Contributors: 43
Author Tokens Token Proportion Commits Commit Proportion
Arvind Sankar 321 23.71% 6 4.92%
Ard Biesheuvel 301 22.23% 33 27.05%
Matt Fleming 139 10.27% 15 12.30%
Borislav Petkov 79 5.83% 5 4.10%
Dave Young 68 5.02% 4 3.28%
Huang Ying 45 3.32% 1 0.82%
Vivek Goyal 43 3.18% 1 0.82%
Dan J Williams 41 3.03% 5 4.10%
Lukas Wunner 41 3.03% 2 1.64%
Baskov Evgeniy 38 2.81% 3 2.46%
Andrew Lutomirski 29 2.14% 1 0.82%
Matthew Garrett 25 1.85% 2 1.64%
Andi Kleen 21 1.55% 2 1.64%
Olof Johansson 19 1.40% 2 1.64%
Sai Praneeth 15 1.11% 5 4.10%
Satoru Takeuchi 15 1.11% 1 0.82%
Taku Izumi 13 0.96% 2 1.64%
Tom Lendacky 10 0.74% 1 0.82%
Ricardo Neri 10 0.74% 2 1.64%
Mark Rutland 8 0.59% 2 1.64%
Nicolai Stange 7 0.52% 1 0.82%
Andrey Ryabinin 6 0.44% 2 1.64%
Yinghai Lu 6 0.44% 2 1.64%
Chester Lin 5 0.37% 1 0.82%
Jonathan (Zhixiong) Zhang 5 0.37% 1 0.82%
Linus Torvalds (pre-git) 4 0.30% 2 1.64%
Russ Anderson 4 0.30% 1 0.82%
Baoquan He 4 0.30% 1 0.82%
Kirill A. Shutemov 4 0.30% 1 0.82%
Peter Zijlstra 3 0.22% 1 0.82%
H. Peter Anvin 3 0.22% 1 0.82%
Ingo Molnar 3 0.22% 2 1.64%
David Woodhouse 3 0.22% 1 0.82%
Sudeep Holla 3 0.22% 1 0.82%
Saurabh Tangri 3 0.22% 1 0.82%
Mathias Krause 2 0.15% 1 0.82%
Alex Thorlton 2 0.15% 1 0.82%
Steve Wahl 1 0.07% 1 0.82%
David Howells 1 0.07% 1 0.82%
Joe Perches 1 0.07% 1 0.82%
Mike Rapoport 1 0.07% 1 0.82%
Greg Kroah-Hartman 1 0.07% 1 0.82%
Linus Torvalds 1 0.07% 1 0.82%
Total 1354 122


/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _ASM_X86_EFI_H
#define _ASM_X86_EFI_H

#include <asm/fpu/api.h>
#include <asm/processor-flags.h>
#include <asm/tlb.h>
#include <asm/nospec-branch.h>
#include <asm/mmu_context.h>
#include <asm/ibt.h>
#include <linux/build_bug.h>
#include <linux/kernel.h>
#include <linux/pgtable.h>

extern unsigned long efi_fw_vendor, efi_config_table;
extern unsigned long efi_mixed_mode_stack_pa;

/*
 * We map the EFI regions needed for runtime services non-contiguously,
 * with preserved alignment on virtual addresses starting from -4G down
 * for a total max space of 64G. This way, we provide for stable runtime
 * services addresses across kernels so that a kexec'd kernel can still
 * use them.
 *
 * This is the main reason why we're doing stable VA mappings for RT
 * services.
 */

#define EFI32_LOADER_SIGNATURE	"EL32"
#define EFI64_LOADER_SIGNATURE	"EL64"

