0400, 3),	/* SLOTS */
	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_RETIRING, 0),
	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BAD_SPEC, 1),
	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FE_BOUND, 2),
	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BE_BOUND, 3),
	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_HEAVY_OPS, 4),
	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BR_MISPREDICT, 5),
	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FETCH_LAT, 6),
	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_MEM_BOUND, 7),

	INTEL_EVENT_CONSTRAINT(0x2e, 0xff),
	INTEL_EVENT_CONSTRAINT(0x3c, 0xff),
	/*
	 * Generally event codes < 0x90 are restricted to counters 0-3.
	 * The 0x2E and 0x3C are exception, which has no restriction.
	 */
	INTEL_EVENT_CONSTRAINT_RANGE(0x01, 0x8f, 0xf),

	INTEL_UEVENT_CONSTRAINT(0x01a3, 0xf),
	INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf),
	INTEL_UEVENT_CONSTRAINT(0x08a3, 0xf),
	INTEL_UEVENT_CONSTRAINT(0x04a4, 0x1),
	INTEL_UEVENT_CONSTRAINT(0x08a4, 0x1),
	INTEL_UEVENT_CONSTRAINT(0x02cd, 0x1),
	INTEL_EVENT_CONSTRAINT(0xce, 0x1),
	INTEL_EVENT_CONSTRAINT_RANGE(0xd0, 0xdf, 0xf),
	/*
	 * Generally event codes >= 0x90 are likely to have no restrictions.
	 * The exception are defined as above.
	 */
	INTEL_EVENT_CONSTRAINT_RANGE(0x90, 0xfe, 0xff),

	EVENT_CONSTRAINT_END
};

static struct extra_reg intel_rwc_extra_regs[] __read_mostly = {
	INTEL_UEVENT_EXTRA_REG(0x012a, MSR_OFFCORE_RSP_0, 0x3fffffffffull, RSP_0),
	INTEL_UEVENT_EXTRA_REG(0x012b, MSR_OFFCORE_RSP_1, 0x3fffffffffull, RSP_1),
	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
	INTEL_UEVENT_EXTRA_REG(0x02c6, MSR_PEBS_FRONTEND, 0x9, FE),
	INTEL_UEVENT_EXTRA_REG(0x03c6, MSR_PEBS_FRONTEND, 0x7fff1f, FE),
	INTEL_UEVENT_EXTRA_REG(0x40ad, MSR_PEBS_FRONTEND, 0x7, FE),
	INTEL_UEVENT_EXTRA_REG(0x04c2, MSR_PEBS_FRONTEND, 0x8, FE),
	EVENT_EXTRA_END
};

EVENT_ATTR_STR(mem-loads,	mem_ld_nhm,	"event=0x0b,umask=0x10,ldlat=3");
EVENT_ATTR_STR(mem-loads,	mem_ld_snb,	"event=0xcd,umask=0x1,ldlat=3");
EVENT_ATTR_STR(mem-stores,	mem_st_snb,	"event=0xcd,umask=0x2");

static struct attribute *nhm_mem_events_attrs[] = {
	EVENT_PTR(mem_ld_nhm),
	NULL,
};

/*
 * topdown events for Intel Core CPUs.
 *
 * The events are all in slots, which is a free slot in a 4 wide
 * pipeline. Some events are already reported in slots, for cycle
 * events we multiply by the pipeline width (4).
 *
 * With Hyper Threading on, topdown metrics are either summed or averaged
 * between the threads of a core: (count_t0 + count_t1).
 *
 * For the average case the metric is always scaled to pipeline width,
 * so we use factor 2 ((count_t0 + count_t1) / 2 * 4)
 */

EVENT_ATTR_STR_HT(topdown-total-slots, td_total_slots,
	"event=0x3c,umask=0x0",			/* cpu_clk_unhalted.thread */
	"event=0x3c,umask=0x0,any=1");		/* cpu_clk_unhalted.thread_any */
EVENT_ATTR_STR_HT(topdown-total-slots.scale, td_total_slots_scale, "4", "2");
EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued,
	"event=0xe,umask=0x1");			/* uops_issued.any */
EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired,
	"event=0xc2,umask=0x2");		/* uops_retired.retire_slots */
EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles,
	"event=0x9c,umask=0x1");		/* idq_uops_not_delivered_core */
EVENT_ATTR_STR_HT(topdown-recovery-bubbles, td_recovery_bubbles,
	"event=0xd,umask=0x3,cmask=1",		/* int_misc.recovery_cycles */
	"event=0xd,umask=0x3,cmask=1,any=1");	/* int_misc.recovery_cycles_any */
EVENT_ATTR_STR_HT(topdown-recovery-bubbles.scale, td_recovery_bubbles_scale,
	"4", "2");

EVENT_ATTR_STR(slots,			slots,			"event=0x00,umask=0x4");
EVENT_ATTR_STR(topdown-retiring,	td_retiring,		"event=0x00,umask=0x80");
EVENT_ATTR_STR(topdown-bad-spec,	td_bad_spec,		"event=0x00,umask=0x81");
EVENT_ATTR_STR(topdown-fe-bound,	td_fe_bound,		"event=0x00,umask=0x82");
EVENT_ATTR_STR(topdown-be-bound,	td_be_bound,		"event=0x00,umask=0x83");
EVENT_ATTR_STR(topdown-heavy-ops,	td_heavy_ops,		"event=0x00,umask=0x84");
EVENT_ATTR_STR(topdown-br-mispredict,	td_br_mispredict,	"event=0x00,umask=0x85");
EVENT_ATTR_STR(topdown-fetch-lat,	td_fetch_lat,		"event=0x00,umask=0x86");
EVENT_ATTR_STR(topdown-mem-bound,	td_mem_bound,		"event=0x00,umask=0x87");

static struct attribute *snb_events_attrs[] = {
	EVENT_PTR(td_slots_issued),
	EVENT_PTR(td_slots_retired),
	EVENT_PTR(td_fetch_bubbles),
	EVENT_PTR(td_total_slots),
	EVENT_PTR(td_total_slots_scale),
	EVENT_PTR(td_recovery_bubbles),
	EVENT_PTR(td_recovery_bubbles_scale),
	NULL,
};

static struct attribute *snb_mem_events_attrs[] = {
	EVENT_PTR(mem_ld_snb),
	EVENT_PTR(mem_st_snb),
	NULL,
};

static struct event_constraint intel_hsw_event_constraints[] = {
	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
	INTEL_UEVENT_CONSTRAINT(0x148, 0x4),	/* L1D_PEND_MISS.PENDING */
	INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
	INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
	/* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
	INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4),
	/* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
	INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4),
	/* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf),

	/*
	 * When HT is off these events can only run on the bottom 4 counters
	 * When HT is on, they are impacted by the HT bug and require EXCL access
	 */
	INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
	INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
	INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
	INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */

	EVENT_CONSTRAINT_END
};

static struct event_constraint intel_bdw_event_constraints[] = {
	FIXED_EVENT_CONSTRAINT(0x00c0, 0),	/* INST_RETIRED.ANY */
	FIXED_EVENT_CONSTRAINT(0x003c, 1),	/* CPU_CLK_UNHALTED.CORE */
	FIXED_EVENT_CONSTRAINT(0x0300, 2),	/* CPU_CLK_UNHALTED.REF */
	INTEL_UEVENT_CONSTRAINT(0x148, 0x4),	/* L1D_PEND_MISS.PENDING */
	INTEL_UBIT_EVENT_CONSTRAINT(0x8a3, 0x4),	/* CYCLE_ACTIVITY.CYCLES_L1D_MISS */
	/*
	 * when HT is off, these can only run on the bottom 4 counters
	 */
	INTEL_EVENT_CONSTRAINT(0xd0, 0xf),	/* MEM_INST_RETIRED.* */
	INTEL_EVENT_CONSTRAINT(0xd1, 0xf),	/* MEM_LOAD_RETIRED.* */
	INTEL_EVENT_CONSTRAINT(0xd2, 0xf),	/* MEM_LOAD_L3_HIT_RETIRED.* */
	INTEL_EVENT_CONSTRAINT(0xcd, 0xf),	/* MEM_TRANS_RETIRED.* */
	EVENT_CONSTRAINT_END
};

static u64 intel_pmu_event_map(int hw_event)
{
	return intel_perfmon_event_map[hw_event];
}

static __initconst const u64 glc_hw_cache_event_ids
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(L1D ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x81d0,
		[ C(RESULT_MISS)   ] = 0xe124,
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x82d0,
	},
 },
 [ C(L1I ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_MISS)   ] = 0xe424,
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x12a,
		[ C(RESULT_MISS)   ] = 0x12a,
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x12a,
		[ C(RESULT_MISS)   ] = 0x12a,
	},
 },
 [ C(DTLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x81d0,
		[ C(RESULT_MISS)   ] = 0xe12,
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x82d0,
		[ C(RESULT_MISS)   ] = 0xe13,
	},
 },
 [ C(ITLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = 0xe11,
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
 [ C(BPU ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x4c4,
		[ C(RESULT_MISS)   ] = 0x4c5,
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
 [ C(NODE) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x12a,
		[ C(RESULT_MISS)   ] = 0x12a,
	},
 },
};

static __initconst const u64 glc_hw_cache_extra_regs
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x10001,
		[ C(RESULT_MISS)   ] = 0x3fbfc00001,
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x3f3ffc0002,
		[ C(RESULT_MISS)   ] = 0x3f3fc00002,
	},
 },
 [ C(NODE) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x10c000001,
		[ C(RESULT_MISS)   ] = 0x3fb3000001,
	},
 },
};

/*
 * Notes on the events:
 * - data reads do not include code reads (comparable to earlier tables)
 * - data counts include speculative execution (except L1 write, dtlb, bpu)
 * - remote node access includes remote memory, remote cache, remote mmio.
 * - prefetches are not included in the counts.
 * - icache miss does not include decoded icache
 */

#define SKL_DEMAND_DATA_RD		BIT_ULL(0)
#define SKL_DEMAND_RFO			BIT_ULL(1)
#define SKL_ANY_RESPONSE		BIT_ULL(16)
#define SKL_SUPPLIER_NONE		BIT_ULL(17)
#define SKL_L3_MISS_LOCAL_DRAM		BIT_ULL(26)
#define SKL_L3_MISS_REMOTE_HOP0_DRAM	BIT_ULL(27)
#define SKL_L3_MISS_REMOTE_HOP1_DRAM	BIT_ULL(28)
#define SKL_L3_MISS_REMOTE_HOP2P_DRAM	BIT_ULL(29)
#define SKL_L3_MISS			(SKL_L3_MISS_LOCAL_DRAM| \
					 SKL_L3_MISS_REMOTE_HOP0_DRAM| \
					 SKL_L3_MISS_REMOTE_HOP1_DRAM| \
					 SKL_L3_MISS_REMOTE_HOP2P_DRAM)
#define SKL_SPL_HIT			BIT_ULL(30)
#define SKL_SNOOP_NONE			BIT_ULL(31)
#define SKL_SNOOP_NOT_NEEDED		BIT_ULL(32)
#define SKL_SNOOP_MISS			BIT_ULL(33)
#define SKL_SNOOP_HIT_NO_FWD		BIT_ULL(34)
#define SKL_SNOOP_HIT_WITH_FWD		BIT_ULL(35)
#define SKL_SNOOP_HITM			BIT_ULL(36)
#define SKL_SNOOP_NON_DRAM		BIT_ULL(37)
#define SKL_ANY_SNOOP			(SKL_SPL_HIT|SKL_SNOOP_NONE| \
					 SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
					 SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
					 SKL_SNOOP_HITM|SKL_SNOOP_NON_DRAM)
#define SKL_DEMAND_READ			SKL_DEMAND_DATA_RD
#define SKL_SNOOP_DRAM			(SKL_SNOOP_NONE| \
					 SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
					 SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
					 SKL_SNOOP_HITM|SKL_SPL_HIT)
#define SKL_DEMAND_WRITE		SKL_DEMAND_RFO
#define SKL_LLC_ACCESS			SKL_ANY_RESPONSE
#define SKL_L3_MISS_REMOTE		(SKL_L3_MISS_REMOTE_HOP0_DRAM| \
					 SKL_L3_MISS_REMOTE_HOP1_DRAM| \
					 SKL_L3_MISS_REMOTE_HOP2P_DRAM)

static __initconst const u64 skl_hw_cache_event_ids
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(L1D ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_INST_RETIRED.ALL_LOADS */
		[ C(RESULT_MISS)   ] = 0x151,	/* L1D.REPLACEMENT */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_INST_RETIRED.ALL_STORES */
		[ C(RESULT_MISS)   ] = 0x0,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(L1I ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x283,	/* ICACHE_64B.MISS */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(DTLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_INST_RETIRED.ALL_LOADS */
		[ C(RESULT_MISS)   ] = 0xe08,	/* DTLB_LOAD_MISSES.WALK_COMPLETED */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_INST_RETIRED.ALL_STORES */
		[ C(RESULT_MISS)   ] = 0xe49,	/* DTLB_STORE_MISSES.WALK_COMPLETED */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(ITLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x2085,	/* ITLB_MISSES.STLB_HIT */
		[ C(RESULT_MISS)   ] = 0xe85,	/* ITLB_MISSES.WALK_COMPLETED */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
 [ C(BPU ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0xc4,	/* BR_INST_RETIRED.ALL_BRANCHES */
		[ C(RESULT_MISS)   ] = 0xc5,	/* BR_MISP_RETIRED.ALL_BRANCHES */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
 [ C(NODE) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
};

static __initconst const u64 skl_hw_cache_extra_regs
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
				       SKL_LLC_ACCESS|SKL_ANY_SNOOP,
		[ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
				       SKL_L3_MISS|SKL_ANY_SNOOP|
				       SKL_SUPPLIER_NONE,
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
				       SKL_LLC_ACCESS|SKL_ANY_SNOOP,
		[ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
				       SKL_L3_MISS|SKL_ANY_SNOOP|
				       SKL_SUPPLIER_NONE,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(NODE) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
				       SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
		[ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
				       SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
				       SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
		[ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
				       SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
};

#define SNB_DMND_DATA_RD	(1ULL << 0)
#define SNB_DMND_RFO		(1ULL << 1)
#define SNB_DMND_IFETCH		(1ULL << 2)
#define SNB_DMND_WB		(1ULL << 3)
#define SNB_PF_DATA_RD		(1ULL << 4)
#define SNB_PF_RFO		(1ULL << 5)
#define SNB_PF_IFETCH		(1ULL << 6)
#define SNB_LLC_DATA_RD		(1ULL << 7)
#define SNB_LLC_RFO		(1ULL << 8)
#define SNB_LLC_IFETCH		(1ULL << 9)
#define SNB_BUS_LOCKS		(1ULL << 10)
#define SNB_STRM_ST		(1ULL << 11)
#define SNB_OTHER		(1ULL << 15)
#define SNB_RESP_ANY		(1ULL << 16)
#define SNB_NO_SUPP		(1ULL << 17)
#define SNB_LLC_HITM		(1ULL << 18)
#define SNB_LLC_HITE		(1ULL << 19)
#define SNB_LLC_HITS		(1ULL << 20)
#define SNB_LLC_HITF		(1ULL << 21)
#define SNB_LOCAL		(1ULL << 22)
#define SNB_REMOTE		(0xffULL << 23)
#define SNB_SNP_NONE		(1ULL << 31)
#define SNB_SNP_NOT_NEEDED	(1ULL << 32)
#define SNB_SNP_MISS		(1ULL << 33)
#define SNB_NO_FWD		(1ULL << 34)
#define SNB_SNP_FWD		(1ULL << 35)
#define SNB_HITM		(1ULL << 36)
#define SNB_NON_DRAM		(1ULL << 37)

#define SNB_DMND_READ		(SNB_DMND_DATA_RD|SNB_LLC_DATA_RD)
#define SNB_DMND_WRITE		(SNB_DMND_RFO|SNB_LLC_RFO)
#define SNB_DMND_PREFETCH	(SNB_PF_DATA_RD|SNB_PF_RFO)

#define SNB_SNP_ANY		(SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \
				 SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \
				 SNB_HITM)

#define SNB_DRAM_ANY		(SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY)
#define SNB_DRAM_REMOTE		(SNB_REMOTE|SNB_SNP_ANY)

#define SNB_L3_ACCESS		SNB_RESP_ANY
#define SNB_L3_MISS		(SNB_DRAM_ANY|SNB_NON_DRAM)

static __initconst const u64 snb_hw_cache_extra_regs
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS,
		[ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_L3_MISS,
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS,
		[ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_L3_MISS,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS,
		[ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_L3_MISS,
	},
 },
 [ C(NODE) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY,
		[ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_DRAM_REMOTE,
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY,
		[ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY,
		[ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE,
	},
 },
};

static __initconst const u64 snb_hw_cache_event_ids
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(L1D) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS        */
		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPLACEMENT              */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES       */
		[ C(RESULT_MISS)   ] = 0x0851, /* L1D.ALL_M_REPLACEMENT        */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x024e, /* HW_PRE_REQ.DL1_MISS          */
	},
 },
 [ C(L1I ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0280, /* ICACHE.MISSES */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
		[ C(RESULT_ACCESS) ] = 0x01b7,
		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
		[ C(RESULT_MISS)   ] = 0x01b7,
	},
	[ C(OP_WRITE) ] = {
		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
		[ C(RESULT_ACCESS) ] = 0x01b7,
		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
		[ C(RESULT_MISS)   ] = 0x01b7,
	},
	[ C(OP_PREFETCH) ] = {
		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
		[ C(RESULT_ACCESS) ] = 0x01b7,
		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
		[ C(RESULT_MISS)   ] = 0x01b7,
	},
 },
 [ C(DTLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
		[ C(RESULT_MISS)   ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(ITLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT         */
		[ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK    */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
 [ C(BPU ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
		[ C(RESULT_MISS)   ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
 [ C(NODE) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x01b7,
		[ C(RESULT_MISS)   ] = 0x01b7,
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x01b7,
		[ C(RESULT_MISS)   ] = 0x01b7,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x01b7,
		[ C(RESULT_MISS)   ] = 0x01b7,
	},
 },

};

/*
 * Notes on the events:
 * - data reads do not include code reads (comparable to earlier tables)
 * - data counts include speculative execution (except L1 write, dtlb, bpu)
 * - remote node access includes remote memory, remote cache, remote mmio.
 * - prefetches are not included in the counts because they are not
 *   reliably counted.
 */

#define HSW_DEMAND_DATA_RD		BIT_ULL(0)
#define HSW_DEMAND_RFO			BIT_ULL(1)
#define HSW_ANY_RESPONSE		BIT_ULL(16)
#define HSW_SUPPLIER_NONE		BIT_ULL(17)
#define HSW_L3_MISS_LOCAL_DRAM		BIT_ULL(22)
#define HSW_L3_MISS_REMOTE_HOP0		BIT_ULL(27)
#define HSW_L3_MISS_REMOTE_HOP1		BIT_ULL(28)
#define HSW_L3_MISS_REMOTE_HOP2P	BIT_ULL(29)
#define HSW_L3_MISS			(HSW_L3_MISS_LOCAL_DRAM| \
					 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
					 HSW_L3_MISS_REMOTE_HOP2P)
#define HSW_SNOOP_NONE			BIT_ULL(31)
#define HSW_SNOOP_NOT_NEEDED		BIT_ULL(32)
#define HSW_SNOOP_MISS			BIT_ULL(33)
#define HSW_SNOOP_HIT_NO_FWD		BIT_ULL(34)
#define HSW_SNOOP_HIT_WITH_FWD		BIT_ULL(35)
#define HSW_SNOOP_HITM			BIT_ULL(36)
#define HSW_SNOOP_NON_DRAM		BIT_ULL(37)
#define HSW_ANY_SNOOP			(HSW_SNOOP_NONE| \
					 HSW_SNOOP_NOT_NEEDED|HSW_SNOOP_MISS| \
					 HSW_SNOOP_HIT_NO_FWD|HSW_SNOOP_HIT_WITH_FWD| \
					 HSW_SNOOP_HITM|HSW_SNOOP_NON_DRAM)
#define HSW_SNOOP_DRAM			(HSW_ANY_SNOOP & ~HSW_SNOOP_NON_DRAM)
#define HSW_DEMAND_READ			HSW_DEMAND_DATA_RD
#define HSW_DEMAND_WRITE		HSW_DEMAND_RFO
#define HSW_L3_MISS_REMOTE		(HSW_L3_MISS_REMOTE_HOP0|\
					 HSW_L3_MISS_REMOTE_HOP1|HSW_L3_MISS_REMOTE_HOP2P)
#define HSW_LLC_ACCESS			HSW_ANY_RESPONSE

#define BDW_L3_MISS_LOCAL		BIT(26)
#define BDW_L3_MISS			(BDW_L3_MISS_LOCAL| \
					 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
					 HSW_L3_MISS_REMOTE_HOP2P)


static __initconst const u64 hsw_hw_cache_event_ids
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(L1D ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
		[ C(RESULT_MISS)   ] = 0x151,	/* L1D.REPLACEMENT */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
		[ C(RESULT_MISS)   ] = 0x0,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(L1I ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x280,	/* ICACHE.MISSES */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(DTLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
		[ C(RESULT_MISS)   ] = 0x108,	/* DTLB_LOAD_MISSES.MISS_CAUSES_A_WALK */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
		[ C(RESULT_MISS)   ] = 0x149,	/* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(ITLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x6085,	/* ITLB_MISSES.STLB_HIT */
		[ C(RESULT_MISS)   ] = 0x185,	/* ITLB_MISSES.MISS_CAUSES_A_WALK */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
 [ C(BPU ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0xc4,	/* BR_INST_RETIRED.ALL_BRANCHES */
		[ C(RESULT_MISS)   ] = 0xc5,	/* BR_MISP_RETIRED.ALL_BRANCHES */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
 [ C(NODE) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
};

static __initconst const u64 hsw_hw_cache_extra_regs
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
				       HSW_LLC_ACCESS,
		[ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
				       HSW_L3_MISS|HSW_ANY_SNOOP,
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
				       HSW_LLC_ACCESS,
		[ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
				       HSW_L3_MISS|HSW_ANY_SNOOP,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(NODE) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
				       HSW_L3_MISS_LOCAL_DRAM|
				       HSW_SNOOP_DRAM,
		[ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
				       HSW_L3_MISS_REMOTE|
				       HSW_SNOOP_DRAM,
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
				       HSW_L3_MISS_LOCAL_DRAM|
				       HSW_SNOOP_DRAM,
		[ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
				       HSW_L3_MISS_REMOTE|
				       HSW_SNOOP_DRAM,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
};

static __initconst const u64 westmere_hw_cache_event_ids
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(L1D) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
		[ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
		[ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
	},
 },
 [ C(L1I ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
		[ C(RESULT_ACCESS) ] = 0x01b7,
		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
		[ C(RESULT_MISS)   ] = 0x01b7,
	},
	/*
	 * Use RFO, not WRITEBACK, because a write miss would typically occur
	 * on RFO.
	 */
	[ C(OP_WRITE) ] = {
		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
		[ C(RESULT_ACCESS) ] = 0x01b7,
		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
		[ C(RESULT_MISS)   ] = 0x01b7,
	},
	[ C(OP_PREFETCH) ] = {
		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
		[ C(RESULT_ACCESS) ] = 0x01b7,
		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
		[ C(RESULT_MISS)   ] = 0x01b7,
	},
 },
 [ C(DTLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
		[ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(ITLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
		[ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.ANY              */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
 [ C(BPU ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
		[ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
 [ C(NODE) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x01b7,
		[ C(RESULT_MISS)   ] = 0x01b7,
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x01b7,
		[ C(RESULT_MISS)   ] = 0x01b7,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x01b7,
		[ C(RESULT_MISS)   ] = 0x01b7,
	},
 },
};

/*
 * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
 * See IA32 SDM Vol 3B 30.6.1.3
 */

#define NHM_DMND_DATA_RD	(1 << 0)
#define NHM_DMND_RFO		(1 << 1)
#define NHM_DMND_IFETCH		(1 << 2)
#define NHM_DMND_WB		(1 << 3)
#define NHM_PF_DATA_RD		(1 << 4)
#define NHM_PF_DATA_RFO		(1 << 5)
#define NHM_PF_IFETCH		(1 << 6)
#define NHM_OFFCORE_OTHER	(1 << 7)
#define NHM_UNCORE_HIT		(1 << 8)
#define NHM_OTHER_CORE_HIT_SNP	(1 << 9)
#define NHM_OTHER_CORE_HITM	(1 << 10)
        			/* reserved */
#define NHM_REMOTE_CACHE_FWD	(1 << 12)
#define NHM_REMOTE_DRAM		(1 << 13)
#define NHM_LOCAL_DRAM		(1 << 14)
#define NHM_NON_DRAM		(1 << 15)

#define NHM_LOCAL		(NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
#define NHM_REMOTE		(NHM_REMOTE_DRAM)

#define NHM_DMND_READ		(NHM_DMND_DATA_RD)
#define NHM_DMND_WRITE		(NHM_DMND_RFO|NHM_DMND_WB)
#define NHM_DMND_PREFETCH	(NHM_PF_DATA_RD|NHM_PF_DATA_RFO)

