Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Vikas Shivappa | 1633 | 52.41% | 13 | 22.81% |
James Morse | 536 | 17.20% | 15 | 26.32% |
Fenghua Yu | 429 | 13.77% | 6 | 10.53% |
Tony Luck | 166 | 5.33% | 2 | 3.51% |
Peter Newman | 146 | 4.69% | 2 | 3.51% |
Babu Moger | 125 | 4.01% | 8 | 14.04% |
Reinette Chatre | 62 | 1.99% | 3 | 5.26% |
Prarit Bhargava | 7 | 0.22% | 1 | 1.75% |
Randy Dunlap | 3 | 0.10% | 1 | 1.75% |
Ingo Molnar | 2 | 0.06% | 1 | 1.75% |
Xiaochen Shen | 2 | 0.06% | 1 | 1.75% |
Thomas Gleixner | 2 | 0.06% | 1 | 1.75% |
Jonathan Corbet | 1 | 0.03% | 1 | 1.75% |
Andi Kleen | 1 | 0.03% | 1 | 1.75% |
Colin Ian King | 1 | 0.03% | 1 | 1.75% |
Total | 3116 | 57 |
// SPDX-License-Identifier: GPL-2.0-only /* * Resource Director Technology(RDT) * - Monitoring code * * Copyright (C) 2017 Intel Corporation * * Author: * Vikas Shivappa <vikas.shivappa@intel.com> * * This replaces the cqm.c based on perf but we reuse a lot of * code and datastructures originally from Peter Zijlstra and Matt Fleming. * * More information about RDT be found in the Intel (R) x86 Architecture * Software Developer Manual June 2016, volume 3, section 17.17. */ #include <linux/module.h> #include <linux/sizes.h> #include <linux/slab.h> #include <asm/cpu_device_id.h> #include <asm/resctrl.h> #include "internal.h" struct rmid_entry { u32 rmid; int busy; struct list_head list; }; /* * @rmid_free_lru - A least recently used list of free RMIDs * These RMIDs are guaranteed to have an occupancy less than the * threshold occupancy */ static LIST_HEAD(rmid_free_lru); /* * @rmid_limbo_count - count of currently unused but (potentially) * dirty RMIDs. * This counts RMIDs that no one is currently using but that * may have a occupancy value > resctrl_rmid_realloc_threshold. User can * change the threshold occupancy value. */ static unsigned int rmid_limbo_count; /* * @rmid_entry - The entry in the limbo and free lists. */ static struct rmid_entry *rmid_ptrs; /* * Global boolean for rdt_monitor which is true if any * resource monitoring is enabled. */ bool rdt_mon_capable; /* * Global to indicate which monitoring events are enabled. */ unsigned int rdt_mon_features; /* * This is the threshold cache occupancy in bytes at which we will consider an * RMID available for re-allocation. */ unsigned int resctrl_rmid_realloc_threshold; /* * This is the maximum value for the reallocation threshold, in bytes. */ unsigned int resctrl_rmid_realloc_limit; #define CF(cf) ((unsigned long)(1048576 * (cf) + 0.5)) /* * The correction factor table is documented in Documentation/arch/x86/resctrl.rst. * If rmid > rmid threshold, MBM total and local values should be multiplied * by the correction factor. * * The original table is modified for better code: * * 1. The threshold 0 is changed to rmid count - 1 so don't do correction * for the case. * 2. MBM total and local correction table indexed by core counter which is * equal to (x86_cache_max_rmid + 1) / 8 - 1 and is from 0 up to 27. * 3. The correction factor is normalized to 2^20 (1048576) so it's faster * to calculate corrected value by shifting: * corrected_value = (original_value * correction_factor) >> 20 */ static const struct mbm_correction_factor_table { u32 rmidthreshold; u64 cf; } mbm_cf_table[] __initconst = { {7, CF(1.000000)}, {15, CF(1.000000)}, {15, CF(0.969650)}, {31, CF(1.000000)}, {31, CF(1.066667)}, {31, CF(0.969650)}, {47, CF(1.142857)}, {63, CF(1.000000)}, {63, CF(1.185115)}, {63, CF(1.066553)}, {79, CF(1.454545)}, {95, CF(1.000000)}, {95, CF(1.230769)}, {95, CF(1.142857)}, {95, CF(1.066667)}, {127, CF(1.000000)}, {127, CF(1.254863)}, {127, CF(1.185255)}, {151, CF(1.000000)}, {127, CF(1.066667)}, {167, CF(1.000000)}, {159, CF(1.454334)}, {183, CF(1.000000)}, {127, CF(0.969744)}, {191, CF(1.280246)}, {191, CF(1.230921)}, {215, CF(1.000000)}, {191, CF(1.143118)}, }; static u32 mbm_cf_rmidthreshold __read_mostly = UINT_MAX; static u64 mbm_cf __read_mostly; static inline u64 get_corrected_mbm_count(u32 rmid, unsigned long val) { /* Correct MBM value. */ if (rmid > mbm_cf_rmidthreshold) val = (val * mbm_cf) >> 20; return val; } static inline struct rmid_entry *__rmid_entry(u32 rmid) { struct rmid_entry *entry; entry = &rmid_ptrs[rmid]; WARN_ON(entry->rmid != rmid); return entry; } static int __rmid_read(u32 rmid, enum resctrl_event_id eventid, u64 *val) { u64 msr_val; /* * As per the SDM, when IA32_QM_EVTSEL.EvtID (bits 7:0) is configured * with a valid event code for supported resource type and the bits * IA32_QM_EVTSEL.RMID (bits 41:32) are configured with valid RMID, * IA32_QM_CTR.data (bits 61:0) reports the monitored data. * IA32_QM_CTR.Error (bit 63) and IA32_QM_CTR.Unavailable (bit 62) * are error bits. */ wrmsr(MSR_IA32_QM_EVTSEL, eventid, rmid); rdmsrl(MSR_IA32_QM_CTR, msr_val); if (msr_val & RMID_VAL_ERROR) return -EIO; if (msr_val & RMID_VAL_UNAVAIL) return -EINVAL; *val = msr_val; return 0; } static struct arch_mbm_state *get_arch_mbm_state(struct rdt_hw_domain *hw_dom, u32 rmid, enum resctrl_event_id eventid) { switch (eventid) { case QOS_L3_OCCUP_EVENT_ID: return NULL; case QOS_L3_MBM_TOTAL_EVENT_ID: return &hw_dom->arch_mbm_total[rmid]; case QOS_L3_MBM_LOCAL_EVENT_ID: return &hw_dom->arch_mbm_local[rmid]; } /* Never expect to get here */ WARN_ON_ONCE(1); return NULL; } void resctrl_arch_reset_rmid(struct rdt_resource *r, struct rdt_domain *d, u32 rmid, enum resctrl_event_id eventid) { struct rdt_hw_domain *hw_dom = resctrl_to_arch_dom(d); struct arch_mbm_state *am; am = get_arch_mbm_state(hw_dom, rmid, eventid); if (am) { memset(am, 0, sizeof(*am)); /* Record any initial, non-zero count value. */ __rmid_read(rmid, eventid, &am->prev_msr); } } /* * Assumes that hardware counters are also reset and thus that there is * no need to record initial non-zero counts. */ void resctrl_arch_reset_rmid_all(struct rdt_resource *r, struct rdt_domain *d) { struct rdt_hw_domain *hw_dom = resctrl_to_arch_dom(d); if (is_mbm_total_enabled()) memset(hw_dom->arch_mbm_total, 0, sizeof(*hw_dom->arch_mbm_total) * r->num_rmid); if (is_mbm_local_enabled()) memset(hw_dom->arch_mbm_local, 0, sizeof(*hw_dom->arch_mbm_local) * r->num_rmid); } static u64 mbm_overflow_count(u64 prev_msr, u64 cur_msr, unsigned int width) { u64 shift = 64 - width, chunks; chunks = (cur_msr << shift) - (prev_msr << shift); return chunks >> shift; } int resctrl_arch_rmid_read(struct rdt_resource *r, struct rdt_domain *d, u32 rmid, enum resctrl_event_id eventid, u64 *val) { struct rdt_hw_resource *hw_res = resctrl_to_arch_res(r); struct rdt_hw_domain *hw_dom = resctrl_to_arch_dom(d); struct arch_mbm_state *am; u64 msr_val, chunks; int ret; if (!cpumask_test_cpu(smp_processor_id(), &d->cpu_mask)) return -EINVAL; ret = __rmid_read(rmid, eventid, &msr_val); if (ret) return ret; am = get_arch_mbm_state(hw_dom, rmid, eventid); if (am) { am->chunks += mbm_overflow_count(am->prev_msr, msr_val, hw_res->mbm_width); chunks = get_corrected_mbm_count(rmid, am->chunks); am->prev_msr = msr_val; } else { chunks = msr_val; } *val = chunks * hw_res->mon_scale; return 0; } /* * Check the RMIDs that are marked as busy for this domain. If the * reported LLC occupancy is below the threshold clear the busy bit and * decrement the count. If the busy count gets to zero on an RMID, we * free the RMID */ void __check_limbo(struct rdt_domain *d, bool force_free) { struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_L3].r_resctrl; struct rmid_entry *entry; u32 crmid = 1, nrmid; bool rmid_dirty; u64 val = 0; /* * Skip RMID 0 and start from RMID 1 and check all the RMIDs that * are marked as busy for occupancy < threshold. If the occupancy * is less than the threshold decrement the busy counter of the * RMID and move it to the free list when the counter reaches 0. */ for (;;) { nrmid = find_next_bit(d->rmid_busy_llc, r->num_rmid, crmid); if (nrmid >= r->num_rmid) break; entry = __rmid_entry(nrmid); if (resctrl_arch_rmid_read(r, d, entry->rmid, QOS_L3_OCCUP_EVENT_ID, &val)) { rmid_dirty = true; } else { rmid_dirty = (val >= resctrl_rmid_realloc_threshold); } if (force_free || !rmid_dirty) { clear_bit(entry->rmid, d->rmid_busy_llc); if (!--entry->busy) { rmid_limbo_count--; list_add_tail(&entry->list, &rmid_free_lru); } } crmid = nrmid + 1; } } bool has_busy_rmid(struct rdt_resource *r, struct rdt_domain *d) { return find_first_bit(d->rmid_busy_llc, r->num_rmid) != r->num_rmid; } /* * As of now the RMIDs allocation is global. * However we keep track of which packages the RMIDs * are used to optimize the limbo list management. */ int alloc_rmid(void) { struct rmid_entry *entry; lockdep_assert_held(&rdtgroup_mutex); if (list_empty(&rmid_free_lru)) return rmid_limbo_count ? -EBUSY : -ENOSPC; entry = list_first_entry(&rmid_free_lru, struct rmid_entry, list); list_del(&entry->list); return entry->rmid; } static void add_rmid_to_limbo(struct rmid_entry *entry) { struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_L3].r_resctrl; struct rdt_domain *d; int cpu, err; u64 val = 0; entry->busy = 0; cpu = get_cpu(); list_for_each_entry(d, &r->domains, list) { if (cpumask_test_cpu(cpu, &d->cpu_mask)) { err = resctrl_arch_rmid_read(r, d, entry->rmid, QOS_L3_OCCUP_EVENT_ID, &val); if (err || val <= resctrl_rmid_realloc_threshold) continue; } /* * For the first limbo RMID in the domain, * setup up the limbo worker. */ if (!has_busy_rmid(r, d)) cqm_setup_limbo_handler(d, CQM_LIMBOCHECK_INTERVAL); set_bit(entry->rmid, d->rmid_busy_llc); entry->busy++; } put_cpu(); if (entry->busy) rmid_limbo_count++; else list_add_tail(&entry->list, &rmid_free_lru); } void free_rmid(u32 rmid) { struct rmid_entry *entry; if (!rmid) return; lockdep_assert_held(&rdtgroup_mutex); entry = __rmid_entry(rmid); if (is_llc_occupancy_enabled()) add_rmid_to_limbo(entry); else list_add_tail(&entry->list, &rmid_free_lru); } static struct mbm_state *get_mbm_state(struct rdt_domain *d, u32 rmid, enum resctrl_event_id evtid) { switch (evtid) { case QOS_L3_MBM_TOTAL_EVENT_ID: return &d->mbm_total[rmid]; case QOS_L3_MBM_LOCAL_EVENT_ID: return &d->mbm_local[rmid]; default: return NULL; } } static int __mon_event_count(u32 rmid, struct rmid_read *rr) { struct mbm_state *m; u64 tval = 0; if (rr->first) { resctrl_arch_reset_rmid(rr->r, rr->d, rmid, rr->evtid); m = get_mbm_state(rr->d, rmid, rr->evtid); if (m) memset(m, 0, sizeof(struct mbm_state)); return 0; } rr->err = resctrl_arch_rmid_read(rr->r, rr->d, rmid, rr->evtid, &tval); if (rr->err) return rr->err; rr->val += tval; return 0; } /* * mbm_bw_count() - Update bw count from values previously read by * __mon_event_count(). * @rmid: The rmid used to identify the cached mbm_state. * @rr: The struct rmid_read populated by __mon_event_count(). * * Supporting function to calculate the memory bandwidth * and delta bandwidth in MBps. The chunks value previously read by * __mon_event_count() is compared with the chunks value from the previous * invocation. This must be called once per second to maintain values in MBps. */ static void mbm_bw_count(u32 rmid, struct rmid_read *rr) { struct mbm_state *m = &rr->d->mbm_local[rmid]; u64 cur_bw, bytes, cur_bytes; cur_bytes = rr->val; bytes = cur_bytes - m->prev_bw_bytes; m->prev_bw_bytes = cur_bytes; cur_bw = bytes / SZ_1M; if (m->delta_comp) m->delta_bw = abs(cur_bw - m->prev_bw); m->delta_comp = false; m->prev_bw = cur_bw; } /* * This is called via IPI to read the CQM/MBM counters * on a domain. */ void mon_event_count(void *info) { struct rdtgroup *rdtgrp, *entry; struct rmid_read *rr = info; struct list_head *head; int ret; rdtgrp = rr->rgrp; ret = __mon_event_count(rdtgrp->mon.rmid, rr); /* * For Ctrl groups read data from child monitor groups and * add them together. Count events which are read successfully. * Discard the rmid_read's reporting errors. */ head = &rdtgrp->mon.crdtgrp_list; if (rdtgrp->type == RDTCTRL_GROUP) { list_for_each_entry(entry, head, mon.crdtgrp_list) { if (__mon_event_count(entry->mon.rmid, rr) == 0) ret = 0; } } /* * __mon_event_count() calls for newly created monitor groups may * report -EINVAL/Unavailable if the monitor hasn't seen any traffic. * Discard error if any of the monitor event reads succeeded. */ if (ret == 0) rr->err = 0; } /* * Feedback loop for MBA software controller (mba_sc) * * mba_sc is a feedback loop where we periodically read MBM counters and * adjust the bandwidth percentage values via the IA32_MBA_THRTL_MSRs so * that: * * current bandwidth(cur_bw) < user specified bandwidth(user_bw) * * This uses the MBM counters to measure the bandwidth and MBA throttle * MSRs to control the bandwidth for a particular rdtgrp. It builds on the * fact that resctrl rdtgroups have both monitoring and control. * * The frequency of the checks is 1s and we just tag along the MBM overflow * timer. Having 1s interval makes the calculation of bandwidth simpler. * * Although MBA's goal is to restrict the bandwidth to a maximum, there may * be a need to increase the bandwidth to avoid unnecessarily restricting * the L2 <-> L3 traffic. * * Since MBA controls the L2 external bandwidth where as MBM measures the * L3 external bandwidth the following sequence could lead to such a * situation. * * Consider an rdtgroup which had high L3 <-> memory traffic in initial * phases -> mba_sc kicks in and reduced bandwidth percentage values -> but * after some