Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Juergen Gross | 1760 | 40.07% | 12 | 14.12% |
Dave Jones | 632 | 14.39% | 2 | 2.35% |
Linus Torvalds (pre-git) | 372 | 8.47% | 10 | 11.76% |
Yinghai Lu | 354 | 8.06% | 7 | 8.24% |
Patrick Mochel | 300 | 6.83% | 1 | 1.18% |
Jan Beulich | 290 | 6.60% | 2 | 2.35% |
Bernhard Kaindl | 152 | 3.46% | 2 | 2.35% |
Venkatesh Pallipadi | 116 | 2.64% | 3 | 3.53% |
Andreas Herrmann | 72 | 1.64% | 1 | 1.18% |
Jaswinder Singh Rajput | 63 | 1.43% | 6 | 7.06% |
Shaohua Li | 55 | 1.25% | 1 | 1.18% |
Toshi Kani | 52 | 1.18% | 3 | 3.53% |
Andi Kleen | 48 | 1.09% | 2 | 2.35% |
Ingo Molnar | 18 | 0.41% | 5 | 5.88% |
Linus Torvalds | 15 | 0.34% | 1 | 1.18% |
Chen Yucong | 15 | 0.34% | 1 | 1.18% |
Luis R. Rodriguez | 12 | 0.27% | 1 | 1.18% |
Paul Jimenez | 9 | 0.20% | 1 | 1.18% |
Sheng Yang | 9 | 0.20% | 1 | 1.18% |
Rusty Russell | 6 | 0.14% | 2 | 2.35% |
Alan Cox | 6 | 0.14% | 2 | 2.35% |
Prarit Bhargava | 5 | 0.11% | 1 | 1.18% |
Andrew Morton | 5 | 0.11% | 2 | 2.35% |
Borislav Petkov | 4 | 0.09% | 1 | 1.18% |
Alok N Kataria | 3 | 0.07% | 1 | 1.18% |
Jordan Borgner | 2 | 0.05% | 1 | 1.18% |
Brijesh Singh | 2 | 0.05% | 1 | 1.18% |
Andreas Mohr | 2 | 0.05% | 1 | 1.18% |
Sam Ravnborg | 2 | 0.05% | 1 | 1.18% |
Andres Salomon | 2 | 0.05% | 1 | 1.18% |
Adam Buchbinder | 1 | 0.02% | 1 | 1.18% |
Paul Gortmaker | 1 | 0.02% | 1 | 1.18% |
jia zhang | 1 | 0.02% | 1 | 1.18% |
Randy Dunlap | 1 | 0.02% | 1 | 1.18% |
Andries E. Brouwer | 1 | 0.02% | 1 | 1.18% |
Emese Revfy | 1 | 0.02% | 1 | 1.18% |
Lucas De Marchi | 1 | 0.02% | 1 | 1.18% |
Adrian Bunk | 1 | 0.02% | 1 | 1.18% |
Thomas Gleixner | 1 | 0.02% | 1 | 1.18% |
Total | 4392 | 85 |
// SPDX-License-Identifier: GPL-2.0-only /* * This only handles 32bit MTRR on 32bit hosts. This is strictly wrong * because MTRRs can span up to 40 bits (36bits on most modern x86) */ #include <linux/export.h> #include <linux/init.h> #include <linux/io.h> #include <linux/mm.h> #include <linux/cc_platform.h> #include <asm/processor-flags.h> #include <asm/cacheinfo.h> #include <asm/cpufeature.h> #include <asm/hypervisor.h> #include <asm/mshyperv.h> #include <asm/tlbflush.h> #include <asm/mtrr.h> #include <asm/msr.h> #include <asm/memtype.h> #include "mtrr.h" struct fixed_range_block { int base_msr; /* start address of an MTRR block */ int ranges; /* number of MTRRs in this block */ }; static struct fixed_range_block fixed_range_blocks[] = { { MSR_MTRRfix64K_00000, 1 }, /* one 64k MTRR */ { MSR_MTRRfix16K_80000, 2 }, /* two 16k MTRRs */ { MSR_MTRRfix4K_C0000, 8 }, /* eight 4k MTRRs */ {} }; struct cache_map { u64 start; u64 end; u64 flags; u64 type:8; u64 fixed:1; }; bool mtrr_debug; static int __init mtrr_param_setup(char *str) { int rc = 0; if (!str) return -EINVAL; if (!strcmp(str, "debug")) mtrr_debug = true; else rc = -EINVAL; return rc; } early_param("mtrr", mtrr_param_setup); /* * CACHE_MAP_MAX is the maximum number of memory ranges in cache_map, where * no 2 adjacent ranges have the same cache mode (those would be merged). * The number is based on the worst case: * - no two adjacent fixed MTRRs share the same cache mode * - one variable MTRR is spanning a huge area with mode WB * - 255 variable MTRRs with mode UC all overlap with the WB MTRR, creating 2 * additional ranges each (result like "ababababa...aba" with a = WB, b = UC), * accounting for MTRR_MAX_VAR_RANGES * 2 - 1 range entries * - a TOP_MEM2 area (even with overlapping an UC MTRR can't add 2 range entries * to the possible maximum, as it always starts at 4GB, thus it can't be in * the middle of that MTRR, unless that