#define NHM_L3_HIT	(NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
#define NHM_L3_MISS	(NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
#define NHM_L3_ACCESS	(NHM_L3_HIT|NHM_L3_MISS)

static __initconst const u64 nehalem_hw_cache_extra_regs
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
		[ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_L3_MISS,
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
		[ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_L3_MISS,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
		[ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
	},
 },
 [ C(NODE) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE,
		[ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_REMOTE,
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE,
		[ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_REMOTE,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE,
		[ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_REMOTE,
	},
 },
};

static __initconst const u64 nehalem_hw_cache_event_ids
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(L1D) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
		[ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
		[ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
	},
 },
 [ C(L1I ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
		[ C(RESULT_ACCESS) ] = 0x01b7,
		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
		[ C(RESULT_MISS)   ] = 0x01b7,
	},
	/*
	 * Use RFO, not WRITEBACK, because a write miss would typically occur
	 * on RFO.
	 */
	[ C(OP_WRITE) ] = {
		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
		[ C(RESULT_ACCESS) ] = 0x01b7,
		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
		[ C(RESULT_MISS)   ] = 0x01b7,
	},
	[ C(OP_PREFETCH) ] = {
		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
		[ C(RESULT_ACCESS) ] = 0x01b7,
		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
		[ C(RESULT_MISS)   ] = 0x01b7,
	},
 },
 [ C(DTLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI   (alias)  */
		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI   (alias)  */
		[ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(ITLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
		[ C(RESULT_MISS)   ] = 0x20c8, /* ITLB_MISS_RETIRED            */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
 [ C(BPU ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
		[ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
 [ C(NODE) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x01b7,
		[ C(RESULT_MISS)   ] = 0x01b7,
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x01b7,
		[ C(RESULT_MISS)   ] = 0x01b7,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x01b7,
		[ C(RESULT_MISS)   ] = 0x01b7,
	},
 },
};

static __initconst const u64 core2_hw_cache_event_ids
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(L1D) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI          */
		[ C(RESULT_MISS)   ] = 0x0140, /* L1D_CACHE_LD.I_STATE       */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI          */
		[ C(RESULT_MISS)   ] = 0x0141, /* L1D_CACHE_ST.I_STATE       */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS      */
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(L1I ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS                  */
		[ C(RESULT_MISS)   ] = 0x0081, /* L1I.MISSES                 */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
		[ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
		[ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(DTLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI  (alias) */
		[ C(RESULT_MISS)   ] = 0x0208, /* DTLB_MISSES.MISS_LD        */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI  (alias) */
		[ C(RESULT_MISS)   ] = 0x0808, /* DTLB_MISSES.MISS_ST        */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(ITLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
		[ C(RESULT_MISS)   ] = 0x1282, /* ITLBMISSES                 */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
 [ C(BPU ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
		[ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
};

static __initconst const u64 atom_hw_cache_event_ids
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(L1D) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD               */
		[ C(RESULT_MISS)   ] = 0,
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST               */
		[ C(RESULT_MISS)   ] = 0,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(L1I ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                  */
		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                 */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
		[ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
		[ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(DTLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI  (alias) */
		[ C(RESULT_MISS)   ] = 0x0508, /* DTLB_MISSES.MISS_LD        */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI  (alias) */
		[ C(RESULT_MISS)   ] = 0x0608, /* DTLB_MISSES.MISS_ST        */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(ITLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
		[ C(RESULT_MISS)   ] = 0x0282, /* ITLB.MISSES                */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
 [ C(BPU ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
		[ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
};

EVENT_ATTR_STR(topdown-total-slots, td_total_slots_slm, "event=0x3c");
EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_slm, "2");
/* no_alloc_cycles.not_delivered */
EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_slm,
	       "event=0xca,umask=0x50");
EVENT_ATTR_STR(topdown-fetch-bubbles.scale, td_fetch_bubbles_scale_slm, "2");
/* uops_retired.all */
EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_slm,
	       "event=0xc2,umask=0x10");
/* uops_retired.all */
EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_slm,
	       "event=0xc2,umask=0x10");

static struct attribute *slm_events_attrs[] = {
	EVENT_PTR(td_total_slots_slm),
	EVENT_PTR(td_total_slots_scale_slm),
	EVENT_PTR(td_fetch_bubbles_slm),
	EVENT_PTR(td_fetch_bubbles_scale_slm),
	EVENT_PTR(td_slots_issued_slm),
	EVENT_PTR(td_slots_retired_slm),
	NULL
};

static struct extra_reg intel_slm_extra_regs[] __read_mostly =
{
	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x768005ffffull, RSP_0),
	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x368005ffffull, RSP_1),
	EVENT_EXTRA_END
};

#define SLM_DMND_READ		SNB_DMND_DATA_RD
#define SLM_DMND_WRITE		SNB_DMND_RFO
#define SLM_DMND_PREFETCH	(SNB_PF_DATA_RD|SNB_PF_RFO)

#define SLM_SNP_ANY		(SNB_SNP_NONE|SNB_SNP_MISS|SNB_NO_FWD|SNB_HITM)
#define SLM_LLC_ACCESS		SNB_RESP_ANY
#define SLM_LLC_MISS		(SLM_SNP_ANY|SNB_NON_DRAM)

static __initconst const u64 slm_hw_cache_extra_regs
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = SLM_DMND_READ|SLM_LLC_ACCESS,
		[ C(RESULT_MISS)   ] = 0,
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = SLM_DMND_WRITE|SLM_LLC_ACCESS,
		[ C(RESULT_MISS)   ] = SLM_DMND_WRITE|SLM_LLC_MISS,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = SLM_DMND_PREFETCH|SLM_LLC_ACCESS,
		[ C(RESULT_MISS)   ] = SLM_DMND_PREFETCH|SLM_LLC_MISS,
	},
 },
};

static __initconst const u64 slm_hw_cache_event_ids
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(L1D) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0x0104, /* LD_DCU_MISS */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(L1I ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0380, /* ICACHE.ACCESSES */
		[ C(RESULT_MISS)   ] = 0x0280, /* ICACGE.MISSES */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
		[ C(RESULT_ACCESS) ] = 0x01b7,
		[ C(RESULT_MISS)   ] = 0,
	},
	[ C(OP_WRITE) ] = {
		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
		[ C(RESULT_ACCESS) ] = 0x01b7,
		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
		[ C(RESULT_MISS)   ] = 0x01b7,
	},
	[ C(OP_PREFETCH) ] = {
		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
		[ C(RESULT_ACCESS) ] = 0x01b7,
		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
		[ C(RESULT_MISS)   ] = 0x01b7,
	},
 },
 [ C(DTLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0x0804, /* LD_DTLB_MISS */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(ITLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
		[ C(RESULT_MISS)   ] = 0x40205, /* PAGE_WALKS.I_SIDE_WALKS */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
 [ C(BPU ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
		[ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
};

EVENT_ATTR_STR(topdown-total-slots, td_total_slots_glm, "event=0x3c");
EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_glm, "3");
/* UOPS_NOT_DELIVERED.ANY */
EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_glm, "event=0x9c");
/* ISSUE_SLOTS_NOT_CONSUMED.RECOVERY */
EVENT_ATTR_STR(topdown-recovery-bubbles, td_recovery_bubbles_glm, "event=0xca,umask=0x02");
/* UOPS_RETIRED.ANY */
EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_glm, "event=0xc2");
/* UOPS_ISSUED.ANY */
EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_glm, "event=0x0e");

static struct attribute *glm_events_attrs[] = {
	EVENT_PTR(td_total_slots_glm),
	EVENT_PTR(td_total_slots_scale_glm),
	EVENT_PTR(td_fetch_bubbles_glm),
	EVENT_PTR(td_recovery_bubbles_glm),
	EVENT_PTR(td_slots_issued_glm),
	EVENT_PTR(td_slots_retired_glm),
	NULL
};

static struct extra_reg intel_glm_extra_regs[] __read_mostly = {
	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x760005ffbfull, RSP_0),
	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x360005ffbfull, RSP_1),
	EVENT_EXTRA_END
};

#define GLM_DEMAND_DATA_RD		BIT_ULL(0)
#define GLM_DEMAND_RFO			BIT_ULL(1)
#define GLM_ANY_RESPONSE		BIT_ULL(16)
#define GLM_SNP_NONE_OR_MISS		BIT_ULL(33)
#define GLM_DEMAND_READ			GLM_DEMAND_DATA_RD
#define GLM_DEMAND_WRITE		GLM_DEMAND_RFO
#define GLM_DEMAND_PREFETCH		(SNB_PF_DATA_RD|SNB_PF_RFO)
#define GLM_LLC_ACCESS			GLM_ANY_RESPONSE
#define GLM_SNP_ANY			(GLM_SNP_NONE_OR_MISS|SNB_NO_FWD|SNB_HITM)
#define GLM_LLC_MISS			(GLM_SNP_ANY|SNB_NON_DRAM)

static __initconst const u64 glm_hw_cache_event_ids
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
	[C(L1D)] = {
		[C(OP_READ)] = {
			[C(RESULT_ACCESS)]	= 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
			[C(RESULT_MISS)]	= 0x0,
		},
		[C(OP_WRITE)] = {
			[C(RESULT_ACCESS)]	= 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
			[C(RESULT_MISS)]	= 0x0,
		},
		[C(OP_PREFETCH)] = {
			[C(RESULT_ACCESS)]	= 0x0,
			[C(RESULT_MISS)]	= 0x0,
		},
	},
	[C(L1I)] = {
		[C(OP_READ)] = {
			[C(RESULT_ACCESS)]	= 0x0380,	/* ICACHE.ACCESSES */
			[C(RESULT_MISS)]	= 0x0280,	/* ICACHE.MISSES */
		},
		[C(OP_WRITE)] = {
			[C(RESULT_ACCESS)]	= -1,
			[C(RESULT_MISS)]	= -1,
		},
		[C(OP_PREFETCH)] = {
			[C(RESULT_ACCESS)]	= 0x0,
			[C(RESULT_MISS)]	= 0x0,
		},
	},
	[C(LL)] = {
		[C(OP_READ)] = {
			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
		},
		[C(OP_WRITE)] = {
			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
		},
		[C(OP_PREFETCH)] = {
			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
		},
	},
	[C(DTLB)] = {
		[C(OP_READ)] = {
			[C(RESULT_ACCESS)]	= 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
			[C(RESULT_MISS)]	= 0x0,
		},
		[C(OP_WRITE)] = {
			[C(RESULT_ACCESS)]	= 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
			[C(RESULT_MISS)]	= 0x0,
		},
		[C(OP_PREFETCH)] = {
			[C(RESULT_ACCESS)]	= 0x0,
			[C(RESULT_MISS)]	= 0x0,
		},
	},
	[C(ITLB)] = {
		[C(OP_READ)] = {
			[C(RESULT_ACCESS)]	= 0x00c0,	/* INST_RETIRED.ANY_P */
			[C(RESULT_MISS)]	= 0x0481,	/* ITLB.MISS */
		},
		[C(OP_WRITE)] = {
			[C(RESULT_ACCESS)]	= -1,
			[C(RESULT_MISS)]	= -1,
		},
		[C(OP_PREFETCH)] = {
			[C(RESULT_ACCESS)]	= -1,
			[C(RESULT_MISS)]	= -1,
		},
	},
	[C(BPU)] = {
		[C(OP_READ)] = {
			[C(RESULT_ACCESS)]	= 0x00c4,	/* BR_INST_RETIRED.ALL_BRANCHES */
			[C(RESULT_MISS)]	= 0x00c5,	/* BR_MISP_RETIRED.ALL_BRANCHES */
		},
		[C(OP_WRITE)] = {
			[C(RESULT_ACCESS)]	= -1,
			[C(RESULT_MISS)]	= -1,
		},
		[C(OP_PREFETCH)] = {
			[C(RESULT_ACCESS)]	= -1,
			[C(RESULT_MISS)]	= -1,
		},
	},
};

static __initconst const u64 glm_hw_cache_extra_regs
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
	[C(LL)] = {
		[C(OP_READ)] = {
			[C(RESULT_ACCESS)]	= GLM_DEMAND_READ|
						  GLM_LLC_ACCESS,
			[C(RESULT_MISS)]	= GLM_DEMAND_READ|
						  GLM_LLC_MISS,
		},
		[C(OP_WRITE)] = {
			[C(RESULT_ACCESS)]	= GLM_DEMAND_WRITE|
						  GLM_LLC_ACCESS,
			[C(RESULT_MISS)]	= GLM_DEMAND_WRITE|
						  GLM_LLC_MISS,
		},
		[C(OP_PREFETCH)] = {
			[C(RESULT_ACCESS)]	= GLM_DEMAND_PREFETCH|
						  GLM_LLC_ACCESS,
			[C(RESULT_MISS)]	= GLM_DEMAND_PREFETCH|
						  GLM_LLC_MISS,
		},
	},
};

static __initconst const u64 glp_hw_cache_event_ids
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
	[C(L1D)] = {
		[C(OP_READ)] = {
			[C(RESULT_ACCESS)]	= 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
			[C(RESULT_MISS)]	= 0x0,
		},
		[C(OP_WRITE)] = {
			[C(RESULT_ACCESS)]	= 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
			[C(RESULT_MISS)]	= 0x0,
		},
		[C(OP_PREFETCH)] = {
			[C(RESULT_ACCESS)]	= 0x0,
			[C(RESULT_MISS)]	= 0x0,
		},
	},
	[C(L1I)] = {
		[C(OP_READ)] = {
			[C(RESULT_ACCESS)]	= 0x0380,	/* ICACHE.ACCESSES */
			[C(RESULT_MISS)]	= 0x0280,	/* ICACHE.MISSES */
		},
		[C(OP_WRITE)] = {
			[C(RESULT_ACCESS)]	= -1,
			[C(RESULT_MISS)]	= -1,
		},
		[C(OP_PREFETCH)] = {
			[C(RESULT_ACCESS)]	= 0x0,
			[C(RESULT_MISS)]	= 0x0,
		},
	},
	[C(LL)] = {
		[C(OP_READ)] = {
			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
		},
		[C(OP_WRITE)] = {
			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
		},
		[C(OP_PREFETCH)] = {
			[C(RESULT_ACCESS)]	= 0x0,
			[C(RESULT_MISS)]	= 0x0,
		},
	},
	[C(DTLB)] = {
		[C(OP_READ)] = {
			[C(RESULT_ACCESS)]	= 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
			[C(RESULT_MISS)]	= 0xe08,	/* DTLB_LOAD_MISSES.WALK_COMPLETED */
		},
		[C(OP_WRITE)] = {
			[C(RESULT_ACCESS)]	= 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
			[C(RESULT_MISS)]	= 0xe49,	/* DTLB_STORE_MISSES.WALK_COMPLETED */
		},
		[C(OP_PREFETCH)] = {
			[C(RESULT_ACCESS)]	= 0x0,
			[C(RESULT_MISS)]	= 0x0,
		},
	},
	[C(ITLB)] = {
		[C(OP_READ)] = {
			[C(RESULT_ACCESS)]	= 0x00c0,	/* INST_RETIRED.ANY_P */
			[C(RESULT_MISS)]	= 0x0481,	/* ITLB.MISS */
		},
		[C(OP_WRITE)] = {
			[C(RESULT_ACCESS)]	= -1,
			[C(RESULT_MISS)]	= -1,
		},
		[C(OP_PREFETCH)] = {
			[C(RESULT_ACCESS)]	= -1,
			[C(RESULT_MISS)]	= -1,
		},
	},
	[C(BPU)] = {
		[C(OP_READ)] = {
			[C(RESULT_ACCESS)]	= 0x00c4,	/* BR_INST_RETIRED.ALL_BRANCHES */
			[C(RESULT_MISS)]	= 0x00c5,	/* BR_MISP_RETIRED.ALL_BRANCHES */
		},
		[C(OP_WRITE)] = {
			[C(RESULT_ACCESS)]	= -1,
			[C(RESULT_MISS)]	= -1,
		},
		[C(OP_PREFETCH)] = {
			[C(RESULT_ACCESS)]	= -1,
			[C(RESULT_MISS)]	= -1,
		},
	},
};

static __initconst const u64 glp_hw_cache_extra_regs
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
	[C(LL)] = {
		[C(OP_READ)] = {
			[C(RESULT_ACCESS)]	= GLM_DEMAND_READ|
						  GLM_LLC_ACCESS,
			[C(RESULT_MISS)]	= GLM_DEMAND_READ|
						  GLM_LLC_MISS,
		},
		[C(OP_WRITE)] = {
			[C(RESULT_ACCESS)]	= GLM_DEMAND_WRITE|
						  GLM_LLC_ACCESS,
			[C(RESULT_MISS)]	= GLM_DEMAND_WRITE|
						  GLM_LLC_MISS,
		},
		[C(OP_PREFETCH)] = {
			[C(RESULT_ACCESS)]	= 0x0,
			[C(RESULT_MISS)]	= 0x0,
		},
	},
};

#define TNT_LOCAL_DRAM			BIT_ULL(26)
#define TNT_DEMAND_READ			GLM_DEMAND_DATA_RD
#define TNT_DEMAND_WRITE		GLM_DEMAND_RFO
#define TNT_LLC_ACCESS			GLM_ANY_RESPONSE
#define TNT_SNP_ANY			(SNB_SNP_NOT_NEEDED|SNB_SNP_MISS| \
					 SNB_NO_FWD|SNB_SNP_FWD|SNB_HITM)
#define TNT_LLC_MISS			(TNT_SNP_ANY|SNB_NON_DRAM|TNT_LOCAL_DRAM)

static __initconst const u64 tnt_hw_cache_extra_regs
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
	[C(LL)] = {
		[C(OP_READ)] = {
			[C(RESULT_ACCESS)]	= TNT_DEMAND_READ|
						  TNT_LLC_ACCESS,
			[C(RESULT_MISS)]	= TNT_DEMAND_READ|
						  TNT_LLC_MISS,
		},
		[C(OP_WRITE)] = {
			[C(RESULT_ACCESS)]	= TNT_DEMAND_WRITE|
						  TNT_LLC_ACCESS,
			[C(RESULT_MISS)]	= TNT_DEMAND_WRITE|
						  TNT_LLC_MISS,
		},
		[C(OP_PREFETCH)] = {
			[C(RESULT_ACCESS)]	= 0x0,
			[C(RESULT_MISS)]	= 0x0,
		},
	},
};

EVENT_ATTR_STR(topdown-fe-bound,       td_fe_bound_tnt,        "event=0x71,umask=0x0");
EVENT_ATTR_STR(topdown-retiring,       td_retiring_tnt,        "event=0xc2,umask=0x0");
EVENT_ATTR_STR(topdown-bad-spec,       td_bad_spec_tnt,        "event=0x73,umask=0x6");
EVENT_ATTR_STR(topdown-be-bound,       td_be_bound_tnt,        "event=0x74,umask=0x0");

static struct attribute *tnt_events_attrs[] = {
	EVENT_PTR(td_fe_bound_tnt),
	EVENT_PTR(td_retiring_tnt),
	EVENT_PTR(td_bad_spec_tnt),
	EVENT_PTR(td_be_bound_tnt),
	NULL,
};

static struct extra_reg intel_tnt_extra_regs[] __read_mostly = {
	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x800ff0ffffff9fffull, RSP_0),
	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0xff0ffffff9fffull, RSP_1),
	EVENT_EXTRA_END
};

EVENT_ATTR_STR(mem-loads,	mem_ld_grt,	"event=0xd0,umask=0x5,ldlat=3");
EVENT_ATTR_STR(mem-stores,	mem_st_grt,	"event=0xd0,umask=0x6");

static struct attribute *grt_mem_attrs[] = {
	EVENT_PTR(mem_ld_grt),
	EVENT_PTR(mem_st_grt),
	NULL
};

static struct extra_reg intel_grt_extra_regs[] __read_mostly = {
	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffffffffull, RSP_0),
	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x3fffffffffull, RSP_1),
	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x5d0),
	EVENT_EXTRA_END
};

EVENT_ATTR_STR(topdown-retiring,       td_retiring_cmt,        "event=0x72,umask=0x0");
EVENT_ATTR_STR(topdown-bad-spec,       td_bad_spec_cmt,        "event=0x73,umask=0x0");

static struct attribute *cmt_events_attrs[] = {
	EVENT_PTR(td_fe_bound_tnt),
	EVENT_PTR(td_retiring_cmt),
	EVENT_PTR(td_bad_spec_cmt),
	EVENT_PTR(td_be_bound_tnt),
	NULL
};

static struct extra_reg intel_cmt_extra_regs[] __read_mostly = {
	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x800ff3ffffffffffull, RSP_0),
	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0xff3ffffffffffull, RSP_1),
	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x5d0),
	INTEL_UEVENT_EXTRA_REG(0x0127, MSR_SNOOP_RSP_0, 0xffffffffffffffffull, SNOOP_0),
	INTEL_UEVENT_EXTRA_REG(0x0227, MSR_SNOOP_RSP_1, 0xffffffffffffffffull, SNOOP_1),
	EVENT_EXTRA_END
};

#define KNL_OT_L2_HITE		BIT_ULL(19) /* Other Tile L2 Hit */
#define KNL_OT_L2_HITF		BIT_ULL(20) /* Other Tile L2 Hit */
#define KNL_MCDRAM_LOCAL	BIT_ULL(21)
#define KNL_MCDRAM_FAR		BIT_ULL(22)
#define KNL_DDR_LOCAL		BIT_ULL(23)
#define KNL_DDR_FAR		BIT_ULL(24)
#define KNL_DRAM_ANY		(KNL_MCDRAM_LOCAL | KNL_MCDRAM_FAR | \
				    KNL_DDR_LOCAL | KNL_DDR_FAR)
#define KNL_L2_READ		SLM_DMND_READ
#define KNL_L2_WRITE		SLM_DMND_WRITE
#define KNL_L2_PREFETCH		SLM_DMND_PREFETCH
#define KNL_L2_ACCESS		SLM_LLC_ACCESS
#define KNL_L2_MISS		(KNL_OT_L2_HITE | KNL_OT_L2_HITF | \
				   KNL_DRAM_ANY | SNB_SNP_ANY | \
						  SNB_NON_DRAM)

static __initconst const u64 knl_hw_cache_extra_regs
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
	[C(LL)] = {
		[C(OP_READ)] = {
			[C(RESULT_ACCESS)] = KNL_L2_READ | KNL_L2_ACCESS,
			[C(RESULT_MISS)]   = 0,
		},
		[C(OP_WRITE)] = {
			[C(RESULT_ACCESS)] = KNL_L2_WRITE | KNL_L2_ACCESS,
			[C(RESULT_MISS)]   = KNL_L2_WRITE | KNL_L2_MISS,
		},
		[C(OP_PREFETCH)] = {
			[C(RESULT_ACCESS)] = KNL_L2_PREFETCH | KNL_L2_ACCESS,
			[C(RESULT_MISS)]   = KNL_L2_PREFETCH | KNL_L2_MISS,
		},
	},
};

/*
 * Used from PMIs where the LBRs are already disabled.
 *
 * This function could be called consecutively. It is required to remain in
 * disabled state if called consecutively.
 *
 * During consecutive calls, the same disable value will be written to related
 * registers, so the PMU state remains unchanged.
 *
 * intel_bts events don't coexist with intel PMU's BTS events because of
 * x86_add_exclusive(x86_lbr_exclusive_lbr); there's no need to keep them
 * disabled around intel PMU's event batching etc, only inside the PMI handler.
 *
 * Avoid PEBS_ENABLE MSR access in PMIs.
 * The GLOBAL_CTRL has been disabled. All the counters do not count anymore.
 * It doesn't matter if the PEBS is enabled or not.
 * Usually, the PEBS status are not changed in PMIs. It's unnecessary to
 * access PEBS_ENABLE MSR in disable_all()/enable_all().
 * However, there are some cases which may change PEBS status, e.g. PMI
 * throttle. The PEBS_ENABLE should be updated where the status changes.
 */
static __always_inline void __intel_pmu_disable_all(bool bts)
{
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);

	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);

	if (bts && test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
		intel_pmu_disable_bts();
}

static __always_inline void intel_pmu_disable_all(void)
{
	__intel_pmu_disable_all(true);
	intel_pmu_pebs_disable_all();
	intel_pmu_lbr_disable_all();
}

static void __intel_pmu_enable_all(int added, bool pmi)
{
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
	u64 intel_ctrl = hybrid(cpuc->pmu, intel_ctrl);

	intel_pmu_lbr_enable_all(pmi);

	if (cpuc->fixed_ctrl_val != cpuc->active_fixed_ctrl_val) {
		wrmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, cpuc->fixed_ctrl_val);
		cpuc->active_fixed_ctrl_val = cpuc->fixed_ctrl_val;
	}

	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL,
	       intel_ctrl & ~cpuc->intel_ctrl_guest_mask);

	if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
		struct perf_event *event =
			cpuc->events[INTEL_PMC_IDX_FIXED_BTS];

		if (WARN_ON_ONCE(!event))
			return;

		intel_pmu_enable_bts(event->hw.config);
	}
}

static void intel_pmu_enable_all(int added)
{
	intel_pmu_pebs_enable_all();
	__intel_pmu_enable_all(added, false);
}

static noinline int
__intel_pmu_snapshot_branch_stack(struct perf_branch_entry *entries,
				  unsigned int cnt, unsigned long flags)
{
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);

	intel_pmu_lbr_read();
	cnt = min_t(unsigned int, cnt, x86_pmu.lbr_nr);

	memcpy(entries, cpuc->lbr_entries, sizeof(struct perf_branch_entry) * cnt);
	intel_pmu_enable_all(0);
	local_irq_restore(flags);
	return cnt;
}

static int
intel_pmu_snapshot_branch_stack(struct perf_branch_entry *entries, unsigned int cnt)
{
	unsigned long flags;

	/* must not have branches... */
	local_irq_save(flags);
	__intel_pmu_disable_all(false); /* we don't care about BTS */
	__intel_pmu_lbr_disable();
	/*            ... until here */
	return __intel_pmu_snapshot_branch_stack(entries, cnt, flags);
}

static int
intel_pmu_snapshot_arch_branch_stack(struct perf_branch_entry *entries, unsigned int cnt)
{
	unsigned long flags;

	/* must not have branches... */
	local_irq_save(flags);
	__intel_pmu_disable_all(false); /* we don't care about BTS */
	__intel_pmu_arch_lbr_disable();
	/*            ... until here */
	return __intel_pmu_snapshot_branch_stack(entries, cnt, flags);
}

