Contributors: 41
Author |
Tokens |
Token Proportion |
Commits |
Commit Proportion |
Linus Torvalds |
261 |
23.68% |
8 |
8.99% |
Andy Shevchenko |
144 |
13.07% |
4 |
4.49% |
Andi Kleen |
140 |
12.70% |
5 |
5.62% |
Venkatesh Pallipadi |
94 |
8.53% |
5 |
5.62% |
Dave Jiang |
58 |
5.26% |
2 |
2.25% |
Tom Lendacky |
41 |
3.72% |
5 |
5.62% |
Will Deacon |
35 |
3.18% |
1 |
1.12% |
Jeremy Fitzhardinge |
34 |
3.09% |
4 |
4.49% |
Andrew Morton |
31 |
2.81% |
3 |
3.37% |
Dave Jones |
26 |
2.36% |
4 |
4.49% |
Andrew Lutomirski |
24 |
2.18% |
1 |
1.12% |
Linus Torvalds (pre-git) |
22 |
2.00% |
6 |
6.74% |
Ingo Molnar |
20 |
1.81% |
5 |
5.62% |
Thomas Gleixner |
20 |
1.81% |
4 |
4.49% |
Craig Bergstrom |
19 |
1.72% |
1 |
1.12% |
Dave Airlie |
13 |
1.18% |
1 |
1.12% |
Luis R. Rodriguez |
13 |
1.18% |
2 |
2.25% |
Rusty Russell |
12 |
1.09% |
1 |
1.12% |
H. Peter Anvin |
12 |
1.09% |
2 |
2.25% |
Brian Gerst |
11 |
1.00% |
2 |
2.25% |
Kirill A. Shutemov |
10 |
0.91% |
2 |
2.25% |
Glauber de Oliveira Costa |
8 |
0.73% |
1 |
1.12% |
Mikael Pettersson |
8 |
0.73% |
1 |
1.12% |
Lianbo Jiang |
7 |
0.64% |
1 |
1.12% |
Al Viro |
5 |
0.45% |
2 |
2.25% |
Toshi Kani |
5 |
0.45% |
1 |
1.12% |
Tejun Heo |
4 |
0.36% |
1 |
1.12% |
René Herman |
4 |
0.36% |
1 |
1.12% |
Juergen Gross |
3 |
0.27% |
1 |
1.12% |
Stephen Rothwell |
3 |
0.27% |
1 |
1.12% |
Mark Salter |
3 |
0.27% |
1 |
1.12% |
Thierry Reding |
2 |
0.18% |
1 |
1.12% |
Roland Dreier |
2 |
0.18% |
1 |
1.12% |
Cyril Chemparathy |
1 |
0.09% |
1 |
1.12% |
Christoph Hellwig |
1 |
0.09% |
1 |
1.12% |
Joe Perches |
1 |
0.09% |
1 |
1.12% |
Jaswinder Singh Rajput |
1 |
0.09% |
1 |
1.12% |
Cristian Stoica |
1 |
0.09% |
1 |
1.12% |
Jonathan Corbet |
1 |
0.09% |
1 |
1.12% |
Adrian Bunk |
1 |
0.09% |
1 |
1.12% |
Greg Kroah-Hartman |
1 |
0.09% |
1 |
1.12% |
Total |
1102 |
|
89 |
|
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _ASM_X86_IO_H
#define _ASM_X86_IO_H
/*
* This file contains the definitions for the x86 IO instructions
* inb/inw/inl/outb/outw/outl and the "string versions" of the same
* (insb/insw/insl/outsb/outsw/outsl). You can also use "pausing"
* versions of the single-IO instructions (inb_p/inw_p/..).
*
* This file is not meant to be obfuscating: it's just complicated
* to (a) handle it all in a way that makes gcc able to optimize it
* as well as possible and (b) trying to avoid writing the same thing
* over and over again with slight variations and possibly making a
* mistake somewhere.
*/
/*
* Thanks to James van Artsdalen for a better timing-fix than
* the two short jumps: using outb's to a nonexistent port seems
* to guarantee better timings even on fast machines.