#define ARCH_EFI_IRQ_FLAGS_MASK	X86_EFLAGS_IF

#define EFI_UNACCEPTED_UNIT_SIZE PMD_SIZE

/*
 * The EFI services are called through variadic functions in many cases. These
 * functions are implemented in assembler and support only a fixed number of
 * arguments. The macros below allows us to check at build time that we don't
 * try to call them with too many arguments.
 *
 * __efi_nargs() will return the number of arguments if it is 7 or less, and
 * cause a BUILD_BUG otherwise. The limitations of the C preprocessor make it
 * impossible to calculate the exact number of arguments beyond some
 * pre-defined limit. The maximum number of arguments currently supported by
 * any of the thunks is 7, so this is good enough for now and can be extended
 * in the obvious way if we ever need more.
 */

#define __efi_nargs(...) __efi_nargs_(__VA_ARGS__)
#define __efi_nargs_(...) __efi_nargs__(0, ##__VA_ARGS__,	\
	__efi_arg_sentinel(9), __efi_arg_sentinel(8),		\
	__efi_arg_sentinel(7), __efi_arg_sentinel(6),		\
	__efi_arg_sentinel(5), __efi_arg_sentinel(4),		\
	__efi_arg_sentinel(3), __efi_arg_sentinel(2),		\
	__efi_arg_sentinel(1), __efi_arg_sentinel(0))
#define __efi_nargs__(_0, _1, _2, _3, _4, _5, _6, _7, _8, _9, n, ...)	\
	__take_second_arg(n,					\
		({ BUILD_BUG_ON_MSG(1, "__efi_nargs limit exceeded"); 10; }))
#define __efi_arg_sentinel(n) , n

/*
 * __efi_nargs_check(f, n, ...) will cause a BUILD_BUG if the ellipsis
 * represents more than n arguments.
 */

#define __efi_nargs_check(f, n, ...)					\
	__efi_nargs_check_(f, __efi_nargs(__VA_ARGS__), n)
#define __efi_nargs_check_(f, p, n) __efi_nargs_check__(f, p, n)
#define __efi_nargs_check__(f, p, n) ({					\
	BUILD_BUG_ON_MSG(						\
		(p) > (n),						\
		#f " called with too many arguments (" #p ">" #n ")");	\
})

static inline void efi_fpu_begin(void)
{
	/*
	 * The UEFI calling convention (UEFI spec 2.3.2 and 2.3.4) requires
	 * that FCW and MXCSR (64-bit) must be initialized prior to calling
	 * UEFI code.  (Oddly the spec does not require that the FPU stack
	 * be empty.)
	 */
	kernel_fpu_begin_mask(KFPU_387 | KFPU_MXCSR);
}

static inline void efi_fpu_end(void)
{
	kernel_fpu_end();
}

#ifdef CONFIG_X86_32
#define EFI_X86_KERNEL_ALLOC_LIMIT		(SZ_512M - 1)
#else /* !CONFIG_X86_32 */
#define EFI_X86_KERNEL_ALLOC_LIMIT		EFI_ALLOC_LIMIT

extern asmlinkage u64 __efi_call(void *fp, ...);

extern bool efi_disable_ibt_for_runtime;

#define efi_call(...) ({						\
	__efi_nargs_check(efi_call, 7, __VA_ARGS__);			\
	__efi_call(__VA_ARGS__);					\
})

#undef arch_efi_call_virt
#define arch_efi_call_virt(p, f, args...) ({				\
	u64 ret, ibt = ibt_save(efi_disable_ibt_for_runtime);		\
	ret = efi_call((void *)p->f, args);				\
	ibt_restore(ibt);						\
	ret;								\
})

#ifdef CONFIG_KASAN
/*
 * CONFIG_KASAN may redefine memset to __memset.  __memset function is present
 * only in kernel binary.  Since the EFI stub linked into a separate binary it
 * doesn't have __memset().  So we should use standard memset from
 * arch/x86/boot/compressed/string.c.  The same applies to memcpy and memmove.
 */
#undef memcpy
#undef memset
#undef memmove
#endif