/*
 * Workaround for:
 *   Intel Errata AAK100 (model 26)
 *   Intel Errata AAP53  (model 30)
 *   Intel Errata BD53   (model 44)
 *
 * The official story:
 *   These chips need to be 'reset' when adding counters by programming the
 *   magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
 *   in sequence on the same PMC or on different PMCs.
 *
 * In practice it appears some of these events do in fact count, and
 * we need to program all 4 events.
 */
static void intel_pmu_nhm_workaround(void)
{
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
	static const unsigned long nhm_magic[4] = {
		0x4300B5,
		0x4300D2,
		0x4300B1,
		0x4300B1
	};
	struct perf_event *event;
	int i;

	/*
	 * The Errata requires below steps:
	 * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
	 * 2) Configure 4 PERFEVTSELx with the magic events and clear
	 *    the corresponding PMCx;
	 * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
	 * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
	 * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
	 */

	/*
	 * The real steps we choose are a little different from above.
	 * A) To reduce MSR operations, we don't run step 1) as they
	 *    are already cleared before this function is called;
	 * B) Call x86_perf_event_update to save PMCx before configuring
	 *    PERFEVTSELx with magic number;
	 * C) With step 5), we do clear only when the PERFEVTSELx is
	 *    not used currently.
	 * D) Call x86_perf_event_set_period to restore PMCx;
	 */

	/* We always operate 4 pairs of PERF Counters */
	for (i = 0; i < 4; i++) {
		event = cpuc->events[i];
		if (event)
			static_call(x86_pmu_update)(event);
	}

	for (i = 0; i < 4; i++) {
		wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
		wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
	}

	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);

	for (i = 0; i < 4; i++) {
		event = cpuc->events[i];

		if (event) {
			static_call(x86_pmu_set_period)(event);
			__x86_pmu_enable_event(&event->hw,
					ARCH_PERFMON_EVENTSEL_ENABLE);
		} else
			wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
	}
}

static void intel_pmu_nhm_enable_all(int added)
{
	if (added)
		intel_pmu_nhm_workaround();
	intel_pmu_enable_all(added);
}

static void intel_set_tfa(struct cpu_hw_events *cpuc, bool on)
{
	u64 val = on ? MSR_TFA_RTM_FORCE_ABORT : 0;

	if (cpuc->tfa_shadow != val) {
		cpuc->tfa_shadow = val;
		wrmsrl(MSR_TSX_FORCE_ABORT, val);
	}
}

static void intel_tfa_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
{
	/*
	 * We're going to use PMC3, make sure TFA is set before we touch it.
	 */
	if (cntr == 3)
		intel_set_tfa(cpuc, true);
}

static void intel_tfa_pmu_enable_all(int added)
{
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);

	/*
	 * If we find PMC3 is no longer used when we enable the PMU, we can
	 * clear TFA.
	 */
	if (!test_bit(3, cpuc->active_mask))
		intel_set_tfa(cpuc, false);

	intel_pmu_enable_all(added);
}

static inline u64 intel_pmu_get_status(void)
{
	u64 status;

	rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);

	return status;
}

static inline void intel_pmu_ack_status(u64 ack)
{
	wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
}

static inline bool event_is_checkpointed(struct perf_event *event)
{
	return unlikely(event->hw.config & HSW_IN_TX_CHECKPOINTED) != 0;
}

static inline void intel_set_masks(struct perf_event *event, int idx)
{
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);

	if (event->attr.exclude_host)
		__set_bit(idx, (unsigned long *)&cpuc->intel_ctrl_guest_mask);
	if (event->attr.exclude_guest)
		__set_bit(idx, (unsigned long *)&cpuc->intel_ctrl_host_mask);
	if (event_is_checkpointed(event))
		__set_bit(idx, (unsigned long *)&cpuc->intel_cp_status);
}

static inline void intel_clear_masks(struct perf_event *event, int idx)
{
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);

	__clear_bit(idx, (unsigned long *)&cpuc->intel_ctrl_guest_mask);
	__clear_bit(idx, (unsigned long *)&cpuc->intel_ctrl_host_mask);
	__clear_bit(idx, (unsigned long *)&cpuc->intel_cp_status);
}

static void intel_pmu_disable_fixed(struct perf_event *event)
{
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
	struct hw_perf_event *hwc = &event->hw;
	int idx = hwc->idx;
	u64 mask;

	if (is_topdown_idx(idx)) {
		struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);

		/*
		 * When there are other active TopDown events,
		 * don't disable the fixed counter 3.
		 */
		if (*(u64 *)cpuc->active_mask & INTEL_PMC_OTHER_TOPDOWN_BITS(idx))
			return;
		idx = INTEL_PMC_IDX_FIXED_SLOTS;
	}

	intel_clear_masks(event, idx);

	mask = intel_fixed_bits_by_idx(idx - INTEL_PMC_IDX_FIXED, INTEL_FIXED_BITS_MASK);
	cpuc->fixed_ctrl_val &= ~mask;
}

static void intel_pmu_disable_event(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;
	int idx = hwc->idx;

	switch (idx) {
	case 0 ... INTEL_PMC_IDX_FIXED - 1:
		intel_clear_masks(event, idx);
		x86_pmu_disable_event(event);
		break;
	case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS - 1:
	case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END:
		intel_pmu_disable_fixed(event);
		break;
	case INTEL_PMC_IDX_FIXED_BTS:
		intel_pmu_disable_bts();
		intel_pmu_drain_bts_buffer();
		return;
	case INTEL_PMC_IDX_FIXED_VLBR:
		intel_clear_masks(event, idx);
		break;
	default:
		intel_clear_masks(event, idx);
		pr_warn("Failed to disable the event with invalid index %d\n",
			idx);
		return;
	}

	/*
	 * Needs to be called after x86_pmu_disable_event,
	 * so we don't trigger the event without PEBS bit set.
	 */
	if (unlikely(event->attr.precise_ip))
		intel_pmu_pebs_disable(event);
}

static void intel_pmu_assign_event(struct perf_event *event, int idx)
{
	if (is_pebs_pt(event))
		perf_report_aux_output_id(event, idx);
}

static void intel_pmu_del_event(struct perf_event *event)
{
	if (needs_branch_stack(event))
		intel_pmu_lbr_del(event);
	if (event->attr.precise_ip)
		intel_pmu_pebs_del(event);
}

static int icl_set_topdown_event_period(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;
	s64 left = local64_read(&hwc->period_left);

	/*
	 * The values in PERF_METRICS MSR are derived from fixed counter 3.
	 * Software should start both registers, PERF_METRICS and fixed
	 * counter 3, from zero.
	 * Clear PERF_METRICS and Fixed counter 3 in initialization.
	 * After that, both MSRs will be cleared for each read.
	 * Don't need to clear them again.
	 */
	if (left == x86_pmu.max_period) {
		wrmsrl(MSR_CORE_PERF_FIXED_CTR3, 0);
		wrmsrl(MSR_PERF_METRICS, 0);
		hwc->saved_slots = 0;
		hwc->saved_metric = 0;
	}

	if ((hwc->saved_slots) && is_slots_event(event)) {
		wrmsrl(MSR_CORE_PERF_FIXED_CTR3, hwc->saved_slots);
		wrmsrl(MSR_PERF_METRICS, hwc->saved_metric);
	}

	perf_event_update_userpage(event);

	return 0;
}

DEFINE_STATIC_CALL(intel_pmu_set_topdown_event_period, x86_perf_event_set_period);

static inline u64 icl_get_metrics_event_value(u64 metric, u64 slots, int idx)
{
	u32 val;

	/*
	 * The metric is reported as an 8bit integer fraction
	 * summing up to 0xff.
	 * slots-in-metric = (Metric / 0xff) * slots
	 */
	val = (metric >> ((idx - INTEL_PMC_IDX_METRIC_BASE) * 8)) & 0xff;
	return  mul_u64_u32_div(slots, val, 0xff);
}

static u64 icl_get_topdown_value(struct perf_event *event,
				       u64 slots, u64 metrics)
{
	int idx = event->hw.idx;
	u64 delta;

	if (is_metric_idx(idx))
		delta = icl_get_metrics_event_value(metrics, slots, idx);
	else
		delta = slots;

	return delta;
}

static void __icl_update_topdown_event(struct perf_event *event,
				       u64 slots, u64 metrics,
				       u64 last_slots, u64 last_metrics)
{
	u64 delta, last = 0;

	delta = icl_get_topdown_value(event, slots, metrics);
	if (last_slots)
		last = icl_get_topdown_value(event, last_slots, last_metrics);

	/*
	 * The 8bit integer fraction of metric may be not accurate,
	 * especially when the changes is very small.
	 * For example, if only a few bad_spec happens, the fraction
	 * may be reduced from 1 to 0. If so, the bad_spec event value
	 * will be 0 which is definitely less than the last value.
	 * Avoid update event->count for this case.
	 */
	if (delta > last) {
		delta -= last;
		local64_add(delta, &event->count);
	}
}

static void update_saved_topdown_regs(struct perf_event *event, u64 slots,
				      u64 metrics, int metric_end)
{
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
	struct perf_event *other;
	int idx;

	event->hw.saved_slots = slots;
	event->hw.saved_metric = metrics;

	for_each_set_bit(idx, cpuc->active_mask, metric_end + 1) {
		if (!is_topdown_idx(idx))
			continue;
		other = cpuc->events[idx];
		other->hw.saved_slots = slots;
		other->hw.saved_metric = metrics;
	}
}

/*
 * Update all active Topdown events.
 *
 * The PERF_METRICS and Fixed counter 3 are read separately. The values may be
 * modify by a NMI. PMU has to be disabled before calling this function.
 */

static u64 intel_update_topdown_event(struct perf_event *event, int metric_end)
{
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
	struct perf_event *other;
	u64 slots, metrics;
	bool reset = true;
	int idx;

	/* read Fixed counter 3 */
	rdpmcl((3 | INTEL_PMC_FIXED_RDPMC_BASE), slots);
	if (!slots)
		return 0;

	/* read PERF_METRICS */
	rdpmcl(INTEL_PMC_FIXED_RDPMC_METRICS, metrics);

	for_each_set_bit(idx, cpuc->active_mask, metric_end + 1) {
		if (!is_topdown_idx(idx))
			continue;
		other = cpuc->events[idx];
		__icl_update_topdown_event(other, slots, metrics,
					   event ? event->hw.saved_slots : 0,
					   event ? event->hw.saved_metric : 0);
	}

	/*
	 * Check and update this event, which may have been cleared
	 * in active_mask e.g. x86_pmu_stop()
	 */
	if (event && !test_bit(event->hw.idx, cpuc->active_mask)) {
		__icl_update_topdown_event(event, slots, metrics,
					   event->hw.saved_slots,
					   event->hw.saved_metric);

		/*
		 * In x86_pmu_stop(), the event is cleared in active_mask first,
		 * then drain the delta, which indicates context switch for
		 * counting.
		 * Save metric and slots for context switch.
		 * Don't need to reset the PERF_METRICS and Fixed counter 3.
		 * Because the values will be restored in next schedule in.
		 */
		update_saved_topdown_regs(event, slots, metrics, metric_end);
		reset = false;
	}

	if (reset) {
		/* The fixed counter 3 has to be written before the PERF_METRICS. */
		wrmsrl(MSR_CORE_PERF_FIXED_CTR3, 0);
		wrmsrl(MSR_PERF_METRICS, 0);
		if (event)
			update_saved_topdown_regs(event, 0, 0, metric_end);
	}

	return slots;
}

static u64 icl_update_topdown_event(struct perf_event *event)
{
	return intel_update_topdown_event(event, INTEL_PMC_IDX_METRIC_BASE +
						 x86_pmu.num_topdown_events - 1);
}

DEFINE_STATIC_CALL(intel_pmu_update_topdown_event, x86_perf_event_update);

static void intel_pmu_read_topdown_event(struct perf_event *event)
{
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);

	/* Only need to call update_topdown_event() once for group read. */
	if ((cpuc->txn_flags & PERF_PMU_TXN_READ) &&
	    !is_slots_event(event))
		return;

	perf_pmu_disable(event->pmu);
	static_call(intel_pmu_update_topdown_event)(event);
	perf_pmu_enable(event->pmu);
}

static void intel_pmu_read_event(struct perf_event *event)
{
	if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
		intel_pmu_auto_reload_read(event);
	else if (is_topdown_count(event))
		intel_pmu_read_topdown_event(event);
	else
		x86_perf_event_update(event);
}

static void intel_pmu_enable_fixed(struct perf_event *event)
{
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
	struct hw_perf_event *hwc = &event->hw;
	u64 mask, bits = 0;
	int idx = hwc->idx;

	if (is_topdown_idx(idx)) {
		struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
		/*
		 * When there are other active TopDown events,
		 * don't enable the fixed counter 3 again.
		 */
		if (*(u64 *)cpuc->active_mask & INTEL_PMC_OTHER_TOPDOWN_BITS(idx))
			return;

		idx = INTEL_PMC_IDX_FIXED_SLOTS;
	}

	intel_set_masks(event, idx);

	/*
	 * Enable IRQ generation (0x8), if not PEBS,
	 * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
	 * if requested:
	 */
	if (!event->attr.precise_ip)
		bits |= INTEL_FIXED_0_ENABLE_PMI;
	if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
		bits |= INTEL_FIXED_0_USER;
	if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
		bits |= INTEL_FIXED_0_KERNEL;

	/*
	 * ANY bit is supported in v3 and up
	 */
	if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
		bits |= INTEL_FIXED_0_ANYTHREAD;

	idx -= INTEL_PMC_IDX_FIXED;
	bits = intel_fixed_bits_by_idx(idx, bits);
	mask = intel_fixed_bits_by_idx(idx, INTEL_FIXED_BITS_MASK);

	if (x86_pmu.intel_cap.pebs_baseline && event->attr.precise_ip) {
		bits |= intel_fixed_bits_by_idx(idx, ICL_FIXED_0_ADAPTIVE);
		mask |= intel_fixed_bits_by_idx(idx, ICL_FIXED_0_ADAPTIVE);
	}

	cpuc->fixed_ctrl_val &= ~mask;
	cpuc->fixed_ctrl_val |= bits;
}

static void intel_pmu_enable_event(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;
	int idx = hwc->idx;

	if (unlikely(event->attr.precise_ip))
		intel_pmu_pebs_enable(event);

	switch (idx) {
	case 0 ... INTEL_PMC_IDX_FIXED - 1:
		intel_set_masks(event, idx);
		__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
		break;
	case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS - 1:
	case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END:
		intel_pmu_enable_fixed(event);
		break;
	case INTEL_PMC_IDX_FIXED_BTS:
		if (!__this_cpu_read(cpu_hw_events.enabled))
			return;
		intel_pmu_enable_bts(hwc->config);
		break;
	case INTEL_PMC_IDX_FIXED_VLBR:
		intel_set_masks(event, idx);
		break;
	default:
		pr_warn("Failed to enable the event with invalid index %d\n",
			idx);
	}
}

static void intel_pmu_add_event(struct perf_event *event)
{
	if (event->attr.precise_ip)
		intel_pmu_pebs_add(event);
	if (needs_branch_stack(event))
		intel_pmu_lbr_add(event);
}

/*
 * Save and restart an expired event. Called by NMI contexts,
 * so it has to be careful about preempting normal event ops:
 */
int intel_pmu_save_and_restart(struct perf_event *event)
{
	static_call(x86_pmu_update)(event);
	/*
	 * For a checkpointed counter always reset back to 0.  This
	 * avoids a situation where the counter overflows, aborts the
	 * transaction and is then set back to shortly before the
	 * overflow, and overflows and aborts again.
	 */
	if (unlikely(event_is_checkpointed(event))) {
		/* No race with NMIs because the counter should not be armed */
		wrmsrl(event->hw.event_base, 0);
		local64_set(&event->hw.prev_count, 0);
	}
	return static_call(x86_pmu_set_period)(event);
}

static int intel_pmu_set_period(struct perf_event *event)
{
	if (unlikely(is_topdown_count(event)))
		return static_call(intel_pmu_set_topdown_event_period)(event);

	return x86_perf_event_set_period(event);
}

static u64 intel_pmu_update(struct perf_event *event)
{
	if (unlikely(is_topdown_count(event)))
		return static_call(intel_pmu_update_topdown_event)(event);

	return x86_perf_event_update(event);
}

static void intel_pmu_reset(void)
{
	struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
	int num_counters_fixed = hybrid(cpuc->pmu, num_counters_fixed);
	int num_counters = hybrid(cpuc->pmu, num_counters);
	unsigned long flags;
	int idx;

	if (!num_counters)
		return;

	local_irq_save(flags);

	pr_info("clearing PMU state on CPU#%d\n", smp_processor_id());

	for (idx = 0; idx < num_counters; idx++) {
		wrmsrl_safe(x86_pmu_config_addr(idx), 0ull);
		wrmsrl_safe(x86_pmu_event_addr(idx),  0ull);
	}
	for (idx = 0; idx < num_counters_fixed; idx++) {
		if (fixed_counter_disabled(idx, cpuc->pmu))
			continue;
		wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
	}

	if (ds)
		ds->bts_index = ds->bts_buffer_base;

	/* Ack all overflows and disable fixed counters */
	if (x86_pmu.version >= 2) {
		intel_pmu_ack_status(intel_pmu_get_status());
		wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
	}

	/* Reset LBRs and LBR freezing */
	if (x86_pmu.lbr_nr) {
		update_debugctlmsr(get_debugctlmsr() &
			~(DEBUGCTLMSR_FREEZE_LBRS_ON_PMI|DEBUGCTLMSR_LBR));
	}

	local_irq_restore(flags);
}

/*
 * We may be running with guest PEBS events created by KVM, and the
 * PEBS records are logged into the guest's DS and invisible to host.
 *
 * In the case of guest PEBS overflow, we only trigger a fake event
 * to emulate the PEBS overflow PMI for guest PEBS counters in KVM.
 * The guest will then vm-entry and check the guest DS area to read
 * the guest PEBS records.
 *
 * The contents and other behavior of the guest event do not matter.
 */
static void x86_pmu_handle_guest_pebs(struct pt_regs *regs,
				      struct perf_sample_data *data)
{
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
	u64 guest_pebs_idxs = cpuc->pebs_enabled & ~cpuc->intel_ctrl_host_mask;
	struct perf_event *event = NULL;
	int bit;

	if (!unlikely(perf_guest_state()))
		return;

	if (!x86_pmu.pebs_ept || !x86_pmu.pebs_active ||
	    !guest_pebs_idxs)
		return;

	for_each_set_bit(bit, (unsigned long *)&guest_pebs_idxs,
			 INTEL_PMC_IDX_FIXED + x86_pmu.num_counters_fixed) {
		event = cpuc->events[bit];
		if (!event->attr.precise_ip)
			continue;

		perf_sample_data_init(data, 0, event->hw.last_period);
		if (perf_event_overflow(event, data, regs))
			x86_pmu_stop(event, 0);

		/* Inject one fake event is enough. */
		break;
	}
}

static int handle_pmi_common(struct pt_regs *regs, u64 status)
{
	struct perf_sample_data data;
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
	int bit;
	int handled = 0;
	u64 intel_ctrl = hybrid(cpuc->pmu, intel_ctrl);

	inc_irq_stat(apic_perf_irqs);

	/*
	 * Ignore a range of extra bits in status that do not indicate
	 * overflow by themselves.
	 */
	status &= ~(GLOBAL_STATUS_COND_CHG |
		    GLOBAL_STATUS_ASIF |
		    GLOBAL_STATUS_LBRS_FROZEN);
	if (!status)
		return 0;
	/*
	 * In case multiple PEBS events are sampled at the same time,
	 * it is possible to have GLOBAL_STATUS bit 62 set indicating
	 * PEBS buffer overflow and also seeing at most 3 PEBS counters
	 * having their bits set in the status register. This is a sign
	 * that there was at least one PEBS record pending at the time
	 * of the PMU interrupt. PEBS counters must only be processed
	 * via the drain_pebs() calls and not via the regular sample
	 * processing loop coming after that the function, otherwise
	 * phony regular samples may be generated in the sampling buffer
	 * not marked with the EXACT tag. Another possibility is to have
	 * one PEBS event and at least one non-PEBS event which overflows
	 * while PEBS has armed. In this case, bit 62 of GLOBAL_STATUS will
	 * not be set, yet the overflow status bit for the PEBS counter will
	 * be on Skylake.
	 *
	 * To avoid this problem, we systematically ignore the PEBS-enabled
	 * counters from the GLOBAL_STATUS mask and we always process PEBS
	 * events via drain_pebs().
	 */
	status &= ~(cpuc->pebs_enabled & x86_pmu.pebs_capable);

	/*
	 * PEBS overflow sets bit 62 in the global status register
	 */
	if (__test_and_clear_bit(GLOBAL_STATUS_BUFFER_OVF_BIT, (unsigned long *)&status)) {
		u64 pebs_enabled = cpuc->pebs_enabled;

		handled++;
		x86_pmu_handle_guest_pebs(regs, &data);
		x86_pmu.drain_pebs(regs, &data);
		status &= intel_ctrl | GLOBAL_STATUS_TRACE_TOPAPMI;

		/*
		 * PMI throttle may be triggered, which stops the PEBS event.
		 * Although cpuc->pebs_enabled is updated accordingly, the
		 * MSR_IA32_PEBS_ENABLE is not updated. Because the
		 * cpuc->enabled has been forced to 0 in PMI.
		 * Update the MSR if pebs_enabled is changed.
		 */
		if (pebs_enabled != cpuc->pebs_enabled)
			wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
	}

	/*
	 * Intel PT
	 */
	if (__test_and_clear_bit(GLOBAL_STATUS_TRACE_TOPAPMI_BIT, (unsigned long *)&status)) {
		handled++;
		if (!perf_guest_handle_intel_pt_intr())
			intel_pt_interrupt();
	}

	/*
	 * Intel Perf metrics
	 */
	if (__test_and_clear_bit(GLOBAL_STATUS_PERF_METRICS_OVF_BIT, (unsigned long *)&status)) {
		handled++;
		static_call(intel_pmu_update_topdown_event)(NULL);
	}

	/*
	 * Checkpointed counters can lead to 'spurious' PMIs because the
	 * rollback caused by the PMI will have cleared the overflow status
	 * bit. Therefore always force probe these counters.
	 */
	status |= cpuc->intel_cp_status;

	for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
		struct perf_event *event = cpuc->events[bit];

		handled++;

		if (!test_bit(bit, cpuc->active_mask))
			continue;

		if (!intel_pmu_save_and_restart(event))
			continue;

		perf_sample_data_init(&data, 0, event->hw.last_period);

		if (has_branch_stack(event))
			perf_sample_save_brstack(&data, event, &cpuc->lbr_stack);

		if (perf_event_overflow(event, &data, regs))
			x86_pmu_stop(event, 0);
	}

	return handled;
}

/*
 * This handler is triggered by the local APIC, so the APIC IRQ handling
 * rules apply:
 */
static int intel_pmu_handle_irq(struct pt_regs *regs)
{
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
	bool late_ack = hybrid_bit(cpuc->pmu, late_ack);
	bool mid_ack = hybrid_bit(cpuc->pmu, mid_ack);
	int loops;
	u64 status;
	int handled;
	int pmu_enabled;

	/*
	 * Save the PMU state.
	 * It needs to be restored when leaving the handler.
	 */
	pmu_enabled = cpuc->enabled;
	/*
	 * In general, the early ACK is only applied for old platforms.
	 * For the big core starts from Haswell, the late ACK should be
	 * applied.
	 * For the small core after Tremont, we have to do the ACK right
	 * before re-enabling counters, which is in the middle of the
	 * NMI handler.
	 */
	if (!late_ack && !mid_ack)
		apic_write(APIC_LVTPC, APIC_DM_NMI);
	intel_bts_disable_local();
	cpuc->enabled = 0;
	__intel_pmu_disable_all(true);
	handled = intel_pmu_drain_bts_buffer();
	handled += intel_bts_interrupt();
	status = intel_pmu_get_status();
	if (!status)
		goto done;

	loops = 0;
again:
	intel_pmu_lbr_read();
	intel_pmu_ack_status(status);
	if (++loops > 100) {
		static bool warned;

		if (!warned) {
			WARN(1, "perfevents: irq loop stuck!\n");
			perf_event_print_debug();
			warned = true;
		}
		intel_pmu_reset();
		goto done;
	}

	handled += handle_pmi_common(regs, status);

	/*
	 * Repeat if there is more work to be done:
	 */
	status = intel_pmu_get_status();
	if (status)
		goto again;

done:
	if (mid_ack)
		apic_write(APIC_LVTPC, APIC_DM_NMI);
	/* Only restore PMU state when it's active. See x86_pmu_disable(). */
	cpuc->enabled = pmu_enabled;
	if (pmu_enabled)
		__intel_pmu_enable_all(0, true);
	intel_bts_enable_local();