MTRR starts at 0, which would remove * the initial "a" from the "abababa" pattern above) * The map won't contain ranges with no matching MTRR (those fall back to the * default cache mode). */ #define CACHE_MAP_MAX (MTRR_NUM_FIXED_RANGES + MTRR_MAX_VAR_RANGES * 2) static struct cache_map init_cache_map[CACHE_MAP_MAX] __initdata; static struct cache_map *cache_map __refdata = init_cache_map; static unsigned int cache_map_size = CACHE_MAP_MAX; static unsigned int cache_map_n; static unsigned int cache_map_fixed; static unsigned long smp_changes_mask; static int mtrr_state_set; u64 mtrr_tom2; struct mtrr_state_type mtrr_state; EXPORT_SYMBOL_GPL(mtrr_state); /* Reserved bits in the high portion of the MTRRphysBaseN MSR. */ u32 phys_hi_rsvd; /* * BIOS is expected to clear MtrrFixDramModEn bit, see for example * "BIOS and Kernel Developer's Guide for the AMD Athlon 64 and AMD * Opteron Processors" (26094 Rev. 3.30 February 2006), section * "13.2.1.2 SYSCFG Register": "The MtrrFixDramModEn bit should be set * to 1 during BIOS initialization of the fixed MTRRs, then cleared to * 0 for operation." */ static inline void k8_check_syscfg_dram_mod_en(void) { u32 lo, hi; if (!((boot_cpu_data.x86_vendor == X86_VENDOR_AMD) && (boot_cpu_data.x86 >= 0x0f))) return; rdmsr(MSR_AMD64_SYSCFG, lo, hi); if (lo & K8_MTRRFIXRANGE_DRAM_MODIFY) { pr_err(FW_WARN "MTRR: CPU %u: SYSCFG[MtrrFixDramModEn]" " not cleared by BIOS, clearing this bit\n", smp_processor_id()); lo &= ~K8_MTRRFIXRANGE_DRAM_MODIFY; mtrr_wrmsr(MSR_AMD64_SYSCFG, lo, hi); } } /* Get the size of contiguous MTRR range */ static u64 get_mtrr_size(u64 mask) { u64 size; mask |= (u64)phys_hi_rsvd << 32; size = -mask; return size; } static u8 get_var_mtrr_state(unsigned int reg, u64 *start, u64 *size) { struct mtrr_var_range *mtrr = mtrr_state.var_ranges + reg; if (!(mtrr->mask_lo & MTRR_PHYSMASK_V)) return MTRR_TYPE_INVALID; *start = (((u64)mtrr->base_hi) << 32) + (mtrr->base_lo & PAGE_MASK); *size = get_mtrr_size((((u64)mtrr->mask_hi) << 32) + (mtrr->mask_lo & PAGE_MASK)); return mtrr->base_lo & MTRR_PHYSBASE_TYPE; } static u8 get_effective_type(u8 type1, u8 type2) { if (type1 == MTRR_TYPE_UNCACHABLE || type2 == MTRR_TYPE_UNCACHABLE) return MTRR_TYPE_UNCACHABLE; if ((type1 == MTRR_TYPE_WRBACK && type2 == MTRR_TYPE_WRTHROUGH) || (type1 == MTRR_TYPE_WRTHROUGH && type2 == MTRR_TYPE_WRBACK)) return MTRR_TYPE_WRTHROUGH; if (type1 != type2) return MTRR_TYPE_UNCACHABLE; return type1; } static void rm_map_entry_at(int idx) { cache_map_n--; if (cache_map_n > idx) { memmove(cache_map + idx, cache_map + idx + 1, sizeof(*cache_map) * (cache_map_n - idx)); } } /* * Add an entry into cache_map at a specific index. Merges adjacent entries if * appropriate. Return the number of merges for correcting the scan index * (this is needed as merging will reduce the number of entries, which will * result in skipping entries in future iterations if the scan index isn't * corrected). * Note that the corrected index can never go below -1 (resulting in being 0 in * the next scan iteration), as "2" is returned only if the current index is * larger than zero. */ static int add_map_entry_at(u64 start, u64 end, u8 type, int idx) { bool merge_prev = false, merge_next = false; if (start >= end) return 0; if (idx > 0) { struct cache_map *prev = cache_map + idx - 1; if (!prev->fixed && start == prev->end && type == prev->type) merge_prev = true; } if (idx < cache_map_n) { struct cache_map *next = cache_map + idx; if (!next->fixed && end == next->start && type == next->type) merge_next = true; } if (merge_prev && merge_next) { cache_map[idx - 1].end = cache_map[idx].end; rm_map_entry_at(idx); return 2; } if (merge_prev) { cache_map[idx - 1].end = end; return 1; } if (merge_next) { cache_map[idx].start = start; return 1; } /* Sanity check: the array should NEVER be too small! */ if (cache_map_n == cache_map_size) { WARN(1, "MTRR cache mode memory map exhausted!