#endif /* CONFIG_X86_32 */

extern int __init efi_memblock_x86_reserve_range(void);
extern void __init efi_print_memmap(void);
extern void __init efi_map_region(efi_memory_desc_t *md);
extern void __init efi_map_region_fixed(efi_memory_desc_t *md);
extern void efi_sync_low_kernel_mappings(void);
extern int __init efi_alloc_page_tables(void);
extern int __init efi_setup_page_tables(unsigned long pa_memmap, unsigned num_pages);
extern void __init efi_runtime_update_mappings(void);
extern void __init efi_dump_pagetable(void);
extern void __init efi_apply_memmap_quirks(void);
extern int __init efi_reuse_config(u64 tables, int nr_tables);
extern void efi_delete_dummy_variable(void);
extern void efi_crash_gracefully_on_page_fault(unsigned long phys_addr);
extern void efi_free_boot_services(void);

void arch_efi_call_virt_setup(void);
void arch_efi_call_virt_teardown(void);

/* kexec external ABI */
struct efi_setup_data {
	u64 fw_vendor;
	u64 __unused;
	u64 tables;
	u64 smbios;
	u64 reserved[8];
};

extern u64 efi_setup;

#ifdef CONFIG_EFI
extern u64 __efi64_thunk(u32, ...);

#define efi64_thunk(...) ({						\
	u64 __pad[3]; /* must have space for 3 args on the stack */	\
	__efi_nargs_check(efi64_thunk, 9, __VA_ARGS__);			\
	__efi64_thunk(__VA_ARGS__, __pad);				\
})

static inline bool efi_is_mixed(void)
{
	if (!IS_ENABLED(CONFIG_EFI_MIXED))
		return false;
	return IS_ENABLED(CONFIG_X86_64) && !efi_enabled(EFI_64BIT);
}

static inline bool efi_runtime_supported(void)
{
	if (IS_ENABLED(CONFIG_X86_64) == efi_enabled(EFI_64BIT))
		return true;

	return IS_ENABLED(CONFIG_EFI_MIXED);
}

extern void parse_efi_setup(u64 phys_addr, u32 data_len);

extern void efi_thunk_runtime_setup(void);
efi_status_t efi_set_virtual_address_map(unsigned long memory_map_size,
					 unsigned long descriptor_size,
					 u32 descriptor_version,
					 efi_memory_desc_t *virtual_map,
					 unsigned long systab_phys);

/* arch specific definitions used by the stub code */

#ifdef CONFIG_EFI_MIXED

#define EFI_ALLOC_LIMIT		(efi_is_64bit() ? ULONG_MAX : U32_MAX)

#define ARCH_HAS_EFISTUB_WRAPPERS

static inline bool efi_is_64bit(void)
{
	extern const bool efi_is64;

	return efi_is64;
}

static inline bool efi_is_native(void)
{
	return efi_is_64bit();
}

#define efi_table_attr(inst, attr)					\
	(efi_is_native() ? (inst)->attr					\
			 : efi_mixed_table_attr((inst), attr))

#define efi_mixed_table_attr(inst, attr)				\
	(__typeof__(inst->attr))					\
		_Generic(inst->mixed_mode.attr,				\
		u32:		(unsigned long)(inst->mixed_mode.attr),	\
		default:	(inst->mixed_mode.attr))

/*
 * The following macros allow translating arguments if necessary from native to
 * mixed mode. The use case for this is to initialize the upper 32 bits of
 * output parameters, and where the 32-bit method requires a 64-bit argument,
 * which must be split up into two arguments to be thunked properly.
 *
 * As examples, the AllocatePool boot service returns the address of the
 * allocation, but it will not set the high 32 bits of the address. To ensure
 * that the full 64-bit address is initialized, we zero-init the address before
 * calling the thunk.
 *
 * The FreePages boot service takes a 64-bit physical address even in 32-bit
 * mode. For the thunk to work correctly, a native 64-bit call of
 * 	free_pages(addr, size)
 * must be translated to
 * 	efi64_thunk(free_pages, addr & U32_MAX, addr >> 32, size)
 * so that the two 32-bit halves of addr get pushed onto the stack separately.
 */

static inline void *efi64_zero_upper(void *p)
{
	((u32 *)p)[1] = 0;
	return p;
}

static inline u32 efi64_convert_status(efi_status_t status)
{
	return (u32)(status | (u64)status >> 32);
}