	/*
	 * Only unmask the NMI after the overflow counters
	 * have been reset. This avoids spurious NMIs on
	 * Haswell CPUs.
	 */
	if (late_ack)
		apic_write(APIC_LVTPC, APIC_DM_NMI);
	return handled;
}

static struct event_constraint *
intel_bts_constraints(struct perf_event *event)
{
	if (unlikely(intel_pmu_has_bts(event)))
		return &bts_constraint;

	return NULL;
}

/*
 * Note: matches a fake event, like Fixed2.
 */
static struct event_constraint *
intel_vlbr_constraints(struct perf_event *event)
{
	struct event_constraint *c = &vlbr_constraint;

	if (unlikely(constraint_match(c, event->hw.config))) {
		event->hw.flags |= c->flags;
		return c;
	}

	return NULL;
}

static int intel_alt_er(struct cpu_hw_events *cpuc,
			int idx, u64 config)
{
	struct extra_reg *extra_regs = hybrid(cpuc->pmu, extra_regs);
	int alt_idx = idx;

	if (!(x86_pmu.flags & PMU_FL_HAS_RSP_1))
		return idx;

	if (idx == EXTRA_REG_RSP_0)
		alt_idx = EXTRA_REG_RSP_1;

	if (idx == EXTRA_REG_RSP_1)
		alt_idx = EXTRA_REG_RSP_0;

	if (config & ~extra_regs[alt_idx].valid_mask)
		return idx;

	return alt_idx;
}

static void intel_fixup_er(struct perf_event *event, int idx)
{
	struct extra_reg *extra_regs = hybrid(event->pmu, extra_regs);
	event->hw.extra_reg.idx = idx;

	if (idx == EXTRA_REG_RSP_0) {
		event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
		event->hw.config |= extra_regs[EXTRA_REG_RSP_0].event;
		event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
	} else if (idx == EXTRA_REG_RSP_1) {
		event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
		event->hw.config |= extra_regs[EXTRA_REG_RSP_1].event;
		event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
	}
}

/*
 * manage allocation of shared extra msr for certain events
 *
 * sharing can be:
 * per-cpu: to be shared between the various events on a single PMU
 * per-core: per-cpu + shared by HT threads
 */
static struct event_constraint *
__intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
				   struct perf_event *event,
				   struct hw_perf_event_extra *reg)
{
	struct event_constraint *c = &emptyconstraint;
	struct er_account *era;
	unsigned long flags;
	int idx = reg->idx;

	/*
	 * reg->alloc can be set due to existing state, so for fake cpuc we
	 * need to ignore this, otherwise we might fail to allocate proper fake
	 * state for this extra reg constraint. Also see the comment below.
	 */
	if (reg->alloc && !cpuc->is_fake)
		return NULL; /* call x86_get_event_constraint() */

again:
	era = &cpuc->shared_regs->regs[idx];
	/*
	 * we use spin_lock_irqsave() to avoid lockdep issues when
	 * passing a fake cpuc
	 */
	raw_spin_lock_irqsave(&era->lock, flags);

	if (!atomic_read(&era->ref) || era->config == reg->config) {

		/*
		 * If its a fake cpuc -- as per validate_{group,event}() we
		 * shouldn't touch event state and we can avoid doing so
		 * since both will only call get_event_constraints() once
		 * on each event, this avoids the need for reg->alloc.
		 *
		 * Not doing the ER fixup will only result in era->reg being
		 * wrong, but since we won't actually try and program hardware
		 * this isn't a problem either.
		 */
		if (!cpuc->is_fake) {
			if (idx != reg->idx)
				intel_fixup_er(event, idx);

			/*
			 * x86_schedule_events() can call get_event_constraints()
			 * multiple times on events in the case of incremental
			 * scheduling(). reg->alloc ensures we only do the ER
			 * allocation once.
			 */
			reg->alloc = 1;
		}

		/* lock in msr value */
		era->config = reg->config;
		era->reg = reg->reg;

		/* one more user */
		atomic_inc(&era->ref);

		/*
		 * need to call x86_get_event_constraint()
		 * to check if associated event has constraints
		 */
		c = NULL;
	} else {
		idx = intel_alt_er(cpuc, idx, reg->config);
		if (idx != reg->idx) {
			raw_spin_unlock_irqrestore(&era->lock, flags);
			goto again;
		}
	}
	raw_spin_unlock_irqrestore(&era->lock, flags);

	return c;
}

static void
__intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
				   struct hw_perf_event_extra *reg)
{
	struct er_account *era;

	/*
	 * Only put constraint if extra reg was actually allocated. Also takes
	 * care of event which do not use an extra shared reg.
	 *
	 * Also, if this is a fake cpuc we shouldn't touch any event state
	 * (reg->alloc) and we don't care about leaving inconsistent cpuc state
	 * either since it'll be thrown out.
	 */
	if (!reg->alloc || cpuc->is_fake)
		return;

	era = &cpuc->shared_regs->regs[reg->idx];

	/* one fewer user */
	atomic_dec(&era->ref);

	/* allocate again next time */
	reg->alloc = 0;
}

static struct event_constraint *
intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
			      struct perf_event *event)
{
	struct event_constraint *c = NULL, *d;
	struct hw_perf_event_extra *xreg, *breg;

	xreg = &event->hw.extra_reg;
	if (xreg->idx != EXTRA_REG_NONE) {
		c = __intel_shared_reg_get_constraints(cpuc, event, xreg);
		if (c == &emptyconstraint)
			return c;
	}
	breg = &event->hw.branch_reg;
	if (breg->idx != EXTRA_REG_NONE) {
		d = __intel_shared_reg_get_constraints(cpuc, event, breg);
		if (d == &emptyconstraint) {
			__intel_shared_reg_put_constraints(cpuc, xreg);
			c = d;
		}
	}
	return c;
}

struct event_constraint *
x86_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
			  struct perf_event *event)
{
	struct event_constraint *event_constraints = hybrid(cpuc->pmu, event_constraints);
	struct event_constraint *c;

	if (event_constraints) {
		for_each_event_constraint(c, event_constraints) {
			if (constraint_match(c, event->hw.config)) {
				event->hw.flags |= c->flags;
				return c;
			}
		}
	}

	return &hybrid_var(cpuc->pmu, unconstrained);
}

static struct event_constraint *
__intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
			    struct perf_event *event)
{
	struct event_constraint *c;

	c = intel_vlbr_constraints(event);
	if (c)
		return c;

	c = intel_bts_constraints(event);
	if (c)
		return c;

	c = intel_shared_regs_constraints(cpuc, event);
	if (c)
		return c;

	c = intel_pebs_constraints(event);
	if (c)
		return c;

	return x86_get_event_constraints(cpuc, idx, event);
}

static void
intel_start_scheduling(struct cpu_hw_events *cpuc)
{
	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
	struct intel_excl_states *xl;
	int tid = cpuc->excl_thread_id;

	/*
	 * nothing needed if in group validation mode
	 */
	if (cpuc->is_fake || !is_ht_workaround_enabled())
		return;

	/*
	 * no exclusion needed
	 */
	if (WARN_ON_ONCE(!excl_cntrs))
		return;

	xl = &excl_cntrs->states[tid];

	xl->sched_started = true;
	/*
	 * lock shared state until we are done scheduling
	 * in stop_event_scheduling()
	 * makes scheduling appear as a transaction
	 */
	raw_spin_lock(&excl_cntrs->lock);
}

static void intel_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
{
	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
	struct event_constraint *c = cpuc->event_constraint[idx];
	struct intel_excl_states *xl;
	int tid = cpuc->excl_thread_id;

	if (cpuc->is_fake || !is_ht_workaround_enabled())
		return;

	if (WARN_ON_ONCE(!excl_cntrs))
		return;

	if (!(c->flags & PERF_X86_EVENT_DYNAMIC))
		return;

	xl = &excl_cntrs->states[tid];

	lockdep_assert_held(&excl_cntrs->lock);

	if (c->flags & PERF_X86_EVENT_EXCL)
		xl->state[cntr] = INTEL_EXCL_EXCLUSIVE;
	else
		xl->state[cntr] = INTEL_EXCL_SHARED;
}

static void
intel_stop_scheduling(struct cpu_hw_events *cpuc)
{
	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
	struct intel_excl_states *xl;
	int tid = cpuc->excl_thread_id;

	/*
	 * nothing needed if in group validation mode
	 */
	if (cpuc->is_fake || !is_ht_workaround_enabled())
		return;
	/*
	 * no exclusion needed
	 */
	if (WARN_ON_ONCE(!excl_cntrs))
		return;

	xl = &excl_cntrs->states[tid];

	xl->sched_started = false;
	/*
	 * release shared state lock (acquired in intel_start_scheduling())
	 */
	raw_spin_unlock(&excl_cntrs->lock);
}

static struct event_constraint *
dyn_constraint(struct cpu_hw_events *cpuc, struct event_constraint *c, int idx)
{
	WARN_ON_ONCE(!cpuc->constraint_list);

	if (!(c->flags & PERF_X86_EVENT_DYNAMIC)) {
		struct event_constraint *cx;

		/*
		 * grab pre-allocated constraint entry
		 */
		cx = &cpuc->constraint_list[idx];

		/*
		 * initialize dynamic constraint
		 * with static constraint
		 */
		*cx = *c;

		/*
		 * mark constraint as dynamic
		 */
		cx->flags |= PERF_X86_EVENT_DYNAMIC;
		c = cx;
	}

	return c;
}

static struct event_constraint *
intel_get_excl_constraints(struct cpu_hw_events *cpuc, struct perf_event *event,
			   int idx, struct event_constraint *c)
{
	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
	struct intel_excl_states *xlo;
	int tid = cpuc->excl_thread_id;
	int is_excl, i, w;

	/*
	 * validating a group does not require
	 * enforcing cross-thread  exclusion
	 */
	if (cpuc->is_fake || !is_ht_workaround_enabled())
		return c;

	/*
	 * no exclusion needed
	 */
	if (WARN_ON_ONCE(!excl_cntrs))
		return c;

	/*
	 * because we modify the constraint, we need
	 * to make a copy. Static constraints come
	 * from static const tables.
	 *
	 * only needed when constraint has not yet
	 * been cloned (marked dynamic)
	 */
	c = dyn_constraint(cpuc, c, idx);

	/*
	 * From here on, the constraint is dynamic.
	 * Either it was just allocated above, or it
	 * was allocated during a earlier invocation
	 * of this function
	 */

	/*
	 * state of sibling HT
	 */
	xlo = &excl_cntrs->states[tid ^ 1];

	/*
	 * event requires exclusive counter access
	 * across HT threads
	 */
	is_excl = c->flags & PERF_X86_EVENT_EXCL;
	if (is_excl && !(event->hw.flags & PERF_X86_EVENT_EXCL_ACCT)) {
		event->hw.flags |= PERF_X86_EVENT_EXCL_ACCT;
		if (!cpuc->n_excl++)
			WRITE_ONCE(excl_cntrs->has_exclusive[tid], 1);
	}

	/*
	 * Modify static constraint with current dynamic
	 * state of thread
	 *
	 * EXCLUSIVE: sibling counter measuring exclusive event
	 * SHARED   : sibling counter measuring non-exclusive event
	 * UNUSED   : sibling counter unused
	 */
	w = c->weight;
	for_each_set_bit(i, c->idxmsk, X86_PMC_IDX_MAX) {
		/*
		 * exclusive event in sibling counter
		 * our corresponding counter cannot be used
		 * regardless of our event
		 */
		if (xlo->state[i] == INTEL_EXCL_EXCLUSIVE) {
			__clear_bit(i, c->idxmsk);
			w--;
			continue;
		}
		/*
		 * if measuring an exclusive event, sibling
		 * measuring non-exclusive, then counter cannot
		 * be used
		 */
		if (is_excl && xlo->state[i] == INTEL_EXCL_SHARED) {
			__clear_bit(i, c->idxmsk);
			w--;
			continue;
		}
	}

	/*
	 * if we return an empty mask, then switch
	 * back to static empty constraint to avoid
	 * the cost of freeing later on
	 */
	if (!w)
		c = &emptyconstraint;

	c->weight = w;

	return c;
}

static struct event_constraint *
intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
			    struct perf_event *event)
{
	struct event_constraint *c1, *c2;

	c1 = cpuc->event_constraint[idx];

	/*
	 * first time only
	 * - static constraint: no change across incremental scheduling calls
	 * - dynamic constraint: handled by intel_get_excl_constraints()
	 */
	c2 = __intel_get_event_constraints(cpuc, idx, event);
	if (c1) {
	        WARN_ON_ONCE(!(c1->flags & PERF_X86_EVENT_DYNAMIC));
		bitmap_copy(c1->idxmsk, c2->idxmsk, X86_PMC_IDX_MAX);
		c1->weight = c2->weight;
		c2 = c1;
	}

	if (cpuc->excl_cntrs)
		return intel_get_excl_constraints(cpuc, event, idx, c2);

	return c2;
}

static void intel_put_excl_constraints(struct cpu_hw_events *cpuc,
		struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;
	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
	int tid = cpuc->excl_thread_id;
	struct intel_excl_states *xl;

	/*
	 * nothing needed if in group validation mode
	 */
	if (cpuc->is_fake)
		return;

	if (WARN_ON_ONCE(!excl_cntrs))
		return;

	if (hwc->flags & PERF_X86_EVENT_EXCL_ACCT) {
		hwc->flags &= ~PERF_X86_EVENT_EXCL_ACCT;
		if (!--cpuc->n_excl)
			WRITE_ONCE(excl_cntrs->has_exclusive[tid], 0);
	}

	/*
	 * If event was actually assigned, then mark the counter state as
	 * unused now.
	 */
	if (hwc->idx >= 0) {
		xl = &excl_cntrs->states[tid];

		/*
		 * put_constraint may be called from x86_schedule_events()
		 * which already has the lock held so here make locking
		 * conditional.
		 */
		if (!xl->sched_started)
			raw_spin_lock(&excl_cntrs->lock);

		xl->state[hwc->idx] = INTEL_EXCL_UNUSED;

		if (!xl->sched_started)
			raw_spin_unlock(&excl_cntrs->lock);
	}
}

static void
intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
					struct perf_event *event)
{
	struct hw_perf_event_extra *reg;

	reg = &event->hw.extra_reg;
	if (reg->idx != EXTRA_REG_NONE)
		__intel_shared_reg_put_constraints(cpuc, reg);

	reg = &event->hw.branch_reg;
	if (reg->idx != EXTRA_REG_NONE)
		__intel_shared_reg_put_constraints(cpuc, reg);
}

static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
					struct perf_event *event)
{
	intel_put_shared_regs_event_constraints(cpuc, event);

	/*
	 * is PMU has exclusive counter restrictions, then
	 * all events are subject to and must call the
	 * put_excl_constraints() routine
	 */
	if (cpuc->excl_cntrs)
		intel_put_excl_constraints(cpuc, event);
}

static void intel_pebs_aliases_core2(struct perf_event *event)
{
	if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
		/*
		 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
		 * (0x003c) so that we can use it with PEBS.
		 *
		 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
		 * PEBS capable. However we can use INST_RETIRED.ANY_P
		 * (0x00c0), which is a PEBS capable event, to get the same
		 * count.
		 *
		 * INST_RETIRED.ANY_P counts the number of cycles that retires
		 * CNTMASK instructions. By setting CNTMASK to a value (16)
		 * larger than the maximum number of instructions that can be
		 * retired per cycle (4) and then inverting the condition, we
		 * count all cycles that retire 16 or less instructions, which
		 * is every cycle.
		 *
		 * Thereby we gain a PEBS capable cycle counter.
		 */
		u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16);

		alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
		event->hw.config = alt_config;
	}
}

static void intel_pebs_aliases_snb(struct perf_event *event)
{
	if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
		/*
		 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
		 * (0x003c) so that we can use it with PEBS.
		 *
		 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
		 * PEBS capable. However we can use UOPS_RETIRED.ALL
		 * (0x01c2), which is a PEBS capable event, to get the same
		 * count.
		 *
		 * UOPS_RETIRED.ALL counts the number of cycles that retires
		 * CNTMASK micro-ops. By setting CNTMASK to a value (16)
		 * larger than the maximum number of micro-ops that can be
		 * retired per cycle (4) and then inverting the condition, we
		 * count all cycles that retire 16 or less micro-ops, which
		 * is every cycle.
		 *
		 * Thereby we gain a PEBS capable cycle counter.
		 */
		u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16);

		alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
		event->hw.config = alt_config;
	}
}

static void intel_pebs_aliases_precdist(struct perf_event *event)
{
	if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
		/*
		 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
		 * (0x003c) so that we can use it with PEBS.
		 *
		 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
		 * PEBS capable. However we can use INST_RETIRED.PREC_DIST
		 * (0x01c0), which is a PEBS capable event, to get the same
		 * count.
		 *
		 * The PREC_DIST event has special support to minimize sample
		 * shadowing effects. One drawback is that it can be
		 * only programmed on counter 1, but that seems like an
		 * acceptable trade off.
		 */
		u64 alt_config = X86_CONFIG(.event=0xc0, .umask=0x01, .inv=1, .cmask=16);

		alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
		event->hw.config = alt_config;
	}
}

static void intel_pebs_aliases_ivb(struct perf_event *event)
{
	if (event->attr.precise_ip < 3)
		return intel_pebs_aliases_snb(event);
	return intel_pebs_aliases_precdist(event);
}

static void intel_pebs_aliases_skl(struct perf_event *event)
{
	if (event->attr.precise_ip < 3)
		return intel_pebs_aliases_core2(event);
	return intel_pebs_aliases_precdist(event);
}

static unsigned long intel_pmu_large_pebs_flags(struct perf_event *event)
{
	unsigned long flags = x86_pmu.large_pebs_flags;

	if (event->attr.use_clockid)
		flags &= ~PERF_SAMPLE_TIME;
	if (!event->attr.exclude_kernel)
		flags &= ~PERF_SAMPLE_REGS_USER;
	if (event->attr.sample_regs_user & ~PEBS_GP_REGS)
		flags &= ~(PERF_SAMPLE_REGS_USER | PERF_SAMPLE_REGS_INTR);
	return flags;
}

static int intel_pmu_bts_config(struct perf_event *event)
{
	struct perf_event_attr *attr = &event->attr;

	if (unlikely(intel_pmu_has_bts(event))) {
		/* BTS is not supported by this architecture. */
		if (!x86_pmu.bts_active)
			return -EOPNOTSUPP;

		/* BTS is currently only allowed for user-mode. */
		if (!attr->exclude_kernel)
			return -EOPNOTSUPP;

		/* BTS is not allowed for precise events. */
		if (attr->precise_ip)
			return -EOPNOTSUPP;

		/* disallow bts if conflicting events are present */
		if (x86_add_exclusive(x86_lbr_exclusive_lbr))
			return -EBUSY;

		event->destroy = hw_perf_lbr_event_destroy;
	}

	return 0;
}

static int core_pmu_hw_config(struct perf_event *event)
{
	int ret = x86_pmu_hw_config(event);

	if (ret)
		return ret;

	return intel_pmu_bts_config(event);
}

#define INTEL_TD_METRIC_AVAILABLE_MAX	(INTEL_TD_METRIC_RETIRING + \
					 ((x86_pmu.num_topdown_events - 1) << 8))

static bool is_available_metric_event(struct perf_event *event)
{
	return is_metric_event(event) &&
		event->attr.config <= INTEL_TD_METRIC_AVAILABLE_MAX;
}

static inline bool is_mem_loads_event(struct perf_event *event)
{
	return (event->attr.config & INTEL_ARCH_EVENT_MASK) == X86_CONFIG(.event=0xcd, .umask=0x01);
}

static inline bool is_mem_loads_aux_event(struct perf_event *event)
{
	return (event->attr.config & INTEL_ARCH_EVENT_MASK) == X86_CONFIG(.event=0x03, .umask=0x82);
}

static inline bool require_mem_loads_aux_event(struct perf_event *event)
{
	if (!(x86_pmu.flags & PMU_FL_MEM_LOADS_AUX))
		return false;

	if (is_hybrid())
		return hybrid_pmu(event->pmu)->pmu_type == hybrid_big;

	return true;
}

static inline bool intel_pmu_has_cap(struct perf_event *event, int idx)
{
	union perf_capabilities *intel_cap = &hybrid(event->pmu, intel_cap);

	return test_bit(idx, (unsigned long *)&intel_cap->capabilities);
}

static int intel_pmu_hw_config(struct perf_event *event)
{
	int ret = x86_pmu_hw_config(event);

	if (ret)
		return ret;

	ret = intel_pmu_bts_config(event);
	if (ret)
		return ret;

	if (event->attr.precise_ip) {
		if ((event->attr.config & INTEL_ARCH_EVENT_MASK) == INTEL_FIXED_VLBR_EVENT)
			return -EINVAL;

		if (!(event->attr.freq || (event->attr.wakeup_events && !event->attr.watermark))) {
			event->hw.flags |= PERF_X86_EVENT_AUTO_RELOAD;
			if (!(event->attr.sample_type &
			      ~intel_pmu_large_pebs_flags(event))) {
				event->hw.flags |= PERF_X86_EVENT_LARGE_PEBS;
				event->attach_state |= PERF_ATTACH_SCHED_CB;
			}
		}
		if (x86_pmu.pebs_aliases)
			x86_pmu.pebs_aliases(event);
	}

	if (needs_branch_stack(event)) {
		ret = intel_pmu_setup_lbr_filter(event);
		if (ret)
			return ret;
		event->attach_state |= PERF_ATTACH_SCHED_CB;

		/*
		 * BTS is set up earlier in this path, so don't account twice
		 */
		if (!unlikely(intel_pmu_has_bts(event))) {
			/* disallow lbr if conflicting events are present */
			if (x86_add_exclusive(x86_lbr_exclusive_lbr))
				return -EBUSY;

			event->destroy = hw_perf_lbr_event_destroy;
		}
	}

	if (event->attr.aux_output) {
		if (!event->attr.precise_ip)
			return -EINVAL;

		event->hw.flags |= PERF_X86_EVENT_PEBS_VIA_PT;
	}

	if ((event->attr.type == PERF_TYPE_HARDWARE) ||
	    (event->attr.type == PERF_TYPE_HW_CACHE))
		return 0;

	/*
	 * Config Topdown slots and metric events
	 *
	 * The slots event on Fixed Counter 3 can support sampling,
	 * which will be handled normally in x86_perf_event_update().
	 *
	 * Metric events don't support sampling and require being paired
	 * with a slots event as group leader. When the slots event
	 * is used in a metrics group, it too cannot support sampling.
	 */
	if (intel_pmu_has_cap(event, PERF_CAP_METRICS_IDX) && is_topdown_event(event)) {
		if (event->attr.config1 || event->attr.config2)
			return -EINVAL;

		/*
		 * The TopDown metrics events and slots event don't
		 * support any filters.
		 */
		if (event->attr.config & X86_ALL_EVENT_FLAGS)
			return -EINVAL;

		if (is_available_metric_event(event)) {
			struct perf_event *leader = event->group_leader;

			/* The metric events don't support sampling. */
			if (is_sampling_event(event))
				return -EINVAL;

			/* The metric events require a slots group leader. */
			if (!is_slots_event(leader))
				return -EINVAL;

			/*
			 * The leader/SLOTS must not be a sampling event for
			 * metric use; hardware requires it starts at 0 when used
			 * in conjunction with MSR_PERF_METRICS.
			 */
			if (is_sampling_event(leader))
				return -EINVAL;

			event->event_caps |= PERF_EV_CAP_SIBLING;
			/*
			 * Only once we have a METRICs sibling do we
			 * need TopDown magic.
			 */
			leader->hw.flags |= PERF_X86_EVENT_TOPDOWN;
			event->hw.flags  |= PERF_X86_EVENT_TOPDOWN;
		}
	}

	/*
	 * The load latency event X86_CONFIG(.event=0xcd, .umask=0x01) on SPR
	 * doesn't function quite right. As a work-around it needs to always be
	 * co-scheduled with a auxiliary event X86_CONFIG(.event=0x03, .umask=0x82).
	 * The actual count of this second event is irrelevant it just needs
	 * to be active to make the first event function correctly.
	 *
	 * In a group, the auxiliary event must be in front of the load latency
	 * event. The rule is to simplify the implementation of the check.
	 * That's because perf cannot have a complete group at the moment.
	 */
	if (require_mem_loads_aux_event(event) &&
	    (event->attr.sample_type & PERF_SAMPLE_DATA_SRC) &&
	    is_mem_loads_event(event)) {
		struct perf_event *leader = event->group_leader;
		struct perf_event *sibling = NULL;

		/*
		 * When this memload event is also the first event (no group
		 * exists yet), then there is no aux event before it.
		 */
		if (leader == event)
			return -ENODATA;

		if (!is_mem_loads_aux_event(leader)) {
			for_each_sibling_event(sibling, leader) {
				if (is_mem_loads_aux_event(sibling))
					break;
			}
			if (list_entry_is_head(sibling, &leader->sibling_list, sibling_list))
				return -ENODATA;
		}
	}

	if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
		return 0;

	if (x86_pmu.version < 3)
		return -EINVAL;

	ret = perf_allow_cpu(&event->attr);
	if (ret)
		return ret;

	event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;

	return 0;
}

/*
 * Currently, the only caller of this function is the atomic_switch_perf_msrs().
 * The host perf conext helps to prepare the values of the real hardware for
 * a set of msrs that need to be switched atomically in a vmx transaction.
 *
 * For example, the pseudocode needed to add a new msr should look like:
 *
 * arr[(*nr)++] = (struct perf_guest_switch_msr){
 *	.msr = the hardware msr address,
 *	.host = the value the hardware has when it doesn't run a guest,
 *	.guest = the value the hardware has when it runs a guest,
 * };
 *
 * These values have nothing to do with the emulated values the guest sees
 * when it uses {RD,WR}MSR, which should be handled by the KVM context,
 * specifically in the intel_pmu_{get,set}_msr().
 */
static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr, void *data)
{
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
	struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
	struct kvm_pmu *kvm_pmu = (struct kvm_pmu *)data;
	u64 intel_ctrl = hybrid(cpuc->pmu, intel_ctrl);
	u64 pebs_mask = cpuc->pebs_enabled & x86_pmu.pebs_capable;
	int global_ctrl, pebs_enable;