\n"); cache_map_n = cache_map_fixed; return 0; } if (cache_map_n > idx) { memmove(cache_map + idx + 1, cache_map + idx, sizeof(*cache_map) * (cache_map_n - idx)); } cache_map[idx].start = start; cache_map[idx].end = end; cache_map[idx].type = type; cache_map[idx].fixed = 0; cache_map_n++; return 0; } /* Clear a part of an entry. Return 1 if start of entry is still valid. */ static int clr_map_range_at(u64 start, u64 end, int idx) { int ret = start != cache_map[idx].start; u64 tmp; if (start == cache_map[idx].start && end == cache_map[idx].end) { rm_map_entry_at(idx); } else if (start == cache_map[idx].start) { cache_map[idx].start = end; } else if (end == cache_map[idx].end) { cache_map[idx].end = start; } else { tmp = cache_map[idx].end; cache_map[idx].end = start; add_map_entry_at(end, tmp, cache_map[idx].type, idx + 1); } return ret; } /* * Add MTRR to the map. The current map is scanned and each part of the MTRR * either overlapping with an existing entry or with a hole in the map is * handled separately. */ static void add_map_entry(u64 start, u64 end, u8 type) { u8 new_type, old_type; u64 tmp; int i; for (i = 0; i < cache_map_n && start < end; i++) { if (start >= cache_map[i].end) continue; if (start < cache_map[i].start) { /* Region start has no overlap. */ tmp = min(end, cache_map[i].start); i -= add_map_entry_at(start, tmp, type, i); start = tmp; continue; } new_type = get_effective_type(type, cache_map[i].type); old_type = cache_map[i].type; if (cache_map[i].fixed || new_type == old_type) { /* Cut off start of new entry. */ start = cache_map[i].end; continue; } /* Handle only overlapping part of region. */ tmp = min(end, cache_map[i].end); i += clr_map_range_at(start, tmp, i); i -= add_map_entry_at(start, tmp, new_type, i); start = tmp; } /* Add rest of region after last map entry (rest might be empty). */ add_map_entry_at(start, end, type, i); } /* Add variable MTRRs to cache map. */ static void map_add_var(void) { u64 start, size; unsigned int i; u8 type; /* * Add AMD TOP_MEM2 area. Can't be added in mtrr_build_map(), as it * needs to be added again when rebuilding the map due to potentially * having moved as a result of variable MTRRs for memory below 4GB. */ if (mtrr_tom2) { add_map_entry(BIT_ULL(32), mtrr_tom2, MTRR_TYPE_WRBACK); cache_map[cache_map_n - 1].fixed = 1; } for (i = 0; i < num_var_ranges; i++) { type = get_var_mtrr_state(i, &start, &size); if (type != MTRR_TYPE_INVALID) add_map_entry(start, start + size, type); } } /* * Rebuild map by replacing variable entries. Needs to be called when MTRR * registers are being changed after boot, as such changes could include * removals of registers, which are complicated to handle without rebuild of * the map. */ void generic_rebuild_map(void) { if (mtrr_if != &generic_mtrr_ops) return; cache_map_n = cache_map_fixed; map_add_var(); } static unsigned int __init get_cache_map_size(void) { return cache_map_fixed + 2 * num_var_ranges + (mtrr_tom2 != 0); } /* Build the cache_map containing the cache modes per memory range. */ void __init mtrr_build_map(void) { u64 start, end, size; unsigned int i; u8 type; /* Add fixed MTRRs, optimize for adjacent entries with same type. */ if (mtrr_state.enabled & MTRR_STATE_MTRR_FIXED_ENABLED) { /* * Start with 64k