#define __efi64_split(val)		(val) & U32_MAX, (u64)(val) >> 32

#define __efi64_argmap_free_pages(addr, size)				\
	((addr), 0, (size))

#define __efi64_argmap_get_memory_map(mm_size, mm, key, size, ver)	\
	((mm_size), (mm), efi64_zero_upper(key), efi64_zero_upper(size), (ver))

#define __efi64_argmap_allocate_pool(type, size, buffer)		\
	((type), (size), efi64_zero_upper(buffer))

#define __efi64_argmap_create_event(type, tpl, f, c, event)		\
	((type), (tpl), (f), (c), efi64_zero_upper(event))

#define __efi64_argmap_set_timer(event, type, time)			\
	((event), (type), lower_32_bits(time), upper_32_bits(time))

#define __efi64_argmap_wait_for_event(num, event, index)		\
	((num), (event), efi64_zero_upper(index))

#define __efi64_argmap_handle_protocol(handle, protocol, interface)	\
	((handle), (protocol), efi64_zero_upper(interface))

#define __efi64_argmap_locate_protocol(protocol, reg, interface)	\
	((protocol), (reg), efi64_zero_upper(interface))

#define __efi64_argmap_locate_device_path(protocol, path, handle)	\
	((protocol), (path), efi64_zero_upper(handle))

#define __efi64_argmap_exit(handle, status, size, data)			\
	((handle), efi64_convert_status(status), (size), (data))

/* PCI I/O */
#define __efi64_argmap_get_location(protocol, seg, bus, dev, func)	\
	((protocol), efi64_zero_upper(seg), efi64_zero_upper(bus),	\
	 efi64_zero_upper(dev), efi64_zero_upper(func))

/* LoadFile */
#define __efi64_argmap_load_file(protocol, path, policy, bufsize, buf)	\
	((protocol), (path), (policy), efi64_zero_upper(bufsize), (buf))

/* Graphics Output Protocol */
#define __efi64_argmap_query_mode(gop, mode, size, info)		\
	((gop), (mode), efi64_zero_upper(size), efi64_zero_upper(info))

/* TCG2 protocol */
#define __efi64_argmap_hash_log_extend_event(prot, fl, addr, size, ev)	\
	((prot), (fl), 0ULL, (u64)(addr), 0ULL, (u64)(size), 0ULL, ev)

/* DXE services */
#define __efi64_argmap_get_memory_space_descriptor(phys, desc) \
	(__efi64_split(phys), (desc))

#define __efi64_argmap_set_memory_space_attributes(phys, size, flags) \
	(__efi64_split(phys), __efi64_split(size), __efi64_split(flags))

/* file protocol */
#define __efi64_argmap_open(prot, newh, fname, mode, attr) \
	((prot), efi64_zero_upper(newh), (fname), __efi64_split(mode), \
	 __efi64_split(attr))

#define __efi64_argmap_set_position(pos) (__efi64_split(pos))

/* file system protocol */
#define __efi64_argmap_open_volume(prot, file) \
	((prot), efi64_zero_upper(file))

/* Memory Attribute Protocol */
#define __efi64_argmap_get_memory_attributes(protocol, phys, size, flags) \
	((protocol), __efi64_split(phys), __efi64_split(size), (flags))

#define __efi64_argmap_set_memory_attributes(protocol, phys, size, flags) \
	((protocol), __efi64_split(phys), __efi64_split(size), __efi64_split(flags))

#define __efi64_argmap_clear_memory_attributes(protocol, phys, size, flags) \
	((protocol), __efi64_split(phys), __efi64_split(size), __efi64_split(flags))