	/*
	 * In addition to obeying exclude_guest/exclude_host, remove bits being
	 * used for PEBS when running a guest, because PEBS writes to virtual
	 * addresses (not physical addresses).
	 */
	*nr = 0;
	global_ctrl = (*nr)++;
	arr[global_ctrl] = (struct perf_guest_switch_msr){
		.msr = MSR_CORE_PERF_GLOBAL_CTRL,
		.host = intel_ctrl & ~cpuc->intel_ctrl_guest_mask,
		.guest = intel_ctrl & ~cpuc->intel_ctrl_host_mask & ~pebs_mask,
	};

	if (!x86_pmu.pebs)
		return arr;

	/*
	 * If PMU counter has PEBS enabled it is not enough to
	 * disable counter on a guest entry since PEBS memory
	 * write can overshoot guest entry and corrupt guest
	 * memory. Disabling PEBS solves the problem.
	 *
	 * Don't do this if the CPU already enforces it.
	 */
	if (x86_pmu.pebs_no_isolation) {
		arr[(*nr)++] = (struct perf_guest_switch_msr){
			.msr = MSR_IA32_PEBS_ENABLE,
			.host = cpuc->pebs_enabled,
			.guest = 0,
		};
		return arr;
	}

	if (!kvm_pmu || !x86_pmu.pebs_ept)
		return arr;

	arr[(*nr)++] = (struct perf_guest_switch_msr){
		.msr = MSR_IA32_DS_AREA,
		.host = (unsigned long)cpuc->ds,
		.guest = kvm_pmu->ds_area,
	};

	if (x86_pmu.intel_cap.pebs_baseline) {
		arr[(*nr)++] = (struct perf_guest_switch_msr){
			.msr = MSR_PEBS_DATA_CFG,
			.host = cpuc->active_pebs_data_cfg,
			.guest = kvm_pmu->pebs_data_cfg,
		};
	}

	pebs_enable = (*nr)++;
	arr[pebs_enable] = (struct perf_guest_switch_msr){
		.msr = MSR_IA32_PEBS_ENABLE,
		.host = cpuc->pebs_enabled & ~cpuc->intel_ctrl_guest_mask,
		.guest = pebs_mask & ~cpuc->intel_ctrl_host_mask,
	};

	if (arr[pebs_enable].host) {
		/* Disable guest PEBS if host PEBS is enabled. */
		arr[pebs_enable].guest = 0;
	} else {
		/* Disable guest PEBS thoroughly for cross-mapped PEBS counters. */
		arr[pebs_enable].guest &= ~kvm_pmu->host_cross_mapped_mask;
		arr[global_ctrl].guest &= ~kvm_pmu->host_cross_mapped_mask;
		/* Set hw GLOBAL_CTRL bits for PEBS counter when it runs for guest */
		arr[global_ctrl].guest |= arr[pebs_enable].guest;
	}

	return arr;
}

static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr, void *data)
{
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
	struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
	int idx;

	for (idx = 0; idx < x86_pmu.num_counters; idx++)  {
		struct perf_event *event = cpuc->events[idx];

		arr[idx].msr = x86_pmu_config_addr(idx);
		arr[idx].host = arr[idx].guest = 0;

		if (!test_bit(idx, cpuc->active_mask))
			continue;

		arr[idx].host = arr[idx].guest =
			event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;

		if (event->attr.exclude_host)
			arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
		else if (event->attr.exclude_guest)
			arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
	}

	*nr = x86_pmu.num_counters;
	return arr;
}

static void core_pmu_enable_event(struct perf_event *event)
{
	if (!event->attr.exclude_host)
		x86_pmu_enable_event(event);
}

static void core_pmu_enable_all(int added)
{
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
	int idx;

	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
		struct hw_perf_event *hwc = &cpuc->events[idx]->hw;

		if (!test_bit(idx, cpuc->active_mask) ||
				cpuc->events[idx]->attr.exclude_host)
			continue;

		__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
	}
}

static int hsw_hw_config(struct perf_event *event)
{
	int ret = intel_pmu_hw_config(event);

	if (ret)
		return ret;
	if (!boot_cpu_has(X86_FEATURE_RTM) && !boot_cpu_has(X86_FEATURE_HLE))
		return 0;
	event->hw.config |= event->attr.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED);

	/*
	 * IN_TX/IN_TX-CP filters are not supported by the Haswell PMU with
	 * PEBS or in ANY thread mode. Since the results are non-sensical forbid
	 * this combination.
	 */
	if ((event->hw.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)) &&
	     ((event->hw.config & ARCH_PERFMON_EVENTSEL_ANY) ||
	      event->attr.precise_ip > 0))
		return -EOPNOTSUPP;

	if (event_is_checkpointed(event)) {
		/*
		 * Sampling of checkpointed events can cause situations where
		 * the CPU constantly aborts because of a overflow, which is
		 * then checkpointed back and ignored. Forbid checkpointing
		 * for sampling.
		 *
		 * But still allow a long sampling period, so that perf stat
		 * from KVM works.
		 */
		if (event->attr.sample_period > 0 &&
		    event->attr.sample_period < 0x7fffffff)
			return -EOPNOTSUPP;
	}
	return 0;
}

static struct event_constraint counter0_constraint =
			INTEL_ALL_EVENT_CONSTRAINT(0, 0x1);

static struct event_constraint counter1_constraint =
			INTEL_ALL_EVENT_CONSTRAINT(0, 0x2);

static struct event_constraint counter0_1_constraint =
			INTEL_ALL_EVENT_CONSTRAINT(0, 0x3);

static struct event_constraint counter2_constraint =
			EVENT_CONSTRAINT(0, 0x4, 0);

static struct event_constraint fixed0_constraint =
			FIXED_EVENT_CONSTRAINT(0x00c0, 0);

static struct event_constraint fixed0_counter0_constraint =
			INTEL_ALL_EVENT_CONSTRAINT(0, 0x100000001ULL);

static struct event_constraint fixed0_counter0_1_constraint =
			INTEL_ALL_EVENT_CONSTRAINT(0, 0x100000003ULL);

static struct event_constraint counters_1_7_constraint =
			INTEL_ALL_EVENT_CONSTRAINT(0, 0xfeULL);

static struct event_constraint *
hsw_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
			  struct perf_event *event)
{
	struct event_constraint *c;

	c = intel_get_event_constraints(cpuc, idx, event);

	/* Handle special quirk on in_tx_checkpointed only in counter 2 */
	if (event->hw.config & HSW_IN_TX_CHECKPOINTED) {
		if (c->idxmsk64 & (1U << 2))
			return &counter2_constraint;
		return &emptyconstraint;
	}

	return c;
}

static struct event_constraint *
icl_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
			  struct perf_event *event)
{
	/*
	 * Fixed counter 0 has less skid.
	 * Force instruction:ppp in Fixed counter 0
	 */
	if ((event->attr.precise_ip == 3) &&
	    constraint_match(&fixed0_constraint, event->hw.config))
		return &fixed0_constraint;

	return hsw_get_event_constraints(cpuc, idx, event);
}

static struct event_constraint *
glc_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
			  struct perf_event *event)
{
	struct event_constraint *c;

	c = icl_get_event_constraints(cpuc, idx, event);

	/*
	 * The :ppp indicates the Precise Distribution (PDist) facility, which
	 * is only supported on the GP counter 0. If a :ppp event which is not
	 * available on the GP counter 0, error out.
	 * Exception: Instruction PDIR is only available on the fixed counter 0.
	 */
	if ((event->attr.precise_ip == 3) &&
	    !constraint_match(&fixed0_constraint, event->hw.config)) {
		if (c->idxmsk64 & BIT_ULL(0))
			return &counter0_constraint;

		return &emptyconstraint;
	}

	return c;
}

static struct event_constraint *
glp_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
			  struct perf_event *event)
{
	struct event_constraint *c;

	/* :ppp means to do reduced skid PEBS which is PMC0 only. */
	if (event->attr.precise_ip == 3)
		return &counter0_constraint;

	c = intel_get_event_constraints(cpuc, idx, event);

	return c;
}

static struct event_constraint *
tnt_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
			  struct perf_event *event)
{
	struct event_constraint *c;

	c = intel_get_event_constraints(cpuc, idx, event);

	/*
	 * :ppp means to do reduced skid PEBS,
	 * which is available on PMC0 and fixed counter 0.
	 */
	if (event->attr.precise_ip == 3) {
		/* Force instruction:ppp on PMC0 and Fixed counter 0 */
		if (constraint_match(&fixed0_constraint, event->hw.config))
			return &fixed0_counter0_constraint;

		return &counter0_constraint;
	}

	return c;
}

static bool allow_tsx_force_abort = true;

static struct event_constraint *
tfa_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
			  struct perf_event *event)
{
	struct event_constraint *c = hsw_get_event_constraints(cpuc, idx, event);

	/*
	 * Without TFA we must not use PMC3.
	 */
	if (!allow_tsx_force_abort && test_bit(3, c->idxmsk)) {
		c = dyn_constraint(cpuc, c, idx);
		c->idxmsk64 &= ~(1ULL << 3);
		c->weight--;
	}

	return c;
}

static struct event_constraint *
adl_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
			  struct perf_event *event)
{
	struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);

	if (pmu->pmu_type == hybrid_big)
		return glc_get_event_constraints(cpuc, idx, event);
	else if (pmu->pmu_type == hybrid_small)
		return tnt_get_event_constraints(cpuc, idx, event);

	WARN_ON(1);
	return &emptyconstraint;
}

static struct event_constraint *
cmt_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
			  struct perf_event *event)
{
	struct event_constraint *c;

	c = intel_get_event_constraints(cpuc, idx, event);

	/*
	 * The :ppp indicates the Precise Distribution (PDist) facility, which
	 * is only supported on the GP counter 0 & 1 and Fixed counter 0.
	 * If a :ppp event which is not available on the above eligible counters,
	 * error out.
	 */
	if (event->attr.precise_ip == 3) {
		/* Force instruction:ppp on PMC0, 1 and Fixed counter 0 */
		if (constraint_match(&fixed0_constraint, event->hw.config))
			return &fixed0_counter0_1_constraint;

		switch (c->idxmsk64 & 0x3ull) {
		case 0x1:
			return &counter0_constraint;
		case 0x2:
			return &counter1_constraint;
		case 0x3:
			return &counter0_1_constraint;
		}
		return &emptyconstraint;
	}

	return c;
}

static struct event_constraint *
rwc_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
			  struct perf_event *event)
{
	struct event_constraint *c;

	c = glc_get_event_constraints(cpuc, idx, event);

	/* The Retire Latency is not supported by the fixed counter 0. */
	if (event->attr.precise_ip &&
	    (event->attr.sample_type & PERF_SAMPLE_WEIGHT_TYPE) &&
	    constraint_match(&fixed0_constraint, event->hw.config)) {
		/*
		 * The Instruction PDIR is only available
		 * on the fixed counter 0. Error out for this case.
		 */
		if (event->attr.precise_ip == 3)
			return &emptyconstraint;
		return &counters_1_7_constraint;
	}

	return c;
}

static struct event_constraint *
mtl_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
			  struct perf_event *event)
{
	struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);

	if (pmu->pmu_type == hybrid_big)
		return rwc_get_event_constraints(cpuc, idx, event);
	if (pmu->pmu_type == hybrid_small)
		return cmt_get_event_constraints(cpuc, idx, event);

	WARN_ON(1);
	return &emptyconstraint;
}

static int adl_hw_config(struct perf_event *event)
{
	struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);

	if (pmu->pmu_type == hybrid_big)
		return hsw_hw_config(event);
	else if (pmu->pmu_type == hybrid_small)
		return intel_pmu_hw_config(event);

	WARN_ON(1);
	return -EOPNOTSUPP;
}

static enum hybrid_cpu_type adl_get_hybrid_cpu_type(void)
{
	return HYBRID_INTEL_CORE;
}

/*
 * Broadwell:
 *
 * The INST_RETIRED.ALL period always needs to have lowest 6 bits cleared
 * (BDM55) and it must not use a period smaller than 100 (BDM11). We combine
 * the two to enforce a minimum period of 128 (the smallest value that has bits
 * 0-5 cleared and >= 100).
 *
 * Because of how the code in x86_perf_event_set_period() works, the truncation
 * of the lower 6 bits is 'harmless' as we'll occasionally add a longer period
 * to make up for the 'lost' events due to carrying the 'error' in period_left.
 *
 * Therefore the effective (average) period matches the requested period,
 * despite coarser hardware granularity.
 */
static void bdw_limit_period(struct perf_event *event, s64 *left)
{
	if ((event->hw.config & INTEL_ARCH_EVENT_MASK) ==
			X86_CONFIG(.event=0xc0, .umask=0x01)) {
		if (*left < 128)
			*left = 128;
		*left &= ~0x3fULL;
	}
}

static void nhm_limit_period(struct perf_event *event, s64 *left)
{
	*left = max(*left, 32LL);
}

static void glc_limit_period(struct perf_event *event, s64 *left)
{
	if (event->attr.precise_ip == 3)
		*left = max(*left, 128LL);
}

PMU_FORMAT_ATTR(event,	"config:0-7"	);
PMU_FORMAT_ATTR(umask,	"config:8-15"	);
PMU_FORMAT_ATTR(edge,	"config:18"	);
PMU_FORMAT_ATTR(pc,	"config:19"	);
PMU_FORMAT_ATTR(any,	"config:21"	); /* v3 + */
PMU_FORMAT_ATTR(inv,	"config:23"	);
PMU_FORMAT_ATTR(cmask,	"config:24-31"	);
PMU_FORMAT_ATTR(in_tx,  "config:32");
PMU_FORMAT_ATTR(in_tx_cp, "config:33");

static struct attribute *intel_arch_formats_attr[] = {
	&format_attr_event.attr,
	&format_attr_umask.attr,
	&format_attr_edge.attr,
	&format_attr_pc.attr,
	&format_attr_inv.attr,
	&format_attr_cmask.attr,
	NULL,
};

ssize_t intel_event_sysfs_show(char *page, u64 config)
{
	u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT);

	return x86_event_sysfs_show(page, config, event);
}

static struct intel_shared_regs *allocate_shared_regs(int cpu)
{
	struct intel_shared_regs *regs;
	int i;

	regs = kzalloc_node(sizeof(struct intel_shared_regs),
			    GFP_KERNEL, cpu_to_node(cpu));
	if (regs) {
		/*
		 * initialize the locks to keep lockdep happy
		 */
		for (i = 0; i < EXTRA_REG_MAX; i++)
			raw_spin_lock_init(&regs->regs[i].lock);

		regs->core_id = -1;
	}
	return regs;
}

static struct intel_excl_cntrs *allocate_excl_cntrs(int cpu)
{
	struct intel_excl_cntrs *c;

	c = kzalloc_node(sizeof(struct intel_excl_cntrs),
			 GFP_KERNEL, cpu_to_node(cpu));
	if (c) {
		raw_spin_lock_init(&c->lock);
		c->core_id = -1;
	}
	return c;
}


int intel_cpuc_prepare(struct cpu_hw_events *cpuc, int cpu)
{
	cpuc->pebs_record_size = x86_pmu.pebs_record_size;

	if (is_hybrid() || x86_pmu.extra_regs || x86_pmu.lbr_sel_map) {
		cpuc->shared_regs = allocate_shared_regs(cpu);
		if (!cpuc->shared_regs)
			goto err;
	}

	if (x86_pmu.flags & (PMU_FL_EXCL_CNTRS | PMU_FL_TFA)) {
		size_t sz = X86_PMC_IDX_MAX * sizeof(struct event_constraint);

		cpuc->constraint_list = kzalloc_node(sz, GFP_KERNEL, cpu_to_node(cpu));
		if (!cpuc->constraint_list)
			goto err_shared_regs;
	}

	if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
		cpuc->excl_cntrs = allocate_excl_cntrs(cpu);
		if (!cpuc->excl_cntrs)
			goto err_constraint_list;

		cpuc->excl_thread_id = 0;
	}

	return 0;

err_constraint_list:
	kfree(cpuc->constraint_list);
	cpuc->constraint_list = NULL;

err_shared_regs:
	kfree(cpuc->shared_regs);
	cpuc->shared_regs = NULL;

err:
	return -ENOMEM;
}

static int intel_pmu_cpu_prepare(int cpu)
{
	return intel_cpuc_prepare(&per_cpu(cpu_hw_events, cpu), cpu);
}

static void flip_smm_bit(void *data)
{
	unsigned long set = *(unsigned long *)data;

	if (set > 0) {
		msr_set_bit(MSR_IA32_DEBUGCTLMSR,
			    DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
	} else {
		msr_clear_bit(MSR_IA32_DEBUGCTLMSR,
			      DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
	}
}

static void intel_pmu_check_num_counters(int *num_counters,
					 int *num_counters_fixed,
					 u64 *intel_ctrl, u64 fixed_mask);

static void intel_pmu_check_event_constraints(struct event_constraint *event_constraints,
					      int num_counters,
					      int num_counters_fixed,
					      u64 intel_ctrl);

static void intel_pmu_check_extra_regs(struct extra_reg *extra_regs);

static inline bool intel_pmu_broken_perf_cap(void)
{
	/* The Perf Metric (Bit 15) is always cleared */
	if ((boot_cpu_data.x86_model == INTEL_FAM6_METEORLAKE) ||
	    (boot_cpu_data.x86_model == INTEL_FAM6_METEORLAKE_L))
		return true;

	return false;
}

static void update_pmu_cap(struct x86_hybrid_pmu *pmu)
{
	unsigned int sub_bitmaps = cpuid_eax(ARCH_PERFMON_EXT_LEAF);
	unsigned int eax, ebx, ecx, edx;

	if (sub_bitmaps & ARCH_PERFMON_NUM_COUNTER_LEAF_BIT) {
		cpuid_count(ARCH_PERFMON_EXT_LEAF, ARCH_PERFMON_NUM_COUNTER_LEAF,
			    &eax, &ebx, &ecx, &edx);
		pmu->num_counters = fls(eax);
		pmu->num_counters_fixed = fls(ebx);
	}


	if (!intel_pmu_broken_perf_cap()) {
		/* Perf Metric (Bit 15) and PEBS via PT (Bit 16) are hybrid enumeration */
		rdmsrl(MSR_IA32_PERF_CAPABILITIES, pmu->intel_cap.capabilities);
	}
}

static void intel_pmu_check_hybrid_pmus(struct x86_hybrid_pmu *pmu)
{
	intel_pmu_check_num_counters(&pmu->num_counters, &pmu->num_counters_fixed,
				     &pmu->intel_ctrl, (1ULL << pmu->num_counters_fixed) - 1);
	pmu->max_pebs_events = min_t(unsigned, MAX_PEBS_EVENTS, pmu->num_counters);
	pmu->unconstrained = (struct event_constraint)
			     __EVENT_CONSTRAINT(0, (1ULL << pmu->num_counters) - 1,
						0, pmu->num_counters, 0, 0);

	if (pmu->intel_cap.perf_metrics)
		pmu->intel_ctrl |= 1ULL << GLOBAL_CTRL_EN_PERF_METRICS;
	else
		pmu->intel_ctrl &= ~(1ULL << GLOBAL_CTRL_EN_PERF_METRICS);

	if (pmu->intel_cap.pebs_output_pt_available)
		pmu->pmu.capabilities |= PERF_PMU_CAP_AUX_OUTPUT;
	else
		pmu->pmu.capabilities &= ~PERF_PMU_CAP_AUX_OUTPUT;

	intel_pmu_check_event_constraints(pmu->event_constraints,
					  pmu->num_counters,
					  pmu->num_counters_fixed,
					  pmu->intel_ctrl);

	intel_pmu_check_extra_regs(pmu->extra_regs);
}

static struct x86_hybrid_pmu *find_hybrid_pmu_for_cpu(void)
{
	u8 cpu_type = get_this_hybrid_cpu_type();
	int i;

	/*
	 * This is running on a CPU model that is known to have hybrid
	 * configurations. But the CPU told us it is not hybrid, shame
	 * on it. There should be a fixup function provided for these
	 * troublesome CPUs (->get_hybrid_cpu_type).
	 */
	if (cpu_type == HYBRID_INTEL_NONE) {
		if (x86_pmu.get_hybrid_cpu_type)
			cpu_type = x86_pmu.get_hybrid_cpu_type();
		else
			return NULL;
	}

	/*
	 * This essentially just maps between the 'hybrid_cpu_type'
	 * and 'hybrid_pmu_type' enums:
	 */
	for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
		enum hybrid_pmu_type pmu_type = x86_pmu.hybrid_pmu[i].pmu_type;

		if (cpu_type == HYBRID_INTEL_CORE &&
		    pmu_type == hybrid_big)
			return &x86_pmu.hybrid_pmu[i];
		if (cpu_type == HYBRID_INTEL_ATOM &&
		    pmu_type == hybrid_small)
			return &x86_pmu.hybrid_pmu[i];
	}

	return NULL;
}

static bool init_hybrid_pmu(int cpu)
{
	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
	struct x86_hybrid_pmu *pmu = find_hybrid_pmu_for_cpu();

	if (WARN_ON_ONCE(!pmu || (pmu->pmu.type == -1))) {
		cpuc->pmu = NULL;
		return false;
	}

	/* Only check and dump the PMU information for the first CPU */
	if (!cpumask_empty(&pmu->supported_cpus))
		goto end;

	if (this_cpu_has(X86_FEATURE_ARCH_PERFMON_EXT))
		update_pmu_cap(pmu);

	intel_pmu_check_hybrid_pmus(pmu);

	if (!check_hw_exists(&pmu->pmu, pmu->num_counters, pmu->num_counters_fixed))
		return false;

	pr_info("%s PMU driver: ", pmu->name);

	if (pmu->intel_cap.pebs_output_pt_available)
		pr_cont("PEBS-via-PT ");

	pr_cont("\n");

	x86_pmu_show_pmu_cap(pmu->num_counters, pmu->num_counters_fixed,
			     pmu->intel_ctrl);

end:
	cpumask_set_cpu(cpu, &pmu->supported_cpus);
	cpuc->pmu = &pmu->pmu;

	return true;
}

static void intel_pmu_cpu_starting(int cpu)
{
	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
	int core_id = topology_core_id(cpu);
	int i;

	if (is_hybrid() && !init_hybrid_pmu(cpu))
		return;

	init_debug_store_on_cpu(cpu);
	/*
	 * Deal with CPUs that don't clear their LBRs on power-up.
	 */
	intel_pmu_lbr_reset();

	cpuc->lbr_sel = NULL;

	if (x86_pmu.flags & PMU_FL_TFA) {
		WARN_ON_ONCE(cpuc->tfa_shadow);
		cpuc->tfa_shadow = ~0ULL;
		intel_set_tfa(cpuc, false);
	}

	if (x86_pmu.version > 1)
		flip_smm_bit(&x86_pmu.attr_freeze_on_smi);

	/*
	 * Disable perf metrics if any added CPU doesn't support it.
	 *
	 * Turn off the check for a hybrid architecture, because the
	 * architecture MSR, MSR_IA32_PERF_CAPABILITIES, only indicate
	 * the architecture features. The perf metrics is a model-specific
	 * feature for now. The corresponding bit should always be 0 on
	 * a hybrid platform, e.g., Alder Lake.
	 */
	if (!is_hybrid() && x86_pmu.intel_cap.perf_metrics) {
		union perf_capabilities perf_cap;

		rdmsrl(MSR_IA32_PERF_CAPABILITIES, perf_cap.capabilities);
		if (!perf_cap.perf_metrics) {
			x86_pmu.intel_cap.perf_metrics = 0;
			x86_pmu.intel_ctrl &= ~(1ULL << GLOBAL_CTRL_EN_PERF_METRICS);
		}
	}

	if (!cpuc->shared_regs)
		return;

	if (!(x86_pmu.flags & PMU_FL_NO_HT_SHARING)) {
		for_each_cpu(i, topology_sibling_cpumask(cpu)) {
			struct intel_shared_regs *pc;

			pc = per_cpu(cpu_hw_events, i).shared_regs;
			if (pc && pc->core_id == core_id) {
				cpuc->kfree_on_online[0] = cpuc->shared_regs;
				cpuc->shared_regs = pc;
				break;
			}
		}
		cpuc->shared_regs->core_id = core_id;
		cpuc->shared_regs->refcnt++;
	}

	if (x86_pmu.lbr_sel_map)
		cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR];

	if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
		for_each_cpu(i, topology_sibling_cpumask(cpu)) {
			struct cpu_hw_events *sibling;
			struct intel_excl_cntrs *c;

			sibling = &per_cpu(cpu_hw_events, i);
			c = sibling->excl_cntrs;
			if (c && c->core_id == core_id) {
				cpuc->kfree_on_online[1] = cpuc->excl_cntrs;
				cpuc->excl_cntrs = c;
				if (!sibling->excl_thread_id)
					cpuc->excl_thread_id = 1;
				break;
			}
		}
		cpuc->excl_cntrs->core_id = core_id;
		cpuc->excl_cntrs->refcnt++;
	}
}

static void free_excl_cntrs(struct cpu_hw_events *cpuc)
{
	struct intel_excl_cntrs *c;

	c = cpuc->excl_cntrs;
	if (c) {
		if (c->core_id == -1 || --c->refcnt == 0)
			kfree(c);
		cpuc->excl_cntrs = NULL;
	}

	kfree(cpuc->constraint_list);
	cpuc->constraint_list = NULL;
}

static void intel_pmu_cpu_dying(int cpu)
{
	fini_debug_store_on_cpu(cpu);
}

void intel_cpuc_finish(struct cpu_hw_events *cpuc)
{
	struct intel_shared_regs *pc;

	pc = cpuc->shared_regs;
	if (pc) {
		if (pc->core_id == -1 || --pc->refcnt == 0)
			kfree(pc);
		cpuc->shared_regs = NULL;
	}

	free_excl_cntrs(cpuc);
}

static void intel_pmu_cpu_dead(int cpu)
{
	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);

	intel_cpuc_finish(cpuc);

	if (is_hybrid() && cpuc->pmu)
		cpumask_clear_cpu(cpu, &hybrid_pmu(cpuc->pmu)->supported_cpus);
}

static void intel_pmu_sched_task(struct perf_event_pmu_context *pmu_ctx,
				 bool sched_in)
{
	intel_pmu_pebs_sched_task(pmu_ctx, sched_in);
	intel_pmu_lbr_sched_task(pmu_ctx, sched_in);
}

static void intel_pmu_swap_task_ctx(struct perf_event_pmu_context *prev_epc,
				    struct perf_event_pmu_context *next_epc)
{
	intel_pmu_lbr_swap_task_ctx(prev_epc, next_epc);
}

static int intel_pmu_check_period(struct perf_event *event, u64 value)
{
	return intel_pmu_has_bts_period(event, value) ? -EINVAL : 0;
}

static void intel_aux_output_init(void)
{
	/* Refer also intel_pmu_aux_output_match() */
	if (x86_pmu.intel_cap.pebs_output_pt_available)
		x86_pmu.assign = intel_pmu_assign_event;
}

static int intel_pmu_aux_output_match(struct perf_event *event)
{
	/* intel_pmu_assign_event() is needed, refer intel_aux_output_init() */
	if (!x86_pmu.intel_cap.pebs_output_pt_available)
		return 0;

	return is_intel_pt_event(event);
}

static void intel_pmu_filter(struct pmu *pmu, int cpu, bool *ret)
{
	struct x86_hybrid_pmu *hpmu = hybrid_pmu(pmu);