size fixed entries, preset 1st one (hence the * loop below is starting with index 1). */ start = 0; end = size = 0x10000; type = mtrr_state.fixed_ranges[0]; for (i = 1; i < MTRR_NUM_FIXED_RANGES; i++) { /* 8 64k entries, then 16 16k ones, rest 4k. */ if (i == 8 || i == 24) size >>= 2; if (mtrr_state.fixed_ranges[i] != type) { add_map_entry(start, end, type); start = end; type = mtrr_state.fixed_ranges[i]; } end += size; } add_map_entry(start, end, type); } /* Mark fixed, they take precedence. */ for (i = 0; i < cache_map_n; i++) cache_map[i].fixed = 1; cache_map_fixed = cache_map_n; map_add_var(); pr_info("MTRR map: %u entries (%u fixed + %u variable; max %u), built from %u variable MTRRs\n", cache_map_n, cache_map_fixed, cache_map_n - cache_map_fixed, get_cache_map_size(), num_var_ranges + (mtrr_tom2 != 0)); if (mtrr_debug) { for (i = 0; i < cache_map_n; i++) { pr_info("%3u: %016llx-%016llx %s\n", i, cache_map[i].start, cache_map[i].end - 1, mtrr_attrib_to_str(cache_map[i].type)); } } } /* Copy the cache_map from __initdata memory to dynamically allocated one. */ void __init mtrr_copy_map(void) { unsigned int new_size = get_cache_map_size(); if (!mtrr_state.enabled || !new_size) { cache_map = NULL; return; } mutex_lock(&mtrr_mutex); cache_map = kcalloc(new_size, sizeof(*cache_map), GFP_KERNEL); if (cache_map) { memmove(cache_map, init_cache_map, cache_map_n * sizeof(*cache_map)); cache_map_size = new_size; } else { mtrr_state.enabled = 0; pr_err("MTRRs disabled due to allocation failure for lookup map.\n"); } mutex_unlock(&mtrr_mutex); } /** * mtrr_overwrite_state - set static MTRR state * * Used to set MTRR state via different means (e.g. with data obtained from * a hypervisor). * Is allowed only for special cases when running virtualized. Must be called * from the x86_init.hyper.init_platform() hook. It can be called only once. * The MTRR state can't be changed afterwards. To ensure that, X86_FEATURE_MTRR * is cleared. */ void mtrr_overwrite_state(struct mtrr_var_range *var, unsigned int num_var, mtrr_type def_type) { unsigned int i; /* Only allowed to be called once before mtrr_bp_init(). */ if (WARN_ON_ONCE(mtrr_state_set)) return; /* Only allowed when running virtualized. */ if (!cpu_feature_enabled(X86_FEATURE_HYPERVISOR)) return; /* * Only allowed for special virtualization cases: * - when running as Hyper-V, SEV-SNP guest using vTOM * - when running as Xen PV guest * - when running as SEV-SNP or TDX guest to avoid unnecessary * VMM communication/Virtualization exceptions (#VC, #VE) */ if (!cc_platform_has(CC_ATTR_GUEST_SEV_SNP) && !hv_is_isolation_supported() && !cpu_feature_enabled(X86_FEATURE_XENPV) && !cpu_feature_enabled(X86_FEATURE_TDX_GUEST)) return; /* Disable MTRR in order to disable MTRR modifications. */ setup_clear_cpu_cap(X86_FEATURE_MTRR); if (var) { if (num_var > MTRR_MAX_VAR_RANGES) { pr_warn("Trying to overwrite MTRR state with %u variable entries\n", num_var); num_var = MTRR_MAX_VAR_RANGES; } for (i = 0; i < num_var; i++) mtrr_state.var_ranges[i] = var[i]; num_var_ranges = num_var; } mtrr_state.def_type = def_type; mtrr_state.enabled |= MTRR_STATE_MTRR_ENABLED; mtrr_state_set = 1; } static u8 type_merge(u8 type, u8 new_type, u8 *uniform) { u8 effective_type; if (type == MTRR_TYPE_INVALID) return new_type; effective_type = get_effective_type(type, new_type); if (type != effective_type) *uniform = 0; return effective_type; } /** * mtrr_type_lookup - look up memory type in MTRR * * Return Values: * MTRR_TYPE_(type) - The effective MTRR type for the region * MTRR_TYPE_INVALID - MTRR is disabled * * Output Argument: * uniform - Set to 1 when the returned MTRR type is valid for the whole * region, set to 0 else. */ u8 mtrr_type_lookup(u64 start, u64 end, u8 *uniform) { u8 type = MTRR_TYPE_INVALID; unsigned int i; if (!mtrr_state_set) { /* Uniformity is unknown. */ *uniform = 0; return MTRR_TYPE_UNCACHABLE; } *uniform = 1; if (!