/*
 * The macros below handle the plumbing for the argument mapping. To add a
 * mapping for a specific EFI method, simply define a macro
 * __efi64_argmap_<method name>, following the examples above.
 */

#define __efi64_thunk_map(inst, func, ...)				\
	efi64_thunk(inst->mixed_mode.func,				\
		__efi64_argmap(__efi64_argmap_ ## func(__VA_ARGS__),	\
			       (__VA_ARGS__)))

#define __efi64_argmap(mapped, args)					\
	__PASTE(__efi64_argmap__, __efi_nargs(__efi_eat mapped))(mapped, args)
#define __efi64_argmap__0(mapped, args) __efi_eval mapped
#define __efi64_argmap__1(mapped, args) __efi_eval args

#define __efi_eat(...)
#define __efi_eval(...) __VA_ARGS__

static inline efi_status_t __efi64_widen_efi_status(u64 status)
{
	/* use rotate to move the value of bit #31 into position #63 */
	return ror64(rol32(status, 1), 1);
}

/* The macro below handles dispatching via the thunk if needed */

#define efi_fn_call(inst, func, ...)					\
	(efi_is_native() ? (inst)->func(__VA_ARGS__)			\
			 : efi_mixed_call((inst), func, ##__VA_ARGS__))

#define efi_mixed_call(inst, func, ...)					\
	_Generic(inst->func(__VA_ARGS__),				\
	efi_status_t:							\
		__efi64_widen_efi_status(				\
			__efi64_thunk_map(inst, func, ##__VA_ARGS__)),	\
	u64: ({ BUILD_BUG(); ULONG_MAX; }),				\
	default:							\
		(__typeof__(inst->func(__VA_ARGS__)))			\
			__efi64_thunk_map(inst, func, ##__VA_ARGS__))

#else /* CONFIG_EFI_MIXED */

static inline bool efi_is_64bit(void)
{
	return IS_ENABLED(CONFIG_X86_64);
}

#endif /* CONFIG_EFI_MIXED */

extern bool efi_reboot_required(void);
extern bool efi_is_table_address(unsigned long phys_addr);

extern void efi_reserve_boot_services(void);
#else
static inline void parse_efi_setup(u64 phys_addr, u32 data_len) {}
static inline bool efi_reboot_required(void)
{
	return false;
}
static inline  bool efi_is_table_address(unsigned long phys_addr)
{
	return false;
}
static inline void efi_reserve_boot_services(void)
{
}
#endif /* CONFIG_EFI */

#ifdef CONFIG_EFI_FAKE_MEMMAP
extern void __init efi_fake_memmap_early(void);
extern void __init efi_fake_memmap(void);
#else
static inline void efi_fake_memmap_early(void)
{
}

static inline void efi_fake_memmap(void)
{
}
#endif

extern int __init efi_memmap_alloc(unsigned int num_entries,
				   struct efi_memory_map_data *data);
extern void __efi_memmap_free(u64 phys, unsigned long size,
			      unsigned long flags);
#define __efi_memmap_free __efi_memmap_free

extern int __init efi_memmap_install(struct efi_memory_map_data *data);
extern int __init efi_memmap_split_count(efi_memory_desc_t *md,
					 struct range *range);
extern void __init efi_memmap_insert(struct efi_memory_map *old_memmap,
				     void *buf, struct efi_mem_range *mem);

#define arch_ima_efi_boot_mode	\
	({ extern struct boot_params boot_params; boot_params.secure_boot; })

#ifdef CONFIG_EFI_RUNTIME_MAP
int efi_get_runtime_map_size(void);
int efi_get_runtime_map_desc_size(void);
int efi_runtime_map_copy(void *buf, size_t bufsz);
#else
static inline int efi_get_runtime_map_size(void)
{
	return 0;
}

static inline int efi_get_runtime_map_desc_size(void)
{
	return 0;
}

static inline int efi_runtime_map_copy(void *buf, size_t bufsz)
{
	return 0;
}

#endif

#endif /* _ASM_X86_EFI_H */