	*ret = !cpumask_test_cpu(cpu, &hpmu->supported_cpus);
}

PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63");

PMU_FORMAT_ATTR(ldlat, "config1:0-15");

PMU_FORMAT_ATTR(frontend, "config1:0-23");

PMU_FORMAT_ATTR(snoop_rsp, "config1:0-63");

static struct attribute *intel_arch3_formats_attr[] = {
	&format_attr_event.attr,
	&format_attr_umask.attr,
	&format_attr_edge.attr,
	&format_attr_pc.attr,
	&format_attr_any.attr,
	&format_attr_inv.attr,
	&format_attr_cmask.attr,
	NULL,
};

static struct attribute *hsw_format_attr[] = {
	&format_attr_in_tx.attr,
	&format_attr_in_tx_cp.attr,
	&format_attr_offcore_rsp.attr,
	&format_attr_ldlat.attr,
	NULL
};

static struct attribute *nhm_format_attr[] = {
	&format_attr_offcore_rsp.attr,
	&format_attr_ldlat.attr,
	NULL
};

static struct attribute *slm_format_attr[] = {
	&format_attr_offcore_rsp.attr,
	NULL
};

static struct attribute *cmt_format_attr[] = {
	&format_attr_offcore_rsp.attr,
	&format_attr_ldlat.attr,
	&format_attr_snoop_rsp.attr,
	NULL
};

static struct attribute *skl_format_attr[] = {
	&format_attr_frontend.attr,
	NULL,
};

static __initconst const struct x86_pmu core_pmu = {
	.name			= "core",
	.handle_irq		= x86_pmu_handle_irq,
	.disable_all		= x86_pmu_disable_all,
	.enable_all		= core_pmu_enable_all,
	.enable			= core_pmu_enable_event,
	.disable		= x86_pmu_disable_event,
	.hw_config		= core_pmu_hw_config,
	.schedule_events	= x86_schedule_events,
	.eventsel		= MSR_ARCH_PERFMON_EVENTSEL0,
	.perfctr		= MSR_ARCH_PERFMON_PERFCTR0,
	.event_map		= intel_pmu_event_map,
	.max_events		= ARRAY_SIZE(intel_perfmon_event_map),
	.apic			= 1,
	.large_pebs_flags	= LARGE_PEBS_FLAGS,

	/*
	 * Intel PMCs cannot be accessed sanely above 32-bit width,
	 * so we install an artificial 1<<31 period regardless of
	 * the generic event period:
	 */
	.max_period		= (1ULL<<31) - 1,
	.get_event_constraints	= intel_get_event_constraints,
	.put_event_constraints	= intel_put_event_constraints,
	.event_constraints	= intel_core_event_constraints,
	.guest_get_msrs		= core_guest_get_msrs,
	.format_attrs		= intel_arch_formats_attr,
	.events_sysfs_show	= intel_event_sysfs_show,

	/*
	 * Virtual (or funny metal) CPU can define x86_pmu.extra_regs
	 * together with PMU version 1 and thus be using core_pmu with
	 * shared_regs. We need following callbacks here to allocate
	 * it properly.
	 */
	.cpu_prepare		= intel_pmu_cpu_prepare,
	.cpu_starting		= intel_pmu_cpu_starting,
	.cpu_dying		= intel_pmu_cpu_dying,
	.cpu_dead		= intel_pmu_cpu_dead,

	.check_period		= intel_pmu_check_period,

	.lbr_reset		= intel_pmu_lbr_reset_64,
	.lbr_read		= intel_pmu_lbr_read_64,
	.lbr_save		= intel_pmu_lbr_save,
	.lbr_restore		= intel_pmu_lbr_restore,
};

static __initconst const struct x86_pmu intel_pmu = {
	.name			= "Intel",
	.handle_irq		= intel_pmu_handle_irq,
	.disable_all		= intel_pmu_disable_all,
	.enable_all		= intel_pmu_enable_all,
	.enable			= intel_pmu_enable_event,
	.disable		= intel_pmu_disable_event,
	.add			= intel_pmu_add_event,
	.del			= intel_pmu_del_event,
	.read			= intel_pmu_read_event,
	.set_period		= intel_pmu_set_period,
	.update			= intel_pmu_update,
	.hw_config		= intel_pmu_hw_config,
	.schedule_events	= x86_schedule_events,
	.eventsel		= MSR_ARCH_PERFMON_EVENTSEL0,
	.perfctr		= MSR_ARCH_PERFMON_PERFCTR0,
	.event_map		= intel_pmu_event_map,
	.max_events		= ARRAY_SIZE(intel_perfmon_event_map),
	.apic			= 1,
	.large_pebs_flags	= LARGE_PEBS_FLAGS,
	/*
	 * Intel PMCs cannot be accessed sanely above 32 bit width,
	 * so we install an artificial 1<<31 period regardless of
	 * the generic event period:
	 */
	.max_period		= (1ULL << 31) - 1,
	.get_event_constraints	= intel_get_event_constraints,
	.put_event_constraints	= intel_put_event_constraints,
	.pebs_aliases		= intel_pebs_aliases_core2,

	.format_attrs		= intel_arch3_formats_attr,
	.events_sysfs_show	= intel_event_sysfs_show,

	.cpu_prepare		= intel_pmu_cpu_prepare,
	.cpu_starting		= intel_pmu_cpu_starting,
	.cpu_dying		= intel_pmu_cpu_dying,
	.cpu_dead		= intel_pmu_cpu_dead,

	.guest_get_msrs		= intel_guest_get_msrs,
	.sched_task		= intel_pmu_sched_task,
	.swap_task_ctx		= intel_pmu_swap_task_ctx,

	.check_period		= intel_pmu_check_period,

	.aux_output_match	= intel_pmu_aux_output_match,

	.lbr_reset		= intel_pmu_lbr_reset_64,
	.lbr_read		= intel_pmu_lbr_read_64,
	.lbr_save		= intel_pmu_lbr_save,
	.lbr_restore		= intel_pmu_lbr_restore,

	/*
	 * SMM has access to all 4 rings and while traditionally SMM code only
	 * ran in CPL0, 2021-era firmware is starting to make use of CPL3 in SMM.
	 *
	 * Since the EVENTSEL.{USR,OS} CPL filtering makes no distinction
	 * between SMM or not, this results in what should be pure userspace
	 * counters including SMM data.
	 *
	 * This is a clear privilege issue, therefore globally disable
	 * counting SMM by default.
	 */
	.attr_freeze_on_smi	= 1,
};

static __init void intel_clovertown_quirk(void)
{
	/*
	 * PEBS is unreliable due to:
	 *
	 *   AJ67  - PEBS may experience CPL leaks
	 *   AJ68  - PEBS PMI may be delayed by one event
	 *   AJ69  - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
	 *   AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
	 *
	 * AJ67 could be worked around by restricting the OS/USR flags.
	 * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
	 *
	 * AJ106 could possibly be worked around by not allowing LBR
	 *       usage from PEBS, including the fixup.
	 * AJ68  could possibly be worked around by always programming
	 *	 a pebs_event_reset[0] value and coping with the lost events.
	 *
	 * But taken together it might just make sense to not enable PEBS on
	 * these chips.
	 */
	pr_warn("PEBS disabled due to CPU errata\n");
	x86_pmu.pebs = 0;
	x86_pmu.pebs_constraints = NULL;
}

static const struct x86_cpu_desc isolation_ucodes[] = {
	INTEL_CPU_DESC(INTEL_FAM6_HASWELL,		 3, 0x0000001f),
	INTEL_CPU_DESC(INTEL_FAM6_HASWELL_L,		 1, 0x0000001e),
	INTEL_CPU_DESC(INTEL_FAM6_HASWELL_G,		 1, 0x00000015),
	INTEL_CPU_DESC(INTEL_FAM6_HASWELL_X,		 2, 0x00000037),
	INTEL_CPU_DESC(INTEL_FAM6_HASWELL_X,		 4, 0x0000000a),
	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL,		 4, 0x00000023),
	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_G,		 1, 0x00000014),
	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,		 2, 0x00000010),
	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,		 3, 0x07000009),
	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,		 4, 0x0f000009),
	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,		 5, 0x0e000002),
	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_X,		 1, 0x0b000014),
	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,		 3, 0x00000021),
	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,		 4, 0x00000000),
	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,		 5, 0x00000000),
	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,		 6, 0x00000000),
	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,		 7, 0x00000000),
	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,		11, 0x00000000),
	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_L,		 3, 0x0000007c),
	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE,		 3, 0x0000007c),
	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,		 9, 0x0000004e),
	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,		 9, 0x0000004e),
	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,		10, 0x0000004e),
	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,		11, 0x0000004e),
	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,		12, 0x0000004e),
	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,		10, 0x0000004e),
	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,		11, 0x0000004e),
	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,		12, 0x0000004e),
	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,		13, 0x0000004e),
	{}
};

static void intel_check_pebs_isolation(void)
{
	x86_pmu.pebs_no_isolation = !x86_cpu_has_min_microcode_rev(isolation_ucodes);
}

static __init void intel_pebs_isolation_quirk(void)
{
	WARN_ON_ONCE(x86_pmu.check_microcode);
	x86_pmu.check_microcode = intel_check_pebs_isolation;
	intel_check_pebs_isolation();
}

static const struct x86_cpu_desc pebs_ucodes[] = {
	INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE,		7, 0x00000028),
	INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE_X,	6, 0x00000618),
	INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE_X,	7, 0x0000070c),
	{}
};

static bool intel_snb_pebs_broken(void)
{
	return !x86_cpu_has_min_microcode_rev(pebs_ucodes);
}

static void intel_snb_check_microcode(void)
{
	if (intel_snb_pebs_broken() == x86_pmu.pebs_broken)
		return;

	/*
	 * Serialized by the microcode lock..
	 */
	if (x86_pmu.pebs_broken) {
		pr_info("PEBS enabled due to microcode update\n");
		x86_pmu.pebs_broken = 0;
	} else {
		pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n");
		x86_pmu.pebs_broken = 1;
	}
}

static bool is_lbr_from(unsigned long msr)
{
	unsigned long lbr_from_nr = x86_pmu.lbr_from + x86_pmu.lbr_nr;

	return x86_pmu.lbr_from <= msr && msr < lbr_from_nr;
}

/*
 * Under certain circumstances, access certain MSR may cause #GP.
 * The function tests if the input MSR can be safely accessed.
 */
static bool check_msr(unsigned long msr, u64 mask)
{
	u64 val_old, val_new, val_tmp;

	/*
	 * Disable the check for real HW, so we don't
	 * mess with potentially enabled registers:
	 */
	if (!boot_cpu_has(X86_FEATURE_HYPERVISOR))
		return true;

	/*
	 * Read the current value, change it and read it back to see if it
	 * matches, this is needed to detect certain hardware emulators
	 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
	 */
	if (rdmsrl_safe(msr, &val_old))
		return false;

	/*
	 * Only change the bits which can be updated by wrmsrl.
	 */
	val_tmp = val_old ^ mask;

	if (is_lbr_from(msr))
		val_tmp = lbr_from_signext_quirk_wr(val_tmp);

	if (wrmsrl_safe(msr, val_tmp) ||
	    rdmsrl_safe(msr, &val_new))
		return false;

	/*
	 * Quirk only affects validation in wrmsr(), so wrmsrl()'s value
	 * should equal rdmsrl()'s even with the quirk.
	 */
	if (val_new != val_tmp)
		return false;

	if (is_lbr_from(msr))
		val_old = lbr_from_signext_quirk_wr(val_old);

	/* Here it's sure that the MSR can be safely accessed.
	 * Restore the old value and return.
	 */
	wrmsrl(msr, val_old);

	return true;
}

static __init void intel_sandybridge_quirk(void)
{
	x86_pmu.check_microcode = intel_snb_check_microcode;
	cpus_read_lock();
	intel_snb_check_microcode();
	cpus_read_unlock();
}

static const struct { int id; char *name; } intel_arch_events_map[] __initconst = {
	{ PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" },
	{ PERF_COUNT_HW_INSTRUCTIONS, "instructions" },
	{ PERF_COUNT_HW_BUS_CYCLES, "bus cycles" },
	{ PERF_COUNT_HW_CACHE_REFERENCES, "cache references" },
	{ PERF_COUNT_HW_CACHE_MISSES, "cache misses" },
	{ PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" },
	{ PERF_COUNT_HW_BRANCH_MISSES, "branch misses" },
};

static __init void intel_arch_events_quirk(void)
{
	int bit;

	/* disable event that reported as not present by cpuid */
	for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) {
		intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0;
		pr_warn("CPUID marked event: \'%s\' unavailable\n",
			intel_arch_events_map[bit].name);
	}
}

static __init void intel_nehalem_quirk(void)
{
	union cpuid10_ebx ebx;

	ebx.full = x86_pmu.events_maskl;
	if (ebx.split.no_branch_misses_retired) {
		/*
		 * Erratum AAJ80 detected, we work it around by using
		 * the BR_MISP_EXEC.ANY event. This will over-count
		 * branch-misses, but it's still much better than the
		 * architectural event which is often completely bogus:
		 */
		intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
		ebx.split.no_branch_misses_retired = 0;
		x86_pmu.events_maskl = ebx.full;
		pr_info("CPU erratum AAJ80 worked around\n");
	}
}

/*
 * enable software workaround for errata:
 * SNB: BJ122
 * IVB: BV98
 * HSW: HSD29
 *
 * Only needed when HT is enabled. However detecting
 * if HT is enabled is difficult (model specific). So instead,
 * we enable the workaround in the early boot, and verify if
 * it is needed in a later initcall phase once we have valid
 * topology information to check if HT is actually enabled
 */
static __init void intel_ht_bug(void)
{
	x86_pmu.flags |= PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED;

	x86_pmu.start_scheduling = intel_start_scheduling;
	x86_pmu.commit_scheduling = intel_commit_scheduling;
	x86_pmu.stop_scheduling = intel_stop_scheduling;
}

EVENT_ATTR_STR(mem-loads,	mem_ld_hsw,	"event=0xcd,umask=0x1,ldlat=3");
EVENT_ATTR_STR(mem-stores,	mem_st_hsw,	"event=0xd0,umask=0x82")

/* Haswell special events */
EVENT_ATTR_STR(tx-start,	tx_start,	"event=0xc9,umask=0x1");
EVENT_ATTR_STR(tx-commit,	tx_commit,	"event=0xc9,umask=0x2");
EVENT_ATTR_STR(tx-abort,	tx_abort,	"event=0xc9,umask=0x4");
EVENT_ATTR_STR(tx-capacity,	tx_capacity,	"event=0x54,umask=0x2");
EVENT_ATTR_STR(tx-conflict,	tx_conflict,	"event=0x54,umask=0x1");
EVENT_ATTR_STR(el-start,	el_start,	"event=0xc8,umask=0x1");
EVENT_ATTR_STR(el-commit,	el_commit,	"event=0xc8,umask=0x2");
EVENT_ATTR_STR(el-abort,	el_abort,	"event=0xc8,umask=0x4");
EVENT_ATTR_STR(el-capacity,	el_capacity,	"event=0x54,umask=0x2");
EVENT_ATTR_STR(el-conflict,	el_conflict,	"event=0x54,umask=0x1");
EVENT_ATTR_STR(cycles-t,	cycles_t,	"event=0x3c,in_tx=1");
EVENT_ATTR_STR(cycles-ct,	cycles_ct,	"event=0x3c,in_tx=1,in_tx_cp=1");

static struct attribute *hsw_events_attrs[] = {
	EVENT_PTR(td_slots_issued),
	EVENT_PTR(td_slots_retired),
	EVENT_PTR(td_fetch_bubbles),
	EVENT_PTR(td_total_slots),
	EVENT_PTR(td_total_slots_scale),
	EVENT_PTR(td_recovery_bubbles),
	EVENT_PTR(td_recovery_bubbles_scale),
	NULL
};

static struct attribute *hsw_mem_events_attrs[] = {
	EVENT_PTR(mem_ld_hsw),
	EVENT_PTR(mem_st_hsw),
	NULL,
};

static struct attribute *hsw_tsx_events_attrs[] = {
	EVENT_PTR(tx_start),
	EVENT_PTR(tx_commit),
	EVENT_PTR(tx_abort),
	EVENT_PTR(tx_capacity),
	EVENT_PTR(tx_conflict),
	EVENT_PTR(el_start),
	EVENT_PTR(el_commit),
	EVENT_PTR(el_abort),
	EVENT_PTR(el_capacity),
	EVENT_PTR(el_conflict),
	EVENT_PTR(cycles_t),
	EVENT_PTR(cycles_ct),
	NULL
};

EVENT_ATTR_STR(tx-capacity-read,  tx_capacity_read,  "event=0x54,umask=0x80");
EVENT_ATTR_STR(tx-capacity-write, tx_capacity_write, "event=0x54,umask=0x2");
EVENT_ATTR_STR(el-capacity-read,  el_capacity_read,  "event=0x54,umask=0x80");
EVENT_ATTR_STR(el-capacity-write, el_capacity_write, "event=0x54,umask=0x2");

static struct attribute *icl_events_attrs[] = {
	EVENT_PTR(mem_ld_hsw),
	EVENT_PTR(mem_st_hsw),
	NULL,
};

static struct attribute *icl_td_events_attrs[] = {
	EVENT_PTR(slots),
	EVENT_PTR(td_retiring),
	EVENT_PTR(td_bad_spec),
	EVENT_PTR(td_fe_bound),
	EVENT_PTR(td_be_bound),
	NULL,
};

static struct attribute *icl_tsx_events_attrs[] = {
	EVENT_PTR(tx_start),
	EVENT_PTR(tx_abort),
	EVENT_PTR(tx_commit),
	EVENT_PTR(tx_capacity_read),
	EVENT_PTR(tx_capacity_write),
	EVENT_PTR(tx_conflict),
	EVENT_PTR(el_start),
	EVENT_PTR(el_abort),
	EVENT_PTR(el_commit),
	EVENT_PTR(el_capacity_read),
	EVENT_PTR(el_capacity_write),
	EVENT_PTR(el_conflict),
	EVENT_PTR(cycles_t),
	EVENT_PTR(cycles_ct),
	NULL,
};


EVENT_ATTR_STR(mem-stores,	mem_st_spr,	"event=0xcd,umask=0x2");
EVENT_ATTR_STR(mem-loads-aux,	mem_ld_aux,	"event=0x03,umask=0x82");

static struct attribute *glc_events_attrs[] = {
	EVENT_PTR(mem_ld_hsw),
	EVENT_PTR(mem_st_spr),
	EVENT_PTR(mem_ld_aux),
	NULL,
};

static struct attribute *glc_td_events_attrs[] = {
	EVENT_PTR(slots),
	EVENT_PTR(td_retiring),
	EVENT_PTR(td_bad_spec),
	EVENT_PTR(td_fe_bound),
	EVENT_PTR(td_be_bound),
	EVENT_PTR(td_heavy_ops),
	EVENT_PTR(td_br_mispredict),
	EVENT_PTR(td_fetch_lat),
	EVENT_PTR(td_mem_bound),
	NULL,
};

static struct attribute *glc_tsx_events_attrs[] = {
	EVENT_PTR(tx_start),
	EVENT_PTR(tx_abort),
	EVENT_PTR(tx_commit),
	EVENT_PTR(tx_capacity_read),
	EVENT_PTR(tx_capacity_write),
	EVENT_PTR(tx_conflict),
	EVENT_PTR(cycles_t),
	EVENT_PTR(cycles_ct),
	NULL,
};

static ssize_t freeze_on_smi_show(struct device *cdev,
				  struct device_attribute *attr,
				  char *buf)
{
	return sprintf(buf, "%lu\n", x86_pmu.attr_freeze_on_smi);
}

static DEFINE_MUTEX(freeze_on_smi_mutex);

static ssize_t freeze_on_smi_store(struct device *cdev,
				   struct device_attribute *attr,
				   const char *buf, size_t count)
{
	unsigned long val;
	ssize_t ret;

	ret = kstrtoul(buf, 0, &val);
	if (ret)
		return ret;

	if (val > 1)
		return -EINVAL;

	mutex_lock(&freeze_on_smi_mutex);

	if (x86_pmu.attr_freeze_on_smi == val)
		goto done;

	x86_pmu.attr_freeze_on_smi = val;

	cpus_read_lock();
	on_each_cpu(flip_smm_bit, &val, 1);
	cpus_read_unlock();
done:
	mutex_unlock(&freeze_on_smi_mutex);

	return count;
}

static void update_tfa_sched(void *ignored)
{
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);

	/*
	 * check if PMC3 is used
	 * and if so force schedule out for all event types all contexts
	 */
	if (test_bit(3, cpuc->active_mask))
		perf_pmu_resched(x86_get_pmu(smp_processor_id()));
}

static ssize_t show_sysctl_tfa(struct device *cdev,
			      struct device_attribute *attr,
			      char *buf)
{
	return snprintf(buf, 40, "%d\n", allow_tsx_force_abort);
}

static ssize_t set_sysctl_tfa(struct device *cdev,
			      struct device_attribute *attr,
			      const char *buf, size_t count)
{
	bool val;
	ssize_t ret;

	ret = kstrtobool(buf, &val);
	if (ret)
		return ret;

	/* no change */
	if (val == allow_tsx_force_abort)
		return count;

	allow_tsx_force_abort = val;

	cpus_read_lock();
	on_each_cpu(update_tfa_sched, NULL, 1);
	cpus_read_unlock();

	return count;
}


static DEVICE_ATTR_RW(freeze_on_smi);

static ssize_t branches_show(struct device *cdev,
			     struct device_attribute *attr,
			     char *buf)
{
	return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu.lbr_nr);
}

static DEVICE_ATTR_RO(branches);

static struct attribute *lbr_attrs[] = {
	&dev_attr_branches.attr,
	NULL
};

static char pmu_name_str[30];

static ssize_t pmu_name_show(struct device *cdev,
			     struct device_attribute *attr,
			     char *buf)
{
	return snprintf(buf, PAGE_SIZE, "%s\n", pmu_name_str);
}

static DEVICE_ATTR_RO(pmu_name);

static struct attribute *intel_pmu_caps_attrs[] = {
       &dev_attr_pmu_name.attr,
       NULL
};

static DEVICE_ATTR(allow_tsx_force_abort, 0644,
		   show_sysctl_tfa,
		   set_sysctl_tfa);

static struct attribute *intel_pmu_attrs[] = {
	&dev_attr_freeze_on_smi.attr,
	&dev_attr_allow_tsx_force_abort.attr,
	NULL,
};

static umode_t
tsx_is_visible(struct kobject *kobj, struct attribute *attr, int i)
{
	return boot_cpu_has(X86_FEATURE_RTM) ? attr->mode : 0;
}

static umode_t
pebs_is_visible(struct kobject *kobj, struct attribute *attr, int i)
{
	return x86_pmu.pebs ? attr->mode : 0;
}

static umode_t
mem_is_visible(struct kobject *kobj, struct attribute *attr, int i)
{
	if (attr == &event_attr_mem_ld_aux.attr.attr)
		return x86_pmu.flags & PMU_FL_MEM_LOADS_AUX ? attr->mode : 0;

	return pebs_is_visible(kobj, attr, i);
}

static umode_t
lbr_is_visible(struct kobject *kobj, struct attribute *attr, int i)
{
	return x86_pmu.lbr_nr ? attr->mode : 0;
}

static umode_t
exra_is_visible(struct kobject *kobj, struct attribute *attr, int i)
{
	return x86_pmu.version >= 2 ? attr->mode : 0;
}

static umode_t
default_is_visible(struct kobject *kobj, struct attribute *attr, int i)
{
	if (attr == &dev_attr_allow_tsx_force_abort.attr)
		return x86_pmu.flags & PMU_FL_TFA ? attr->mode : 0;

	return attr->mode;
}

static struct attribute_group group_events_td  = {
	.name = "events",
};

static struct attribute_group group_events_mem = {
	.name       = "events",
	.is_visible = mem_is_visible,
};

static struct attribute_group group_events_tsx = {
	.name       = "events",
	.is_visible = tsx_is_visible,
};

static struct attribute_group group_caps_gen = {
	.name  = "caps",
	.attrs = intel_pmu_caps_attrs,
};

static struct attribute_group group_caps_lbr = {
	.name       = "caps",
	.attrs	    = lbr_attrs,
	.is_visible = lbr_is_visible,
};

static struct attribute_group group_format_extra = {
	.name       = "format",
	.is_visible = exra_is_visible,
};

static struct attribute_group group_format_extra_skl = {
	.name       = "format",
	.is_visible = exra_is_visible,
};

static struct attribute_group group_default = {
	.attrs      = intel_pmu_attrs,
	.is_visible = default_is_visible,
};

static const struct attribute_group *attr_update[] = {
	&group_events_td,
	&group_events_mem,
	&group_events_tsx,
	&group_caps_gen,
	&group_caps_lbr,
	&group_format_extra,
	&group_format_extra_skl,
	&group_default,
	NULL,
};