(mtrr_state.enabled & MTRR_STATE_MTRR_ENABLED)) return MTRR_TYPE_UNCACHABLE; for (i = 0; i < cache_map_n && start < end; i++) { /* Region after current map entry? -> continue with next one. */ if (start >= cache_map[i].end) continue; /* Start of region not covered by current map entry? */ if (start < cache_map[i].start) { /* At least some part of region has default type. */ type = type_merge(type, mtrr_state.def_type, uniform); /* End of region not covered, too? -> lookup done. */ if (end <= cache_map[i].start) return type; } /* At least part of region covered by map entry. */ type = type_merge(type, cache_map[i].type, uniform); start = cache_map[i].end; } /* End of region past last entry in map? -> use default type. */ if (start < end) type = type_merge(type, mtrr_state.def_type, uniform); return type; } /* Get the MSR pair relating to a var range */ static void get_mtrr_var_range(unsigned int index, struct mtrr_var_range *vr) { rdmsr(MTRRphysBase_MSR(index), vr->base_lo, vr->base_hi); rdmsr(MTRRphysMask_MSR(index), vr->mask_lo, vr->mask_hi); } /* Fill the MSR pair relating to a var range */ void fill_mtrr_var_range(unsigned int index, u32 base_lo, u32 base_hi, u32 mask_lo, u32 mask_hi) { struct mtrr_var_range *vr; vr = mtrr_state.var_ranges; vr[index].base_lo = base_lo; vr[index].base_hi = base_hi; vr[index].mask_lo = mask_lo; vr[index].mask_hi = mask_hi; } static void get_fixed_ranges(mtrr_type *frs) { unsigned int *p = (unsigned int *)frs; int i; k8_check_syscfg_dram_mod_en(); rdmsr(MSR_MTRRfix64K_00000, p[0], p[1]); for (i = 0; i < 2; i++) rdmsr(MSR_MTRRfix16K_80000 + i, p[2 + i * 2], p[3 + i * 2]); for (i = 0; i < 8; i++) rdmsr(MSR_MTRRfix4K_C0000 + i, p[6 + i * 2], p[7 + i * 2]); } void mtrr_save_fixed_ranges(void *info) { if (boot_cpu_has(X86_FEATURE_MTRR)) get_fixed_ranges(mtrr_state.fixed_ranges); } static unsigned __initdata last_fixed_start; static unsigned __initdata last_fixed_end; static mtrr_type __initdata last_fixed_type; static void __init print_fixed_last(void) { if (!last_fixed_end) return; pr_info(" %05X-%05X %s\n", last_fixed_start, last_fixed_end - 1, mtrr_attrib_to_str(last_fixed_type)); last_fixed_end = 0; } static void __init update_fixed_last(unsigned base, unsigned end, mtrr_type type) { last_fixed_start = base; last_fixed_end = end; last_fixed_type = type; } static void __init print_fixed(unsigned base, unsigned step, const mtrr_type *types) { unsigned i; for (i = 0; i < 8; ++i, ++types, base += step) { if (last_fixed_end == 0) { update_fixed_last(base, base + step, *types); continue; } if (last_fixed_end == base && last_fixed_type == *types) { last_fixed_end = base + step; continue; } /* new segments: gap or different type */ print_fixed_last(); update_fixed_last(base, base + step, *types); } } static void __init print_mtrr_state(void) { unsigned int i; int high_width; pr_info("MTRR default type: %s\n", mtrr_attrib_to_str(mtrr_state.def_type)); if (mtrr_state.have_fixed) { pr_info("MTRR fixed ranges %sabled:\n", ((mtrr_state.enabled & MTRR_STATE_MTRR_ENABLED) && (mtrr_state.enabled & MTRR_STATE_MTRR_FIXED_ENABLED)) ? "en" : "dis"); print_fixed(0x00000, 0x10000, mtrr_state.fixed_ranges + 0); for (i = 0; i < 2; ++i) print_fixed(0x80000 + i * 0x20000, 0x04000, mtrr_state.fixed_ranges + (i + 