*
* On the other hand, I'd like to be sure of a non-existent port:
* I feel a bit unsafe about using 0x80 (should be safe, though)
*
* Linus
*/
/*
* Bit simplified and optimized by Jan Hubicka
* Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999.
*
* isa_memset_io, isa_memcpy_fromio, isa_memcpy_toio added,
* isa_read[wl] and isa_write[wl] fixed
* - Arnaldo Carvalho de Melo <acme@conectiva.com.br>
*/
#include <linux/string.h>
#include <linux/compiler.h>
#include <linux/cc_platform.h>
#include <asm/page.h>
#include <asm/early_ioremap.h>
#include <asm/pgtable_types.h>
#include <asm/shared/io.h>
#define build_mmio_read(name, size, type, reg, barrier) \
static inline type name(const volatile void __iomem *addr) \
{ type ret; asm volatile("mov" size " %1,%0":reg (ret) \
:"m" (*(volatile type __force *)addr) barrier); return ret; }
#define build_mmio_write(name, size, type, reg, barrier) \
static inline void name(type val, volatile void __iomem *addr) \
{ asm volatile("mov" size " %0,%1": :reg (val), \
"m" (*(volatile type __force *)addr) barrier); }
build_mmio_read(readb, "b", unsigned char, "=q", :"memory")
build_mmio_read(readw, "w", unsigned short, "=r", :"memory")
build_mmio_read(readl, "l", unsigned int, "=r", :"memory")
build_mmio_read(__readb, "b", unsigned char, "=q", )
build_mmio_read(__readw, "w", unsigned short, "=r", )
build_mmio_read(__readl, "l", unsigned int, "=r", )
build_mmio_write(writeb, "b", unsigned char, "q", :"memory")
build_mmio_write(writew, "w", unsigned short, "r", :"memory")
build_mmio_write(writel, "l", unsigned int, "r", :"memory")
build_mmio_write(__writeb, "b", unsigned char, "q", )
build_mmio_write(__writew, "w", unsigned short, "r", )
build_mmio_write(__writel, "l", unsigned int, "r", )
#define readb readb
#define readw readw
#define readl readl
#define readb_relaxed(a) __readb(a)
#define readw_relaxed(a) __readw(a)
#define readl_relaxed(a) __readl(a)
#define __raw_readb __readb
#define __raw_readw __readw
#define __raw_readl __readl
#define writeb writeb
#define writew writew
#define writel writel
#define writeb_relaxed(v, a) __writeb(v, a)
#define writew_relaxed(v, a) __writew(v, a)
#define writel_relaxed(v, a) __writel(v, a)
#define __raw_writeb __writeb
#define __raw_writew __writew
#define __raw_writel __writel
#ifdef CONFIG_X86_64
build_mmio_read(readq, "q", u64, "=r", :"memory")
build_mmio_read(__readq, "q", u64, "=r", )
build_mmio_write(writeq, "q", u64, "r", :"memory")
build_mmio_write(__writeq, "q", u64, "r", )
#define readq_relaxed(a) __readq(a)
#define writeq_relaxed(v, a) __writeq(v, a)
#define __raw_readq __readq
#define __raw_writeq __writeq
/* Let people know that we have them */
#define readq readq
#define writeq writeq
#endif
#define ARCH_HAS_VALID_PHYS_ADDR_RANGE
extern int valid_phys_addr_range(phys_addr_t addr, size_t size);
extern int valid_mmap_phys_addr_range(unsigned long pfn, size_t size);
/**
* virt_to_phys - map virtual addresses to physical
* @address: address to remap
*
* The returned physical address is the physical (CPU) mapping for
* the memory address given. It is only valid to use this function on
* addresses directly mapped or allocated via kmalloc.