EVENT_ATTR_STR_HYBRID(slots,                 slots_adl,        "event=0x00,umask=0x4",                       hybrid_big);
EVENT_ATTR_STR_HYBRID(topdown-retiring,      td_retiring_adl,  "event=0xc2,umask=0x0;event=0x00,umask=0x80", hybrid_big_small);
EVENT_ATTR_STR_HYBRID(topdown-bad-spec,      td_bad_spec_adl,  "event=0x73,umask=0x0;event=0x00,umask=0x81", hybrid_big_small);
EVENT_ATTR_STR_HYBRID(topdown-fe-bound,      td_fe_bound_adl,  "event=0x71,umask=0x0;event=0x00,umask=0x82", hybrid_big_small);
EVENT_ATTR_STR_HYBRID(topdown-be-bound,      td_be_bound_adl,  "event=0x74,umask=0x0;event=0x00,umask=0x83", hybrid_big_small);
EVENT_ATTR_STR_HYBRID(topdown-heavy-ops,     td_heavy_ops_adl, "event=0x00,umask=0x84",                      hybrid_big);
EVENT_ATTR_STR_HYBRID(topdown-br-mispredict, td_br_mis_adl,    "event=0x00,umask=0x85",                      hybrid_big);
EVENT_ATTR_STR_HYBRID(topdown-fetch-lat,     td_fetch_lat_adl, "event=0x00,umask=0x86",                      hybrid_big);
EVENT_ATTR_STR_HYBRID(topdown-mem-bound,     td_mem_bound_adl, "event=0x00,umask=0x87",                      hybrid_big);

static struct attribute *adl_hybrid_events_attrs[] = {
	EVENT_PTR(slots_adl),
	EVENT_PTR(td_retiring_adl),
	EVENT_PTR(td_bad_spec_adl),
	EVENT_PTR(td_fe_bound_adl),
	EVENT_PTR(td_be_bound_adl),
	EVENT_PTR(td_heavy_ops_adl),
	EVENT_PTR(td_br_mis_adl),
	EVENT_PTR(td_fetch_lat_adl),
	EVENT_PTR(td_mem_bound_adl),
	NULL,
};

/* Must be in IDX order */
EVENT_ATTR_STR_HYBRID(mem-loads,     mem_ld_adl,     "event=0xd0,umask=0x5,ldlat=3;event=0xcd,umask=0x1,ldlat=3", hybrid_big_small);
EVENT_ATTR_STR_HYBRID(mem-stores,    mem_st_adl,     "event=0xd0,umask=0x6;event=0xcd,umask=0x2",                 hybrid_big_small);
EVENT_ATTR_STR_HYBRID(mem-loads-aux, mem_ld_aux_adl, "event=0x03,umask=0x82",                                     hybrid_big);

static struct attribute *adl_hybrid_mem_attrs[] = {
	EVENT_PTR(mem_ld_adl),
	EVENT_PTR(mem_st_adl),
	EVENT_PTR(mem_ld_aux_adl),
	NULL,
};

static struct attribute *mtl_hybrid_mem_attrs[] = {
	EVENT_PTR(mem_ld_adl),
	EVENT_PTR(mem_st_adl),
	NULL
};

EVENT_ATTR_STR_HYBRID(tx-start,          tx_start_adl,          "event=0xc9,umask=0x1",          hybrid_big);
EVENT_ATTR_STR_HYBRID(tx-commit,         tx_commit_adl,         "event=0xc9,umask=0x2",          hybrid_big);
EVENT_ATTR_STR_HYBRID(tx-abort,          tx_abort_adl,          "event=0xc9,umask=0x4",          hybrid_big);
EVENT_ATTR_STR_HYBRID(tx-conflict,       tx_conflict_adl,       "event=0x54,umask=0x1",          hybrid_big);
EVENT_ATTR_STR_HYBRID(cycles-t,          cycles_t_adl,          "event=0x3c,in_tx=1",            hybrid_big);
EVENT_ATTR_STR_HYBRID(cycles-ct,         cycles_ct_adl,         "event=0x3c,in_tx=1,in_tx_cp=1", hybrid_big);
EVENT_ATTR_STR_HYBRID(tx-capacity-read,  tx_capacity_read_adl,  "event=0x54,umask=0x80",         hybrid_big);
EVENT_ATTR_STR_HYBRID(tx-capacity-write, tx_capacity_write_adl, "event=0x54,umask=0x2",          hybrid_big);

static struct attribute *adl_hybrid_tsx_attrs[] = {
	EVENT_PTR(tx_start_adl),
	EVENT_PTR(tx_abort_adl),
	EVENT_PTR(tx_commit_adl),
	EVENT_PTR(tx_capacity_read_adl),
	EVENT_PTR(tx_capacity_write_adl),
	EVENT_PTR(tx_conflict_adl),
	EVENT_PTR(cycles_t_adl),
	EVENT_PTR(cycles_ct_adl),
	NULL,
};

FORMAT_ATTR_HYBRID(in_tx,       hybrid_big);
FORMAT_ATTR_HYBRID(in_tx_cp,    hybrid_big);
FORMAT_ATTR_HYBRID(offcore_rsp, hybrid_big_small);
FORMAT_ATTR_HYBRID(ldlat,       hybrid_big_small);
FORMAT_ATTR_HYBRID(frontend,    hybrid_big);

#define ADL_HYBRID_RTM_FORMAT_ATTR	\
	FORMAT_HYBRID_PTR(in_tx),	\
	FORMAT_HYBRID_PTR(in_tx_cp)

#define ADL_HYBRID_FORMAT_ATTR		\
	FORMAT_HYBRID_PTR(offcore_rsp),	\
	FORMAT_HYBRID_PTR(ldlat),	\
	FORMAT_HYBRID_PTR(frontend)

static struct attribute *adl_hybrid_extra_attr_rtm[] = {
	ADL_HYBRID_RTM_FORMAT_ATTR,
	ADL_HYBRID_FORMAT_ATTR,
	NULL
};

static struct attribute *adl_hybrid_extra_attr[] = {
	ADL_HYBRID_FORMAT_ATTR,
	NULL
};

FORMAT_ATTR_HYBRID(snoop_rsp,	hybrid_small);

static struct attribute *mtl_hybrid_extra_attr_rtm[] = {
	ADL_HYBRID_RTM_FORMAT_ATTR,
	ADL_HYBRID_FORMAT_ATTR,
	FORMAT_HYBRID_PTR(snoop_rsp),
	NULL
};

static struct attribute *mtl_hybrid_extra_attr[] = {
	ADL_HYBRID_FORMAT_ATTR,
	FORMAT_HYBRID_PTR(snoop_rsp),
	NULL
};

static bool is_attr_for_this_pmu(struct kobject *kobj, struct attribute *attr)
{
	struct device *dev = kobj_to_dev(kobj);
	struct x86_hybrid_pmu *pmu =
		container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
	struct perf_pmu_events_hybrid_attr *pmu_attr =
		container_of(attr, struct perf_pmu_events_hybrid_attr, attr.attr);

	return pmu->pmu_type & pmu_attr->pmu_type;
}

static umode_t hybrid_events_is_visible(struct kobject *kobj,
					struct attribute *attr, int i)
{
	return is_attr_for_this_pmu(kobj, attr) ? attr->mode : 0;
}

static inline int hybrid_find_supported_cpu(struct x86_hybrid_pmu *pmu)
{
	int cpu = cpumask_first(&pmu->supported_cpus);

	return (cpu >= nr_cpu_ids) ? -1 : cpu;
}

static umode_t hybrid_tsx_is_visible(struct kobject *kobj,
				     struct attribute *attr, int i)
{
	struct device *dev = kobj_to_dev(kobj);
	struct x86_hybrid_pmu *pmu =
		 container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
	int cpu = hybrid_find_supported_cpu(pmu);

	return (cpu >= 0) && is_attr_for_this_pmu(kobj, attr) && cpu_has(&cpu_data(cpu), X86_FEATURE_RTM) ? attr->mode : 0;
}

static umode_t hybrid_format_is_visible(struct kobject *kobj,
					struct attribute *attr, int i)
{
	struct device *dev = kobj_to_dev(kobj);
	struct x86_hybrid_pmu *pmu =
		container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
	struct perf_pmu_format_hybrid_attr *pmu_attr =
		container_of(attr, struct perf_pmu_format_hybrid_attr, attr.attr);
	int cpu = hybrid_find_supported_cpu(pmu);

	return (cpu >= 0) && (pmu->pmu_type & pmu_attr->pmu_type) ? attr->mode : 0;
}

static struct attribute_group hybrid_group_events_td  = {
	.name		= "events",
	.is_visible	= hybrid_events_is_visible,
};

static struct attribute_group hybrid_group_events_mem = {
	.name		= "events",
	.is_visible	= hybrid_events_is_visible,
};

static struct attribute_group hybrid_group_events_tsx = {
	.name		= "events",
	.is_visible	= hybrid_tsx_is_visible,
};

static struct attribute_group hybrid_group_format_extra = {
	.name		= "format",
	.is_visible	= hybrid_format_is_visible,
};

static ssize_t intel_hybrid_get_attr_cpus(struct device *dev,
					  struct device_attribute *attr,
					  char *buf)
{
	struct x86_hybrid_pmu *pmu =
		container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);

	return cpumap_print_to_pagebuf(true, buf, &pmu->supported_cpus);
}

static DEVICE_ATTR(cpus, S_IRUGO, intel_hybrid_get_attr_cpus, NULL);
static struct attribute *intel_hybrid_cpus_attrs[] = {
	&dev_attr_cpus.attr,
	NULL,
};

static struct attribute_group hybrid_group_cpus = {
	.attrs		= intel_hybrid_cpus_attrs,
};

static const struct attribute_group *hybrid_attr_update[] = {
	&hybrid_group_events_td,
	&hybrid_group_events_mem,
	&hybrid_group_events_tsx,
	&group_caps_gen,
	&group_caps_lbr,
	&hybrid_group_format_extra,
	&group_default,
	&hybrid_group_cpus,
	NULL,
};

static struct attribute *empty_attrs;

static void intel_pmu_check_num_counters(int *num_counters,
					 int *num_counters_fixed,
					 u64 *intel_ctrl, u64 fixed_mask)
{
	if (*num_counters > INTEL_PMC_MAX_GENERIC) {
		WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
		     *num_counters, INTEL_PMC_MAX_GENERIC);
		*num_counters = INTEL_PMC_MAX_GENERIC;
	}
	*intel_ctrl = (1ULL << *num_counters) - 1;

	if (*num_counters_fixed > INTEL_PMC_MAX_FIXED) {
		WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
		     *num_counters_fixed, INTEL_PMC_MAX_FIXED);
		*num_counters_fixed = INTEL_PMC_MAX_FIXED;
	}

	*intel_ctrl |= fixed_mask << INTEL_PMC_IDX_FIXED;
}

static void intel_pmu_check_event_constraints(struct event_constraint *event_constraints,
					      int num_counters,
					      int num_counters_fixed,
					      u64 intel_ctrl)
{
	struct event_constraint *c;

	if (!event_constraints)
		return;

	/*
	 * event on fixed counter2 (REF_CYCLES) only works on this
	 * counter, so do not extend mask to generic counters
	 */
	for_each_event_constraint(c, event_constraints) {
		/*
		 * Don't extend the topdown slots and metrics
		 * events to the generic counters.
		 */
		if (c->idxmsk64 & INTEL_PMC_MSK_TOPDOWN) {
			/*
			 * Disable topdown slots and metrics events,
			 * if slots event is not in CPUID.
			 */
			if (!(INTEL_PMC_MSK_FIXED_SLOTS & intel_ctrl))
				c->idxmsk64 = 0;
			c->weight = hweight64(c->idxmsk64);
			continue;
		}

		if (c->cmask == FIXED_EVENT_FLAGS) {
			/* Disabled fixed counters which are not in CPUID */
			c->idxmsk64 &= intel_ctrl;

			/*
			 * Don't extend the pseudo-encoding to the
			 * generic counters
			 */
			if (!use_fixed_pseudo_encoding(c->code))
				c->idxmsk64 |= (1ULL << num_counters) - 1;
		}
		c->idxmsk64 &=
			~(~0ULL << (INTEL_PMC_IDX_FIXED + num_counters_fixed));
		c->weight = hweight64(c->idxmsk64);
	}
}

static void intel_pmu_check_extra_regs(struct extra_reg *extra_regs)
{
	struct extra_reg *er;

	/*
	 * Access extra MSR may cause #GP under certain circumstances.
	 * E.g. KVM doesn't support offcore event
	 * Check all extra_regs here.
	 */
	if (!extra_regs)
		return;

	for (er = extra_regs; er->msr; er++) {
		er->extra_msr_access = check_msr(er->msr, 0x11UL);
		/* Disable LBR select mapping */
		if ((er->idx == EXTRA_REG_LBR) && !er->extra_msr_access)
			x86_pmu.lbr_sel_map = NULL;
	}
}

static const struct { enum hybrid_pmu_type id; char *name; } intel_hybrid_pmu_type_map[] __initconst = {
	{ hybrid_small, "cpu_atom" },
	{ hybrid_big, "cpu_core" },
};

static __always_inline int intel_pmu_init_hybrid(enum hybrid_pmu_type pmus)
{
	unsigned long pmus_mask = pmus;
	struct x86_hybrid_pmu *pmu;
	int idx = 0, bit;

	x86_pmu.num_hybrid_pmus = hweight_long(pmus_mask);
	x86_pmu.hybrid_pmu = kcalloc(x86_pmu.num_hybrid_pmus,
				     sizeof(struct x86_hybrid_pmu),
				     GFP_KERNEL);
	if (!x86_pmu.hybrid_pmu)
		return -ENOMEM;

	static_branch_enable(&perf_is_hybrid);
	x86_pmu.filter = intel_pmu_filter;

	for_each_set_bit(bit, &pmus_mask, ARRAY_SIZE(intel_hybrid_pmu_type_map)) {
		pmu = &x86_pmu.hybrid_pmu[idx++];
		pmu->pmu_type = intel_hybrid_pmu_type_map[bit].id;
		pmu->name = intel_hybrid_pmu_type_map[bit].name;

		pmu->num_counters = x86_pmu.num_counters;
		pmu->num_counters_fixed = x86_pmu.num_counters_fixed;
		pmu->max_pebs_events = min_t(unsigned, MAX_PEBS_EVENTS, pmu->num_counters);
		pmu->unconstrained = (struct event_constraint)
				     __EVENT_CONSTRAINT(0, (1ULL << pmu->num_counters) - 1,
							0, pmu->num_counters, 0, 0);

		pmu->intel_cap.capabilities = x86_pmu.intel_cap.capabilities;
		if (pmu->pmu_type & hybrid_small) {
			pmu->intel_cap.perf_metrics = 0;
			pmu->intel_cap.pebs_output_pt_available = 1;
			pmu->mid_ack = true;
		} else if (pmu->pmu_type & hybrid_big) {
			pmu->intel_cap.perf_metrics = 1;
			pmu->intel_cap.pebs_output_pt_available = 0;
			pmu->late_ack = true;
		}
	}

	return 0;
}

static __always_inline void intel_pmu_ref_cycles_ext(void)
{
	if (!(x86_pmu.events_maskl & (INTEL_PMC_MSK_FIXED_REF_CYCLES >> INTEL_PMC_IDX_FIXED)))
		intel_perfmon_event_map[PERF_COUNT_HW_REF_CPU_CYCLES] = 0x013c;
}

static __always_inline void intel_pmu_init_glc(struct pmu *pmu)
{
	x86_pmu.late_ack = true;
	x86_pmu.limit_period = glc_limit_period;
	x86_pmu.pebs_aliases = NULL;
	x86_pmu.pebs_prec_dist = true;
	x86_pmu.pebs_block = true;
	x86_pmu.flags |= PMU_FL_HAS_RSP_1;
	x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
	x86_pmu.flags |= PMU_FL_INSTR_LATENCY;
	x86_pmu.rtm_abort_event = X86_CONFIG(.event=0xc9, .umask=0x04);
	x86_pmu.lbr_pt_coexist = true;
	x86_pmu.num_topdown_events = 8;
	static_call_update(intel_pmu_update_topdown_event,
			   &icl_update_topdown_event);
	static_call_update(intel_pmu_set_topdown_event_period,
			   &icl_set_topdown_event_period);

	memcpy(hybrid_var(pmu, hw_cache_event_ids), glc_hw_cache_event_ids, sizeof(hw_cache_event_ids));
	memcpy(hybrid_var(pmu, hw_cache_extra_regs), glc_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
	hybrid(pmu, event_constraints) = intel_glc_event_constraints;
	hybrid(pmu, pebs_constraints) = intel_glc_pebs_event_constraints;

	intel_pmu_ref_cycles_ext();
}

static __always_inline void intel_pmu_init_grt(struct pmu *pmu)
{
	x86_pmu.mid_ack = true;
	x86_pmu.limit_period = glc_limit_period;
	x86_pmu.pebs_aliases = NULL;
	x86_pmu.pebs_prec_dist = true;
	x86_pmu.pebs_block = true;
	x86_pmu.lbr_pt_coexist = true;
	x86_pmu.flags |= PMU_FL_HAS_RSP_1;
	x86_pmu.flags |= PMU_FL_INSTR_LATENCY;

	memcpy(hybrid_var(pmu, hw_cache_event_ids), glp_hw_cache_event_ids, sizeof(hw_cache_event_ids));
	memcpy(hybrid_var(pmu, hw_cache_extra_regs), tnt_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
	hybrid_var(pmu, hw_cache_event_ids)[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
	hybrid(pmu, event_constraints) = intel_grt_event_constraints;
	hybrid(pmu, pebs_constraints) = intel_grt_pebs_event_constraints;
	hybrid(pmu, extra_regs) = intel_grt_extra_regs;

	intel_pmu_ref_cycles_ext();
}

__init int intel_pmu_init(void)
{
	struct attribute **extra_skl_attr = &empty_attrs;
	struct attribute **extra_attr = &empty_attrs;
	struct attribute **td_attr    = &empty_attrs;
	struct attribute **mem_attr   = &empty_attrs;
	struct attribute **tsx_attr   = &empty_attrs;
	union cpuid10_edx edx;
	union cpuid10_eax eax;
	union cpuid10_ebx ebx;
	unsigned int fixed_mask;
	bool pmem = false;
	int version, i;
	char *name;
	struct x86_hybrid_pmu *pmu;

	if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
		switch (boot_cpu_data.x86) {
		case 0x6:
			return p6_pmu_init();
		case 0xb:
			return knc_pmu_init();
		case 0xf:
			return p4_pmu_init();
		}
		return -ENODEV;
	}

	/*
	 * Check whether the Architectural PerfMon supports
	 * Branch Misses Retired hw_event or not.
	 */
	cpuid(10, &eax.full, &ebx.full, &fixed_mask, &edx.full);
	if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT)
		return -ENODEV;

	version = eax.split.version_id;
	if (version < 2)
		x86_pmu = core_pmu;
	else
		x86_pmu = intel_pmu;

	x86_pmu.version			= version;
	x86_pmu.num_counters		= eax.split.num_counters;
	x86_pmu.cntval_bits		= eax.split.bit_width;
	x86_pmu.cntval_mask		= (1ULL << eax.split.bit_width) - 1;

	x86_pmu.events_maskl		= ebx.full;
	x86_pmu.events_mask_len		= eax.split.mask_length;

	x86_pmu.max_pebs_events		= min_t(unsigned, MAX_PEBS_EVENTS, x86_pmu.num_counters);
	x86_pmu.pebs_capable		= PEBS_COUNTER_MASK;

	/*
	 * Quirk: v2 perfmon does not report fixed-purpose events, so
	 * assume at least 3 events, when not running in a hypervisor:
	 */
	if (version > 1 && version < 5) {
		int assume = 3 * !boot_cpu_has(X86_FEATURE_HYPERVISOR);

		x86_pmu.num_counters_fixed =
			max((int)edx.split.num_counters_fixed, assume);

		fixed_mask = (1L << x86_pmu.num_counters_fixed) - 1;
	} else if (version >= 5)
		x86_pmu.num_counters_fixed = fls(fixed_mask);

	if (boot_cpu_has(X86_FEATURE_PDCM)) {
		u64 capabilities;

		rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
		x86_pmu.intel_cap.capabilities = capabilities;
	}

	if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_32) {
		x86_pmu.lbr_reset = intel_pmu_lbr_reset_32;
		x86_pmu.lbr_read = intel_pmu_lbr_read_32;
	}

	if (boot_cpu_has(X86_FEATURE_ARCH_LBR))
		intel_pmu_arch_lbr_init();

	intel_ds_init();

	x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */

	if (version >= 5) {
		x86_pmu.intel_cap.anythread_deprecated = edx.split.anythread_deprecated;
		if (x86_pmu.intel_cap.anythread_deprecated)
			pr_cont(" AnyThread deprecated, ");
	}

	/*
	 * Install the hw-cache-events table:
	 */
	switch (boot_cpu_data.x86_model) {
	case INTEL_FAM6_CORE_YONAH:
		pr_cont("Core events, ");
		name = "core";
		break;

	case INTEL_FAM6_CORE2_MEROM:
		x86_add_quirk(intel_clovertown_quirk);
		fallthrough;

	case INTEL_FAM6_CORE2_MEROM_L:
	case INTEL_FAM6_CORE2_PENRYN:
	case INTEL_FAM6_CORE2_DUNNINGTON:
		memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
		       sizeof(hw_cache_event_ids));

		intel_pmu_lbr_init_core();

		x86_pmu.event_constraints = intel_core2_event_constraints;
		x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
		pr_cont("Core2 events, ");
		name = "core2";
		break;

	case INTEL_FAM6_NEHALEM:
	case INTEL_FAM6_NEHALEM_EP:
	case INTEL_FAM6_NEHALEM_EX:
		memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
		       sizeof(hw_cache_event_ids));
		memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
		       sizeof(hw_cache_extra_regs));

		intel_pmu_lbr_init_nhm();

		x86_pmu.event_constraints = intel_nehalem_event_constraints;
		x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
		x86_pmu.enable_all = intel_pmu_nhm_enable_all;
		x86_pmu.extra_regs = intel_nehalem_extra_regs;
		x86_pmu.limit_period = nhm_limit_period;

		mem_attr = nhm_mem_events_attrs;