1) * 8); for (i = 0; i < 8; ++i) print_fixed(0xC0000 + i * 0x08000, 0x01000, mtrr_state.fixed_ranges + (i + 3) * 8); /* tail */ print_fixed_last(); } pr_info("MTRR variable ranges %sabled:\n", mtrr_state.enabled & MTRR_STATE_MTRR_ENABLED ? "en" : "dis"); high_width = (boot_cpu_data.x86_phys_bits - (32 - PAGE_SHIFT) + 3) / 4; for (i = 0; i < num_var_ranges; ++i) { if (mtrr_state.var_ranges[i].mask_lo & MTRR_PHYSMASK_V) pr_info(" %u base %0*X%05X000 mask %0*X%05X000 %s\n", i, high_width, mtrr_state.var_ranges[i].base_hi, mtrr_state.var_ranges[i].base_lo >> 12, high_width, mtrr_state.var_ranges[i].mask_hi, mtrr_state.var_ranges[i].mask_lo >> 12, mtrr_attrib_to_str(mtrr_state.var_ranges[i].base_lo & MTRR_PHYSBASE_TYPE)); else pr_info(" %u disabled\n", i); } if (mtrr_tom2) pr_info("TOM2: %016llx aka %lldM\n", mtrr_tom2, mtrr_tom2>>20); } /* Grab all of the MTRR state for this CPU into *state */ bool __init get_mtrr_state(void) { struct mtrr_var_range *vrs; unsigned lo, dummy; unsigned int i; vrs = mtrr_state.var_ranges; rdmsr(MSR_MTRRcap, lo, dummy); mtrr_state.have_fixed = lo & MTRR_CAP_FIX; for (i = 0; i < num_var_ranges; i++) get_mtrr_var_range(i, &vrs[i]); if (mtrr_state.have_fixed) get_fixed_ranges(mtrr_state.fixed_ranges); rdmsr(MSR_MTRRdefType, lo, dummy); mtrr_state.def_type = lo & MTRR_DEF_TYPE_TYPE; mtrr_state.enabled = (lo & MTRR_DEF_TYPE_ENABLE) >> MTRR_STATE_SHIFT; if (amd_special_default_mtrr()) { unsigned low, high; /* TOP_MEM2 */ rdmsr(MSR_K8_TOP_MEM2, low, high); mtrr_tom2 = high; mtrr_tom2 <<= 32; mtrr_tom2 |= low; mtrr_tom2 &= 0xffffff800000ULL; } if (mtrr_debug) print_mtrr_state(); mtrr_state_set = 1; return !!(mtrr_state.enabled & MTRR_STATE_MTRR_ENABLED); } /* Some BIOS's are messed up and don't set all MTRRs the same! */ void __init mtrr_state_warn(void) { unsigned long mask = smp_changes_mask; if (!mask) return; if (mask & MTRR_CHANGE_MASK_FIXED) pr_warn("mtrr: your CPUs had inconsistent fixed MTRR settings\n"); if (mask & MTRR_CHANGE_MASK_VARIABLE) pr_warn("mtrr: your CPUs had inconsistent variable MTRR settings\n"); if (mask & MTRR_CHANGE_MASK_DEFTYPE) pr_warn("mtrr: your CPUs had inconsistent MTRRdefType settings\n"); pr_info("mtrr: probably your BIOS does not setup all CPUs.\n"); pr_info("mtrr: corrected configuration.\n"); } /* * Doesn't attempt to pass an error out to MTRR users * because it's quite complicated in some cases and probably not * worth it because the best error handling is to ignore it. */ void mtrr_wrmsr(unsigned msr, unsigned a, unsigned b) { if (wrmsr_safe(msr, a, b) < 0) { pr_err("MTRR: CPU %u: Writing MSR %x to %x:%x failed\n", smp_processor_id(), msr, a, b); } } /** * set_fixed_range - checks & updates a fixed-range MTRR if it * differs from the value it should have * @msr: MSR address of the MTTR which should be checked and updated * @changed: pointer which indicates whether the MTRR needed to be changed * @msrwords: pointer to the MSR values which the MSR should have */ static void set_fixed_range(int msr, bool *changed, unsigned int *msrwords) { unsigned lo, hi; rdmsr(msr, lo, hi); if (lo != msrwords[0] || hi != msrwords[1]) { mtrr_wrmsr(msr, msrwords[0], msrwords[1]); *changed = true; } } /** * generic_get_free_region - Get a free MTRR. * @base: The starting (base) address of the region. * @size: The size (in bytes) of the region. * @replace_reg: mtrr index to be replaced; set to invalid value if none. * * Returns: The index of the region on success, else negative on error. */ int generic_get_free_region(unsigned long base, unsigned long size, int replace_reg) { unsigned long