*
* This function does not give bus mappings for DMA transfers. In
* almost all conceivable cases a device driver should not be using
* this function
*/
static inline phys_addr_t virt_to_phys(volatile void *address)
{
return __pa(address);
}
#define virt_to_phys virt_to_phys
/**
* phys_to_virt - map physical address to virtual
* @address: address to remap
*
* The returned virtual address is a current CPU mapping for
* the memory address given. It is only valid to use this function on
* addresses that have a kernel mapping
*
* This function does not handle bus mappings for DMA transfers. In
* almost all conceivable cases a device driver should not be using
* this function
*/
static inline void *phys_to_virt(phys_addr_t address)
{
return __va(address);
}
#define phys_to_virt phys_to_virt
/*
* Change "struct page" to physical address.
*/
#define page_to_phys(page) ((dma_addr_t)page_to_pfn(page) << PAGE_SHIFT)
/*
* ISA I/O bus memory addresses are 1:1 with the physical address.
* However, we truncate the address to unsigned int to avoid undesirable
* promotions in legacy drivers.
*/
static inline unsigned int isa_virt_to_bus(volatile void *address)
{
return (unsigned int)virt_to_phys(address);
}
#define isa_bus_to_virt phys_to_virt
/*
* The default ioremap() behavior is non-cached; if you need something
* else, you probably want one of the following.
*/
extern void __iomem *ioremap_uc(resource_size_t offset, unsigned long size);
#define ioremap_uc ioremap_uc
extern void __iomem *ioremap_cache(resource_size_t offset, unsigned long size);
#define ioremap_cache ioremap_cache
extern void __iomem *ioremap_prot(resource_size_t offset, unsigned long size, unsigned long prot_val);
#define ioremap_prot ioremap_prot
extern void __iomem *ioremap_encrypted(resource_size_t phys_addr, unsigned long size);
#define ioremap_encrypted ioremap_encrypted
/**
* ioremap - map bus memory into CPU space
* @offset: bus address of the memory
* @size: size of the resource to map
*
* ioremap performs a platform specific sequence of operations to
* make bus memory CPU accessible via the readb/readw/readl/writeb/
* writew/writel functions and the other mmio helpers. The returned
* address is not guaranteed to be usable directly as a virtual
* address.
*
* If the area you are trying to map is a PCI BAR you should have a
* look at pci_iomap().
*/
void __iomem *ioremap(resource_size_t offset, unsigned long size);
#define ioremap ioremap
extern void iounmap(volatile void __iomem *addr);
#define iounmap iounmap
#ifdef __KERNEL__
void memcpy_fromio(void *, const volatile void __iomem *, size_t);
void memcpy_toio(volatile void __iomem *, const void *, size_t);
void memset_io(volatile void __iomem *, int, size_t);
#define memcpy_fromio memcpy_fromio
#define memcpy_toio memcpy_toio
#define memset_io memset_io
/*
* ISA space is 'always mapped' on a typical x86 system, no need to
* explicitly ioremap() it. The fact that the ISA IO space is mapped
* to PAGE_OFFSET is pure coincidence - it does not mean ISA values
* are physical addresses. The following constant pointer can be
* used as the IO-area pointer (it can be iounmapped as well, so the
* analogy with PCI is quite large):
*/
#define __ISA_IO_base ((char __iomem *)(PAGE_OFFSET))
#endif /* __KERNEL__ */
extern void native_io_delay(void);
extern int io_delay_type;
extern void io_delay_init(void);
#if defined(CONFIG_PARAVIRT)
#include <asm/paravirt.h>
#else
static inline void slow_down_io(void)
{
native_io_delay();
#ifdef REALLY_SLOW_IO
native_io_delay();
native_io_delay();
native_io_delay();
#endif
}
#endif