		/* UOPS_ISSUED.STALLED_CYCLES */
		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
		/* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
			X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);

		intel_pmu_pebs_data_source_nhm();
		x86_add_quirk(intel_nehalem_quirk);
		x86_pmu.pebs_no_tlb = 1;
		extra_attr = nhm_format_attr;

		pr_cont("Nehalem events, ");
		name = "nehalem";
		break;

	case INTEL_FAM6_ATOM_BONNELL:
	case INTEL_FAM6_ATOM_BONNELL_MID:
	case INTEL_FAM6_ATOM_SALTWELL:
	case INTEL_FAM6_ATOM_SALTWELL_MID:
	case INTEL_FAM6_ATOM_SALTWELL_TABLET:
		memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
		       sizeof(hw_cache_event_ids));

		intel_pmu_lbr_init_atom();

		x86_pmu.event_constraints = intel_gen_event_constraints;
		x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
		x86_pmu.pebs_aliases = intel_pebs_aliases_core2;
		pr_cont("Atom events, ");
		name = "bonnell";
		break;

	case INTEL_FAM6_ATOM_SILVERMONT:
	case INTEL_FAM6_ATOM_SILVERMONT_D:
	case INTEL_FAM6_ATOM_SILVERMONT_MID:
	case INTEL_FAM6_ATOM_AIRMONT:
	case INTEL_FAM6_ATOM_AIRMONT_MID:
		memcpy(hw_cache_event_ids, slm_hw_cache_event_ids,
			sizeof(hw_cache_event_ids));
		memcpy(hw_cache_extra_regs, slm_hw_cache_extra_regs,
		       sizeof(hw_cache_extra_regs));

		intel_pmu_lbr_init_slm();

		x86_pmu.event_constraints = intel_slm_event_constraints;
		x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
		x86_pmu.extra_regs = intel_slm_extra_regs;
		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
		td_attr = slm_events_attrs;
		extra_attr = slm_format_attr;
		pr_cont("Silvermont events, ");
		name = "silvermont";
		break;

	case INTEL_FAM6_ATOM_GOLDMONT:
	case INTEL_FAM6_ATOM_GOLDMONT_D:
		memcpy(hw_cache_event_ids, glm_hw_cache_event_ids,
		       sizeof(hw_cache_event_ids));
		memcpy(hw_cache_extra_regs, glm_hw_cache_extra_regs,
		       sizeof(hw_cache_extra_regs));

		intel_pmu_lbr_init_skl();

		x86_pmu.event_constraints = intel_slm_event_constraints;
		x86_pmu.pebs_constraints = intel_glm_pebs_event_constraints;
		x86_pmu.extra_regs = intel_glm_extra_regs;
		/*
		 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
		 * for precise cycles.
		 * :pp is identical to :ppp
		 */
		x86_pmu.pebs_aliases = NULL;
		x86_pmu.pebs_prec_dist = true;
		x86_pmu.lbr_pt_coexist = true;
		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
		td_attr = glm_events_attrs;
		extra_attr = slm_format_attr;
		pr_cont("Goldmont events, ");
		name = "goldmont";
		break;

	case INTEL_FAM6_ATOM_GOLDMONT_PLUS:
		memcpy(hw_cache_event_ids, glp_hw_cache_event_ids,
		       sizeof(hw_cache_event_ids));
		memcpy(hw_cache_extra_regs, glp_hw_cache_extra_regs,
		       sizeof(hw_cache_extra_regs));

		intel_pmu_lbr_init_skl();

		x86_pmu.event_constraints = intel_slm_event_constraints;
		x86_pmu.extra_regs = intel_glm_extra_regs;
		/*
		 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
		 * for precise cycles.
		 */
		x86_pmu.pebs_aliases = NULL;
		x86_pmu.pebs_prec_dist = true;
		x86_pmu.lbr_pt_coexist = true;
		x86_pmu.pebs_capable = ~0ULL;
		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
		x86_pmu.flags |= PMU_FL_PEBS_ALL;
		x86_pmu.get_event_constraints = glp_get_event_constraints;
		td_attr = glm_events_attrs;
		/* Goldmont Plus has 4-wide pipeline */
		event_attr_td_total_slots_scale_glm.event_str = "4";
		extra_attr = slm_format_attr;
		pr_cont("Goldmont plus events, ");
		name = "goldmont_plus";
		break;

	case INTEL_FAM6_ATOM_TREMONT_D:
	case INTEL_FAM6_ATOM_TREMONT:
	case INTEL_FAM6_ATOM_TREMONT_L:
		x86_pmu.late_ack = true;
		memcpy(hw_cache_event_ids, glp_hw_cache_event_ids,
		       sizeof(hw_cache_event_ids));
		memcpy(hw_cache_extra_regs, tnt_hw_cache_extra_regs,
		       sizeof(hw_cache_extra_regs));
		hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;

		intel_pmu_lbr_init_skl();

		x86_pmu.event_constraints = intel_slm_event_constraints;
		x86_pmu.extra_regs = intel_tnt_extra_regs;
		/*
		 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
		 * for precise cycles.
		 */
		x86_pmu.pebs_aliases = NULL;
		x86_pmu.pebs_prec_dist = true;
		x86_pmu.lbr_pt_coexist = true;
		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
		x86_pmu.get_event_constraints = tnt_get_event_constraints;
		td_attr = tnt_events_attrs;
		extra_attr = slm_format_attr;
		pr_cont("Tremont events, ");
		name = "Tremont";
		break;

	case INTEL_FAM6_ATOM_GRACEMONT:
		intel_pmu_init_grt(NULL);
		intel_pmu_pebs_data_source_grt();
		x86_pmu.pebs_latency_data = adl_latency_data_small;
		x86_pmu.get_event_constraints = tnt_get_event_constraints;
		td_attr = tnt_events_attrs;
		mem_attr = grt_mem_attrs;
		extra_attr = nhm_format_attr;
		pr_cont("Gracemont events, ");
		name = "gracemont";
		break;

	case INTEL_FAM6_ATOM_CRESTMONT:
	case INTEL_FAM6_ATOM_CRESTMONT_X:
		intel_pmu_init_grt(NULL);
		x86_pmu.extra_regs = intel_cmt_extra_regs;
		intel_pmu_pebs_data_source_cmt();
		x86_pmu.pebs_latency_data = mtl_latency_data_small;
		x86_pmu.get_event_constraints = cmt_get_event_constraints;
		td_attr = cmt_events_attrs;
		mem_attr = grt_mem_attrs;
		extra_attr = cmt_format_attr;
		pr_cont("Crestmont events, ");
		name = "crestmont";
		break;

	case INTEL_FAM6_WESTMERE:
	case INTEL_FAM6_WESTMERE_EP:
	case INTEL_FAM6_WESTMERE_EX:
		memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
		       sizeof(hw_cache_event_ids));
		memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
		       sizeof(hw_cache_extra_regs));

		intel_pmu_lbr_init_nhm();

		x86_pmu.event_constraints = intel_westmere_event_constraints;
		x86_pmu.enable_all = intel_pmu_nhm_enable_all;
		x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
		x86_pmu.extra_regs = intel_westmere_extra_regs;
		x86_pmu.flags |= PMU_FL_HAS_RSP_1;

		mem_attr = nhm_mem_events_attrs;

		/* UOPS_ISSUED.STALLED_CYCLES */
		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
		/* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
			X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);

		intel_pmu_pebs_data_source_nhm();
		extra_attr = nhm_format_attr;
		pr_cont("Westmere events, ");
		name = "westmere";
		break;

	case INTEL_FAM6_SANDYBRIDGE:
	case INTEL_FAM6_SANDYBRIDGE_X:
		x86_add_quirk(intel_sandybridge_quirk);
		x86_add_quirk(intel_ht_bug);
		memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
		       sizeof(hw_cache_event_ids));
		memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
		       sizeof(hw_cache_extra_regs));

		intel_pmu_lbr_init_snb();

		x86_pmu.event_constraints = intel_snb_event_constraints;
		x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
		x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
		if (boot_cpu_data.x86_model == INTEL_FAM6_SANDYBRIDGE_X)
			x86_pmu.extra_regs = intel_snbep_extra_regs;
		else
			x86_pmu.extra_regs = intel_snb_extra_regs;


		/* all extra regs are per-cpu when HT is on */
		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;

		td_attr  = snb_events_attrs;
		mem_attr = snb_mem_events_attrs;

		/* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
		/* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
			X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1);

		extra_attr = nhm_format_attr;

		pr_cont("SandyBridge events, ");
		name = "sandybridge";
		break;

	case INTEL_FAM6_IVYBRIDGE:
	case INTEL_FAM6_IVYBRIDGE_X:
		x86_add_quirk(intel_ht_bug);
		memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
		       sizeof(hw_cache_event_ids));
		/* dTLB-load-misses on IVB is different than SNB */
		hw_cache_event_ids[C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = 0x8108; /* DTLB_LOAD_MISSES.DEMAND_LD_MISS_CAUSES_A_WALK */

		memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
		       sizeof(hw_cache_extra_regs));

		intel_pmu_lbr_init_snb();

		x86_pmu.event_constraints = intel_ivb_event_constraints;
		x86_pmu.pebs_constraints = intel_ivb_pebs_event_constraints;
		x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
		x86_pmu.pebs_prec_dist = true;
		if (boot_cpu_data.x86_model == INTEL_FAM6_IVYBRIDGE_X)
			x86_pmu.extra_regs = intel_snbep_extra_regs;
		else
			x86_pmu.extra_regs = intel_snb_extra_regs;
		/* all extra regs are per-cpu when HT is on */
		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;

		td_attr  = snb_events_attrs;
		mem_attr = snb_mem_events_attrs;

		/* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);

		extra_attr = nhm_format_attr;

		pr_cont("IvyBridge events, ");
		name = "ivybridge";
		break;


	case INTEL_FAM6_HASWELL:
	case INTEL_FAM6_HASWELL_X:
	case INTEL_FAM6_HASWELL_L:
	case INTEL_FAM6_HASWELL_G:
		x86_add_quirk(intel_ht_bug);
		x86_add_quirk(intel_pebs_isolation_quirk);
		x86_pmu.late_ack = true;
		memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
		memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));

		intel_pmu_lbr_init_hsw();

		x86_pmu.event_constraints = intel_hsw_event_constraints;
		x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints;
		x86_pmu.extra_regs = intel_snbep_extra_regs;
		x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
		x86_pmu.pebs_prec_dist = true;
		/* all extra regs are per-cpu when HT is on */
		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;

		x86_pmu.hw_config = hsw_hw_config;
		x86_pmu.get_event_constraints = hsw_get_event_constraints;
		x86_pmu.lbr_double_abort = true;
		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
			hsw_format_attr : nhm_format_attr;
		td_attr  = hsw_events_attrs;
		mem_attr = hsw_mem_events_attrs;
		tsx_attr = hsw_tsx_events_attrs;
		pr_cont("Haswell events, ");
		name = "haswell";
		break;

	case INTEL_FAM6_BROADWELL:
	case INTEL_FAM6_BROADWELL_D:
	case INTEL_FAM6_BROADWELL_G:
	case INTEL_FAM6_BROADWELL_X:
		x86_add_quirk(intel_pebs_isolation_quirk);
		x86_pmu.late_ack = true;
		memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
		memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));

		/* L3_MISS_LOCAL_DRAM is BIT(26) in Broadwell */
		hw_cache_extra_regs[C(LL)][C(OP_READ)][C(RESULT_MISS)] = HSW_DEMAND_READ |
									 BDW_L3_MISS|HSW_SNOOP_DRAM;
		hw_cache_extra_regs[C(LL)][C(OP_WRITE)][C(RESULT_MISS)] = HSW_DEMAND_WRITE|BDW_L3_MISS|
									  HSW_SNOOP_DRAM;
		hw_cache_extra_regs[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = HSW_DEMAND_READ|
									     BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
		hw_cache_extra_regs[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = HSW_DEMAND_WRITE|
									      BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;

		intel_pmu_lbr_init_hsw();

		x86_pmu.event_constraints = intel_bdw_event_constraints;
		x86_pmu.pebs_constraints = intel_bdw_pebs_event_constraints;
		x86_pmu.extra_regs = intel_snbep_extra_regs;
		x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
		x86_pmu.pebs_prec_dist = true;
		/* all extra regs are per-cpu when HT is on */
		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;

		x86_pmu.hw_config = hsw_hw_config;
		x86_pmu.get_event_constraints = hsw_get_event_constraints;
		x86_pmu.limit_period = bdw_limit_period;
		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
			hsw_format_attr : nhm_format_attr;
		td_attr  = hsw_events_attrs;
		mem_attr = hsw_mem_events_attrs;
		tsx_attr = hsw_tsx_events_attrs;
		pr_cont("Broadwell events, ");
		name = "broadwell";
		break;

	case INTEL_FAM6_XEON_PHI_KNL:
	case INTEL_FAM6_XEON_PHI_KNM:
		memcpy(hw_cache_event_ids,
		       slm_hw_cache_event_ids, sizeof(hw_cache_event_ids));
		memcpy(hw_cache_extra_regs,
		       knl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
		intel_pmu_lbr_init_knl();

		x86_pmu.event_constraints = intel_slm_event_constraints;
		x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
		x86_pmu.extra_regs = intel_knl_extra_regs;

		/* all extra regs are per-cpu when HT is on */
		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
		extra_attr = slm_format_attr;
		pr_cont("Knights Landing/Mill events, ");
		name = "knights-landing";
		break;

	case INTEL_FAM6_SKYLAKE_X:
		pmem = true;
		fallthrough;
	case INTEL_FAM6_SKYLAKE_L:
	case INTEL_FAM6_SKYLAKE:
	case INTEL_FAM6_KABYLAKE_L:
	case INTEL_FAM6_KABYLAKE:
	case INTEL_FAM6_COMETLAKE_L:
	case INTEL_FAM6_COMETLAKE:
		x86_add_quirk(intel_pebs_isolation_quirk);
		x86_pmu.late_ack = true;
		memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
		memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
		intel_pmu_lbr_init_skl();

		/* INT_MISC.RECOVERY_CYCLES has umask 1 in Skylake */
		event_attr_td_recovery_bubbles.event_str_noht =
			"event=0xd,umask=0x1,cmask=1";
		event_attr_td_recovery_bubbles.event_str_ht =
			"event=0xd,umask=0x1,cmask=1,any=1";

		x86_pmu.event_constraints = intel_skl_event_constraints;
		x86_pmu.pebs_constraints = intel_skl_pebs_event_constraints;
		x86_pmu.extra_regs = intel_skl_extra_regs;
		x86_pmu.pebs_aliases = intel_pebs_aliases_skl;
		x86_pmu.pebs_prec_dist = true;
		/* all extra regs are per-cpu when HT is on */
		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;

		x86_pmu.hw_config = hsw_hw_config;
		x86_pmu.get_event_constraints = hsw_get_event_constraints;
		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
			hsw_format_attr : nhm_format_attr;
		extra_skl_attr = skl_format_attr;
		td_attr  = hsw_events_attrs;
		mem_attr = hsw_mem_events_attrs;
		tsx_attr = hsw_tsx_events_attrs;
		intel_pmu_pebs_data_source_skl(pmem);

		/*
		 * Processors with CPUID.RTM_ALWAYS_ABORT have TSX deprecated by default.
		 * TSX force abort hooks are not required on these systems. Only deploy
		 * workaround when microcode has not enabled X86_FEATURE_RTM_ALWAYS_ABORT.
		 */
		if (boot_cpu_has(X86_FEATURE_TSX_FORCE_ABORT) &&
		   !boot_cpu_has(X86_FEATURE_RTM_ALWAYS_ABORT)) {
			x86_pmu.flags |= PMU_FL_TFA;
			x86_pmu.get_event_constraints = tfa_get_event_constraints;
			x86_pmu.enable_all = intel_tfa_pmu_enable_all;
			x86_pmu.commit_scheduling = intel_tfa_commit_scheduling;
		}

		pr_cont("Skylake events, ");
		name = "skylake";
		break;

	case INTEL_FAM6_ICELAKE_X:
	case INTEL_FAM6_ICELAKE_D:
		x86_pmu.pebs_ept = 1;
		pmem = true;
		fallthrough;
	case INTEL_FAM6_ICELAKE_L:
	case INTEL_FAM6_ICELAKE:
	case INTEL_FAM6_TIGERLAKE_L:
	case INTEL_FAM6_TIGERLAKE:
	case INTEL_FAM6_ROCKETLAKE:
		x86_pmu.late_ack = true;
		memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
		memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
		hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
		intel_pmu_lbr_init_skl();

		x86_pmu.event_constraints = intel_icl_event_constraints;
		x86_pmu.pebs_constraints = intel_icl_pebs_event_constraints;
		x86_pmu.extra_regs = intel_icl_extra_regs;
		x86_pmu.pebs_aliases = NULL;
		x86_pmu.pebs_prec_dist = true;
		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;

		x86_pmu.hw_config = hsw_hw_config;
		x86_pmu.get_event_constraints = icl_get_event_constraints;
		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
			hsw_format_attr : nhm_format_attr;
		extra_skl_attr = skl_format_attr;
		mem_attr = icl_events_attrs;
		td_attr = icl_td_events_attrs;
		tsx_attr = icl_tsx_events_attrs;
		x86_pmu.rtm_abort_event = X86_CONFIG(.event=0xc9, .umask=0x04);
		x86_pmu.lbr_pt_coexist = true;
		intel_pmu_pebs_data_source_skl(pmem);
		x86_pmu.num_topdown_events = 4;
		static_call_update(intel_pmu_update_topdown_event,
				   &icl_update_topdown_event);
		static_call_update(intel_pmu_set_topdown_event_period,
				   &icl_set_topdown_event_period);
		pr_cont("Icelake events, ");
		name = "icelake";
		break;

	case INTEL_FAM6_SAPPHIRERAPIDS_X:
	case INTEL_FAM6_EMERALDRAPIDS_X:
		x86_pmu.flags |= PMU_FL_MEM_LOADS_AUX;
		x86_pmu.extra_regs = intel_glc_extra_regs;
		fallthrough;
	case INTEL_FAM6_GRANITERAPIDS_X:
	case INTEL_FAM6_GRANITERAPIDS_D:
		intel_pmu_init_glc(NULL);
		if (!x86_pmu.extra_regs)
			x86_pmu.extra_regs = intel_rwc_extra_regs;
		x86_pmu.pebs_ept = 1;
		x86_pmu.hw_config = hsw_hw_config;
		x86_pmu.get_event_constraints = glc_get_event_constraints;
		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
			hsw_format_attr : nhm_format_attr;
		extra_skl_attr = skl_format_attr;
		mem_attr = glc_events_attrs;
		td_attr = glc_td_events_attrs;
		tsx_attr = glc_tsx_events_attrs;
		intel_pmu_pebs_data_source_skl(true);
		pr_cont("Sapphire Rapids events, ");
		name = "sapphire_rapids";
		break;

	case INTEL_FAM6_ALDERLAKE:
	case INTEL_FAM6_ALDERLAKE_L:
	case INTEL_FAM6_RAPTORLAKE:
	case INTEL_FAM6_RAPTORLAKE_P:
	case INTEL_FAM6_RAPTORLAKE_S:
		/*
		 * Alder Lake has 2 types of CPU, core and atom.
		 *
		 * Initialize the common PerfMon capabilities here.
		 */
		intel_pmu_init_hybrid(hybrid_big_small);

		x86_pmu.pebs_latency_data = adl_latency_data_small;
		x86_pmu.get_event_constraints = adl_get_event_constraints;
		x86_pmu.hw_config = adl_hw_config;
		x86_pmu.get_hybrid_cpu_type = adl_get_hybrid_cpu_type;

		td_attr = adl_hybrid_events_attrs;
		mem_attr = adl_hybrid_mem_attrs;
		tsx_attr = adl_hybrid_tsx_attrs;
		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
			adl_hybrid_extra_attr_rtm : adl_hybrid_extra_attr;

		/* Initialize big core specific PerfMon capabilities.*/
		pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_CORE_IDX];
		intel_pmu_init_glc(&pmu->pmu);
		if (cpu_feature_enabled(X86_FEATURE_HYBRID_CPU)) {
			pmu->num_counters = x86_pmu.num_counters + 2;
			pmu->num_counters_fixed = x86_pmu.num_counters_fixed + 1;
		} else {
			pmu->num_counters = x86_pmu.num_counters;
			pmu->num_counters_fixed = x86_pmu.num_counters_fixed;
		}

		/*
		 * Quirk: For some Alder Lake machine, when all E-cores are disabled in
		 * a BIOS, the leaf 0xA will enumerate all counters of P-cores. However,
		 * the X86_FEATURE_HYBRID_CPU is still set. The above codes will
		 * mistakenly add extra counters for P-cores. Correct the number of
		 * counters here.
		 */
		if ((pmu->num_counters > 8) || (pmu->num_counters_fixed > 4)) {
			pmu->num_counters = x86_pmu.num_counters;
			pmu->num_counters_fixed = x86_pmu.num_counters_fixed;
		}

		pmu->max_pebs_events = min_t(unsigned, MAX_PEBS_EVENTS, pmu->num_counters);
		pmu->unconstrained = (struct event_constraint)
					__EVENT_CONSTRAINT(0, (1ULL << pmu->num_counters) - 1,
							   0, pmu->num_counters, 0, 0);
		pmu->extra_regs = intel_glc_extra_regs;

		/* Initialize Atom core specific PerfMon capabilities.*/
		pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_ATOM_IDX];
		intel_pmu_init_grt(&pmu->pmu);

		x86_pmu.flags |= PMU_FL_MEM_LOADS_AUX;
		intel_pmu_pebs_data_source_adl();
		pr_cont("Alderlake Hybrid events, ");
		name = "alderlake_hybrid";
		break;

	case INTEL_FAM6_METEORLAKE:
	case INTEL_FAM6_METEORLAKE_L:
		intel_pmu_init_hybrid(hybrid_big_small);

		x86_pmu.pebs_latency_data = mtl_latency_data_small;
		x86_pmu.get_event_constraints = mtl_get_event_constraints;
		x86_pmu.hw_config = adl_hw_config;

		td_attr = adl_hybrid_events_attrs;
		mem_attr = mtl_hybrid_mem_attrs;
		tsx_attr = adl_hybrid_tsx_attrs;
		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
			mtl_hybrid_extra_attr_rtm : mtl_hybrid_extra_attr;

		/* Initialize big core specific PerfMon capabilities.*/
		pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_CORE_IDX];
		intel_pmu_init_glc(&pmu->pmu);
		pmu->extra_regs = intel_rwc_extra_regs;

		/* Initialize Atom core specific PerfMon capabilities.*/
		pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_ATOM_IDX];
		intel_pmu_init_grt(&pmu->pmu);
		pmu->extra_regs = intel_cmt_extra_regs;

		intel_pmu_pebs_data_source_mtl();
		pr_cont("Meteorlake Hybrid events, ");
		name = "meteorlake_hybrid";
		break;

	default:
		switch (x86_pmu.version) {
		case 1:
			x86_pmu.event_constraints = intel_v1_event_constraints;
			pr_cont("generic architected perfmon v1, ");
			name = "generic_arch_v1";
			break;
		case 2:
		case 3:
		case 4:
			/*
			 * default constraints for v2 and up
			 */
			x86_pmu.event_constraints = intel_gen_event_constraints;
			pr_cont("generic architected perfmon, ");
			name = "generic_arch_v2+";
			break;
		default:
			/*
			 * The default constraints for v5 and up can support up to
			 * 16 fixed counters. For the fixed counters 4 and later,
			 * the pseudo-encoding is applied.
			 * The constraints may be cut according to the CPUID enumeration
			 * by inserting the EVENT_CONSTRAINT_END.
			 */
			if (x86_pmu.num_counters_fixed > INTEL_PMC_MAX_FIXED)
				x86_pmu.num_counters_fixed = INTEL_PMC_MAX_FIXED;
			intel_v5_gen_event_constraints[x86_pmu.num_counters_fixed].weight = -1;
			x86_pmu.event_constraints = intel_v5_gen_event_constraints;
			pr_cont("generic architected perfmon, ");
			name = "generic_arch_v5+";
			break;
		}
	}

	snprintf(pmu_name_str, sizeof(pmu_name_str), "%s", name);

	if (!is_hybrid()) {
		group_events_td.attrs  = td_attr;
		group_events_mem.attrs = mem_attr;
		group_events_tsx.attrs = tsx_attr;
		group_format_extra.attrs = extra_attr;
		group_format_extra_skl.attrs = extra_skl_attr;

		x86_pmu.attr_update = attr_update;
	} else {
		hybrid_group_events_td.attrs  = td_attr;
		hybrid_group_events_mem.attrs = mem_attr;
		hybrid_group_events_tsx.attrs = tsx_attr;
		hybrid_group_format_extra.attrs = extra_attr;

		x86_pmu.attr_update = hybrid_attr_update;
	}

	intel_pmu_check_num_counters(&x86_pmu.num_counters,
				     &x86_pmu.num_counters_fixed,
				     &x86_pmu.intel_ctrl,
				     (u64)fixed_mask);

	/* AnyThread may be deprecated on arch perfmon v5 or later */
	if (x86_pmu.intel_cap.anythread_deprecated)
		x86_pmu.format_attrs = intel_arch_formats_attr;

	intel_pmu_check_event_constraints(x86_pmu.event_constraints,
					  x86_pmu.num_counters,
					  x86_pmu.num_counters_fixed,
					  x86_pmu.intel_ctrl);
	/*
	 * Access LBR MSR may cause #GP under certain circumstances.
	 * Check all LBR MSR here.
	 * Disable LBR access if any LBR MSRs can not be accessed.
	 */
	if (x86_pmu.lbr_tos && !check_msr(x86_pmu.lbr_tos, 0x3UL))
		x86_pmu.lbr_nr = 0;
	for (i = 0; i < x86_pmu.lbr_nr; i++) {
		if (!(check_msr(x86_pmu.lbr_from + i, 0xffffUL) &&
		      check_msr(x86_pmu.lbr_to + i, 0xffffUL)))
			x86_pmu.lbr_nr = 0;
	}

	if (x86_pmu.lbr_nr) {
		intel_pmu_lbr_init();

		pr_cont("%d-deep LBR, ", x86_pmu.lbr_nr);

		/* only support branch_stack snapshot for perfmon >= v2 */
		if (x86_pmu.disable_all == intel_pmu_disable_all) {
			if (boot_cpu_has(X86_FEATURE_ARCH_LBR)) {
				static_call_update(perf_snapshot_branch_stack,
						   intel_pmu_snapshot_arch_branch_stack);
			} else {
				static_call_update(perf_snapshot_branch_stack,
						   intel_pmu_snapshot_branch_stack);
			}
		}
	}

	intel_pmu_check_extra_regs(x86_pmu.extra_regs);

	/* Support full width counters using alternative MSR range */
	if (x86_pmu.intel_cap.full_width_write) {
		x86_pmu.max_period = x86_pmu.cntval_mask >> 1;
		x86_pmu.perfctr = MSR_IA32_PMC0;
		pr_cont("full-width counters, ");
	}

	if (!is_hybrid() && x86_pmu.intel_cap.perf_metrics)
		x86_pmu.intel_ctrl |= 1ULL << GLOBAL_CTRL_EN_PERF_METRICS;

	if (x86_pmu.intel_cap.pebs_timing_info)
		x86_pmu.flags |= PMU_FL_RETIRE_LATENCY;

	intel_aux_output_init();

	return 0;
}

/*
 * HT bug: phase 2 init
 * Called once we have valid topology information to check
 * whether or not HT is enabled
 * If HT is off, then we disable the workaround
 */
static __init int fixup_ht_bug(void)
{
	int c;
	/*
	 * problem not present on this CPU model, nothing to do
	 */
	if (!(x86_pmu.flags & PMU_FL_EXCL_ENABLED))
		return 0;

	if (topology_max_smt_threads() > 1) {
		pr_info("PMU erratum BJ122, BV98, HSD29 worked around, HT is on\n");
		return 0;
	}

	cpus_read_lock();

	hardlockup_detector_perf_stop();

	x86_pmu.flags &= ~(PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED);

	x86_pmu.start_scheduling = NULL;
	x86_pmu.commit_scheduling = NULL;
	x86_pmu.stop_scheduling = NULL;

	hardlockup_detector_perf_restart();

	for_each_online_cpu(c)
		free_excl_cntrs(&per_cpu(cpu_hw_events, c));

	cpus_read_unlock();
	pr_info("PMU erratum BJ122, BV98, HSD29 workaround disabled, HT off\n");
	return 0;
}
subsys_initcall(fixup_ht_bug)