lbase, lsize; mtrr_type ltype; int i, max; max = num_var_ranges; if (replace_reg >= 0 && replace_reg < max) return replace_reg; for (i = 0; i < max; ++i) { mtrr_if->get(i, &lbase, &lsize, <ype); if (lsize == 0) return i; } return -ENOSPC; } static void generic_get_mtrr(unsigned int reg, unsigned long *base, unsigned long *size, mtrr_type *type) { u32 mask_lo, mask_hi, base_lo, base_hi; unsigned int hi; u64 tmp, mask; /* * get_mtrr doesn't need to update mtrr_state, also it could be called * from any cpu, so try to print it out directly. */ get_cpu(); rdmsr(MTRRphysMask_MSR(reg), mask_lo, mask_hi); if (!(mask_lo & MTRR_PHYSMASK_V)) { /* Invalid (i.e. free) range */ *base = 0; *size = 0; *type = 0; goto out_put_cpu; } rdmsr(MTRRphysBase_MSR(reg), base_lo, base_hi); /* Work out the shifted address mask: */ tmp = (u64)mask_hi << 32 | (mask_lo & PAGE_MASK); mask = (u64)phys_hi_rsvd << 32 | tmp; /* Expand tmp with high bits to all 1s: */ hi = fls64(tmp); if (hi > 0) { tmp |= ~((1ULL<<(hi - 1)) - 1); if (tmp != mask) { pr_warn("mtrr: your BIOS has configured an incorrect mask, fixing it.\n"); add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK); mask = tmp; } } /* * This works correctly if size is a power of two, i.e. a * contiguous range: */ *size = -mask >> PAGE_SHIFT; *base = (u64)base_hi << (32 - PAGE_SHIFT) | base_lo >> PAGE_SHIFT; *type = base_lo & MTRR_PHYSBASE_TYPE; out_put_cpu: put_cpu(); } /** * set_fixed_ranges - checks & updates the fixed-range MTRRs if they * differ from the saved set * @frs: pointer to fixed-range MTRR values, saved by get_fixed_ranges() */ static int set_fixed_ranges(mtrr_type *frs) { unsigned long long *saved = (unsigned long long *)frs; bool changed = false; int block = -1, range; k8_check_syscfg_dram_mod_en(); while (fixed_range_blocks[++block].ranges) { for (range = 0; range < fixed_range_blocks[block].ranges; range++) set_fixed_range(fixed_range_blocks[block].base_msr + range, &changed, (unsigned int *)saved++); } return changed; } /* * Set the MSR pair relating to a var range. * Returns true if changes are made. */ static bool set_mtrr_var_ranges(unsigned int index, struct mtrr_var_range *vr) { unsigned int lo, hi; bool changed = false; rdmsr(MTRRphysBase_MSR(index), lo, hi); if ((vr->base_lo & ~MTRR_PHYSBASE_RSVD) != (lo & ~MTRR_PHYSBASE_RSVD) || (vr->base_hi & ~phys_hi_rsvd) != (hi & ~phys_hi_rsvd)) { mtrr_wrmsr(MTRRphysBase_MSR(index), vr->base_lo, vr->base_hi); changed = true; } rdmsr(MTRRphysMask_MSR(index), lo, hi); if ((vr->mask_lo & ~MTRR_PHYSMASK_RSVD) != (lo & ~MTRR_PHYSMASK_RSVD) || (vr->mask_hi & ~phys_hi_rsvd) != (hi & ~phys_hi_rsvd)) { mtrr_wrmsr(MTRRphysMask_MSR(index), vr->mask_lo, vr->mask_hi); changed = true; } return changed; } static u32 deftype_lo, deftype_hi; /** * set_mtrr_state - Set the MTRR state for this CPU. * * NOTE: The CPU must already be in a safe state for MTRR changes, including * measures that only a single CPU can be active in set_mtrr_state() in * order to not be subject to races for usage of deftype_lo. This is * accomplished by taking cache_disable_lock. * RETURNS: 0 if no changes made, else a mask indicating what was changed. */ static unsigned long set_mtrr_state(void) { unsigned long change_mask = 0; unsigned int i; for (i = 0; i < num_var_ranges; i++) { if (set_mtrr_var_ranges(i, &mtrr_state.var_ranges[i])) change_mask |= MTRR_CHANGE_MASK_VARIABLE; } if (mtrr_state.have_fixed && set_fixed_ranges(mtrr_state.fixed_ranges)) change_mask |= MTRR_CHANGE_MASK_FIXED; /* * Set_mtrr_restore restores the old value of MTRRdefType, * so to set it we fiddle with the saved value: */ if ((deftype_lo & MTRR_DEF_TYPE_TYPE) != mtrr_state.def_type || ((deftype_lo & MTRR_DEF_TYPE_ENABLE) >> MTRR_STATE_SHIFT) != mtrr_state.enabled) { deftype_lo = (deftype_lo & MTRR_DEF_TYPE_DISABLE) | mtrr_state.def_type | (mtrr_state.enabled << MTRR_STATE_SHIFT); change_mask |= MTRR_CHANGE_MASK_DEFTYPE; } return change_mask; } void mtrr_disable(void) { /* Save MTRR state */ rdmsr(MSR_MTRRdefType, deftype_lo, deftype_hi); /* Disable MTRRs, and set the default type to uncached */ mtrr_wrmsr(MSR_MTRRdefType, deftype_lo & MTRR_DEF_TYPE_DISABLE, deftype_hi); } void mtrr_enable(void) { /* Intel (P6) standard MTRRs */ mtrr_wrmsr(MSR_MTRRdefType, deftype_lo, deftype_hi); } void mtrr_generic_set_state(void) { unsigned long mask, count; /* Actually set the state */ mask = set_mtrr_state(); /* Use the atomic bitops to update the global mask */ for (count = 0; count < sizeof(mask) * 8; ++count) { if (mask & 0x01) set_bit(count, &smp_changes_mask); mask >>= 1; } } /** * generic_set_mtrr - set variable MTRR register on the local CPU. * * @reg: The register to set. * @base: The base address of the region. * @size: The size of the region. If this is 0 the region is disabled. * @type: The type of the region. * * Returns nothing. */ static void generic_set_mtrr(unsigned int reg, unsigned long base, unsigned long size, mtrr_type type) { unsigned long flags; struct mtrr_var_range *vr; vr = &mtrr_state.var_ranges[reg]; local_irq_save(flags); cache_disable(); if (size == 0) { /* * The invalid bit is kept in the mask, so we simply * clear the relevant mask register to disable a range. */ mtrr_wrmsr(MTRRphysMask_MSR(reg), 0, 0); memset(vr, 0, sizeof(struct mtrr_var_range)); } else { vr->base_lo = base << PAGE_SHIFT | type; vr->base_hi = (base >> (32 - PAGE_SHIFT)) & ~phys_hi_rsvd; vr->mask_lo = -size << PAGE_SHIFT | MTRR_PHYSMASK_V; vr->mask_hi = (-size >> (32 - PAGE_SHIFT)) & ~phys_hi_rsvd; mtrr_wrmsr(MTRRphysBase_MSR(reg), vr->base_lo, vr->base_hi); mtrr_wrmsr(MTRRphysMask_MSR(reg), vr->mask_lo, vr->mask_hi); } cache_enable(); local_irq_restore(flags); } int generic_validate_add_page(unsigned long base, unsigned long size, unsigned int type) { unsigned long lbase, last; /* * For Intel PPro stepping <= 7 * must be 4 MiB aligned and not touch 0x70000000 -> 0x7003FFFF */ if (mtrr_if == &generic_mtrr_ops && boot_cpu_data.x86 == 6 && boot_cpu_data.x86_model == 1 && boot_cpu_data.x86_stepping <= 7) { if (base & ((1 << (22 - PAGE_SHIFT)) - 1)) { pr_warn("mtrr: base(0x%lx000) is not 4 MiB aligned\n", base); return -EINVAL; } if (!(base + size < 0x70000 || base > 0x7003F) && (type == MTRR_TYPE_WRCOMB || type == MTRR_TYPE_WRBACK)) { pr_warn("mtrr: writable mtrr between 0x70000000 and 0x7003FFFF may hang the CPU.\n"); return -EINVAL; } } /* * Check upper bits of base and last are equal and lower bits are 0 * for base and 1 for last */ last = base + size - 1; for (lbase = base; !(lbase & 1) && (last & 1); lbase = lbase >> 1, last = last >> 1) ; if (lbase != last) { pr_warn("mtrr: base(0x%lx000) is not aligned on a size(0x%lx000) boundary\n", base, size); return -EINVAL; } return 0; } static int generic_have_wrcomb(void) { unsigned long config, dummy; rdmsr(MSR_MTRRcap, config, dummy); return config & MTRR_CAP_WC; } int positive_have_wrcomb(void) { return 1; } /* * Generic structure... */ const struct mtrr_ops generic_mtrr_ops = { .get = generic_get_mtrr, .get_free_region = generic_get_free_region, .set = generic_set_mtrr, .validate_add_page = generic_validate_add_page, .have_wrcomb = generic_have_wrcomb, };
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1