#define BUILDIO(bwl, bw, type) \
static inline void out##bwl##_p(type value, u16 port) \
{ \
out##bwl(value, port); \
slow_down_io(); \
} \
\
static inline type in##bwl##_p(u16 port) \
{ \
type value = in##bwl(port); \
slow_down_io(); \
return value; \
} \
\
static inline void outs##bwl(u16 port, const void *addr, unsigned long count) \
{ \
if (cc_platform_has(CC_ATTR_GUEST_UNROLL_STRING_IO)) { \
type *value = (type *)addr; \
while (count) { \
out##bwl(*value, port); \
value++; \
count--; \
} \
} else { \
asm volatile("rep; outs" #bwl \
: "+S"(addr), "+c"(count) \
: "d"(port) : "memory"); \
} \
} \
\
static inline void ins##bwl(u16 port, void *addr, unsigned long count) \
{ \
if (cc_platform_has(CC_ATTR_GUEST_UNROLL_STRING_IO)) { \
type *value = (type *)addr; \
while (count) { \
*value = in##bwl(port); \
value++; \
count--; \
} \
} else { \
asm volatile("rep; ins" #bwl \
: "+D"(addr), "+c"(count) \
: "d"(port) : "memory"); \
} \
}
BUILDIO(b, b, u8)
BUILDIO(w, w, u16)
BUILDIO(l, , u32)
#undef BUILDIO
#define inb_p inb_p
#define inw_p inw_p
#define inl_p inl_p
#define insb insb
#define insw insw
#define insl insl
#define outb_p outb_p
#define outw_p outw_p
#define outl_p outl_p
#define outsb outsb
#define outsw outsw
#define outsl outsl
extern void *xlate_dev_mem_ptr(phys_addr_t phys);
extern void unxlate_dev_mem_ptr(phys_addr_t phys, void *addr);
#define xlate_dev_mem_ptr xlate_dev_mem_ptr
#define unxlate_dev_mem_ptr unxlate_dev_mem_ptr
extern int ioremap_change_attr(unsigned long vaddr, unsigned long size,
enum page_cache_mode pcm);
extern void __iomem *ioremap_wc(resource_size_t offset, unsigned long size);
#define ioremap_wc ioremap_wc
extern void __iomem *ioremap_wt(resource_size_t offset, unsigned long size);
#define ioremap_wt ioremap_wt
extern bool is_early_ioremap_ptep(pte_t *ptep);
#define IO_SPACE_LIMIT 0xffff
#include <asm-generic/io.h>
#undef PCI_IOBASE
#ifdef CONFIG_MTRR
extern int __must_check arch_phys_wc_index(int handle);
#define arch_phys_wc_index arch_phys_wc_index
extern int __must_check arch_phys_wc_add(unsigned long base,
unsigned long size);
extern void arch_phys_wc_del(int handle);
#define arch_phys_wc_add arch_phys_wc_add
#endif
#ifdef CONFIG_X86_PAT
extern int arch_io_reserve_memtype_wc(resource_size_t start, resource_size_t size);
extern void arch_io_free_memtype_wc(resource_size_t start, resource_size_t size);
#define arch_io_reserve_memtype_wc arch_io_reserve_memtype_wc
#endif
#ifdef CONFIG_AMD_MEM_ENCRYPT
extern bool arch_memremap_can_ram_remap(resource_size_t offset,
unsigned long size,
unsigned long flags);
#define arch_memremap_can_ram_remap arch_memremap_can_ram_remap
extern bool phys_mem_access_encrypted(unsigned long phys_addr,
unsigned long size);
#else
static inline bool phys_mem_access_encrypted(unsigned long phys_addr,
unsigned long size)
{
return true;
}
#endif
/**
* iosubmit_cmds512 - copy data to single MMIO location, in 512-bit units
* @dst: destination, in MMIO space (must be 512-bit aligned)
* @src: source
* @count: number of 512 bits quantities to submit
*
* Submit data from kernel space to MMIO space, in units of 512 bits at a
* time. Order of access is not guaranteed, nor is a memory barrier
* performed afterwards.
*
* Warning: Do not use this helper unless your driver has checked that the CPU
* instruction is supported on the platform.
*/
static inline void iosubmit_cmds512(void __iomem *dst, const void *src,
size_t count)
{
const u8 *from = src;
const u8 *end = from + count * 64;
while (from < end) {
movdir64b(dst, from);
from += 64;
}
}
#endif /* _ASM_X86_IO_H */