time rdtgroup has mostly L2 <-> L3 traffic. * * In this case we may restrict the rdtgroup's L2 <-> L3 traffic as its * throttle MSRs already have low percentage values. To avoid * unnecessarily restricting such rdtgroups, we also increase the bandwidth. */ static void update_mba_bw(struct rdtgroup *rgrp, struct rdt_domain *dom_mbm) { u32 closid, rmid, cur_msr_val, new_msr_val; struct mbm_state *pmbm_data, *cmbm_data; u32 cur_bw, delta_bw, user_bw; struct rdt_resource *r_mba; struct rdt_domain *dom_mba; struct list_head *head; struct rdtgroup *entry; if (!is_mbm_local_enabled()) return; r_mba = &rdt_resources_all[RDT_RESOURCE_MBA].r_resctrl; closid = rgrp->closid; rmid = rgrp->mon.rmid; pmbm_data = &dom_mbm->mbm_local[rmid]; dom_mba = get_domain_from_cpu(smp_processor_id(), r_mba); if (!dom_mba) { pr_warn_once("Failure to get domain for MBA update\n"); return; } cur_bw = pmbm_data->prev_bw; user_bw = dom_mba->mbps_val[closid]; delta_bw = pmbm_data->delta_bw; /* MBA resource doesn't support CDP */ cur_msr_val = resctrl_arch_get_config(r_mba, dom_mba, closid, CDP_NONE); /* * For Ctrl groups read data from child monitor groups. */ head = &rgrp->mon.crdtgrp_list; list_for_each_entry(entry, head, mon.crdtgrp_list) { cmbm_data = &dom_mbm->mbm_local[entry->mon.rmid]; cur_bw += cmbm_data->prev_bw; delta_bw += cmbm_data->delta_bw; } /* * Scale up/down the bandwidth linearly for the ctrl group. The * bandwidth step is the bandwidth granularity specified by the * hardware. * * The delta_bw is used when increasing the bandwidth so that we * dont alternately increase and decrease the control values * continuously. * * For ex: consider cur_bw = 90MBps, user_bw = 100MBps and if * bandwidth step is 20MBps(> user_bw - cur_bw), we would keep * switching between 90 and 110 continuously if we only check * cur_bw < user_bw. */ if (cur_msr_val > r_mba->membw.min_bw && user_bw < cur_bw) { new_msr_val = cur_msr_val - r_mba->membw.bw_gran; } else if (cur_msr_val < MAX_MBA_BW && (user_bw > (cur_bw + delta_bw))) { new_msr_val = cur_msr_val + r_mba->membw.bw_gran; } else { return; } resctrl_arch_update_one(r_mba, dom_mba, closid, CDP_NONE, new_msr_val); /* * Delta values are updated dynamically package wise for each * rdtgrp every time the throttle MSR changes value. * * This is because (1)the increase in bandwidth is not perfectly * linear and only "approximately" linear even when the hardware * says it is linear.(2)Also since MBA is a core specific * mechanism, the delta values vary based on number of cores used * by the rdtgrp. */ pmbm_data->delta_comp = true; list_for_each_entry(entry, head, mon.crdtgrp_list) { cmbm_data = &dom_mbm->mbm_local[entry->mon.rmid]; cmbm_data->delta_comp = true; } } static void mbm_update(struct rdt_resource *r, struct rdt_domain *d, int rmid) { struct rmid_read rr; rr.first = false; rr.r = r; rr.d = d; /* * This is protected from concurrent reads from user * as both the user and we hold the global mutex. */ if (is_mbm_total_enabled()) { rr.evtid = QOS_L3_MBM_TOTAL_EVENT_ID; rr.val = 0; __mon_event_count(rmid, &rr); } if (is_mbm_local_enabled()) { rr.evtid = QOS_L3_MBM_LOCAL_EVENT_ID; rr.val = 0; __mon_event_count(rmid, &rr); /* * Call the MBA software controller only for the * control groups and when user has enabled * the software controller explicitly. */ if (is_mba_sc(NULL)) mbm_bw_count(rmid, &rr); } } /* * Handler to scan the limbo list and move the RMIDs * to free list whose occupancy < threshold_occupancy. */ void cqm_handle_limbo(struct work_struct *work) { unsigned long delay = msecs_to_jiffies(CQM_LIMBOCHECK_INTERVAL); int cpu = smp_processor_id(); struct rdt_resource *r; struct rdt_domain *d; mutex_lock(&rdtgroup_mutex); r = &rdt_resources_all[RDT_RESOURCE_L3].r_resctrl; d = container_of(work, struct rdt_domain, cqm_limbo.work); __check_limbo(d, false); if (has_busy_rmid(r, d)) schedule_delayed_work_on(cpu, &d->cqm_limbo, delay); mutex_unlock(&rdtgroup_mutex); } void cqm_setup_limbo_handler(struct rdt_domain *dom, unsigned long delay_ms) { unsigned long delay = msecs_to_jiffies(delay_ms); int cpu; cpu = cpumask_any(&dom->cpu_mask); dom->cqm_work_cpu = cpu; schedule_delayed_work_on(cpu, &dom->cqm_limbo, delay); } void mbm_handle_overflow(struct work_struct *work) { unsigned long delay = msecs_to_jiffies(MBM_OVERFLOW_INTERVAL); struct rdtgroup *prgrp, *crgrp; int cpu = smp_processor_id(); struct list_head *head; struct rdt_resource *r; struct rdt_domain *d; mutex_lock(&rdtgroup_mutex); if (!static_branch_likely(&rdt_mon_enable_key)) goto out_unlock; r = &rdt_resources_all[RDT_RESOURCE_L3].r_resctrl; d = container_of(work, struct rdt_domain, mbm_over.work); list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) { mbm_update(r, d, prgrp->mon.rmid); head = &prgrp->mon.crdtgrp_list; list_for_each_entry(crgrp, head, mon.crdtgrp_list) mbm_update(r, d, crgrp->mon.rmid); if (is_mba_sc(NULL)) update_mba_bw(prgrp, d); } schedule_delayed_work_on(cpu, &d->mbm_over, delay); out_unlock: mutex_unlock(&rdtgroup_mutex); } void mbm_setup_overflow_handler(struct rdt_domain *dom, unsigned long delay_ms) { unsigned long delay = msecs_to_jiffies(delay_ms); int cpu; if (!static_branch_likely(&rdt_mon_enable_key)) return; cpu = cpumask_any(&dom->cpu_mask); dom->mbm_work_cpu = cpu; schedule_delayed_work_on(cpu, &dom->mbm_over, delay); } static int dom_data_init(struct rdt_resource *r) { struct rmid_entry *entry = NULL; int i, nr_rmids; nr_rmids = r->num_rmid; rmid_ptrs = kcalloc(nr_rmids, sizeof(struct rmid_entry), GFP_KERNEL); if (!rmid_ptrs) return -ENOMEM; for (i = 0; i < nr_rmids; i++) { entry = &rmid_ptrs[i]; INIT_LIST_HEAD(&entry->list); entry->rmid = i; list_add_tail(&entry->list, &rmid_free_lru); } /* * RMID 0 is special and is always allocated. It's used for all * tasks that are not monitored. */ entry = __rmid_entry(0); list_del(&entry->list); return 0; } static struct mon_evt llc_occupancy_event = { .name = "llc_occupancy", .evtid = QOS_L3_OCCUP_EVENT_ID, }; static struct mon_evt mbm_total_event = { .name = "mbm_total_bytes", .evtid = QOS_L3_MBM_TOTAL_EVENT_ID, }; static struct mon_evt mbm_local_event = { .name = "mbm_local_bytes", .evtid = QOS_L3_MBM_LOCAL_EVENT_ID, }; /* * Initialize the event list for the resource. * * Note that MBM events are also part of RDT_RESOURCE_L3 resource * because as per the SDM the total and local memory bandwidth * are enumerated as part of L3 monitoring. */ static void l3_mon_evt_init(struct rdt_resource *r) { INIT_LIST_HEAD(&r->evt_list); if (is_llc_occupancy_enabled()) list_add_tail(&llc_occupancy_event.list, &r->evt_list); if (is_mbm_total_enabled()) list_add_tail(&mbm_total_event.list, &r->evt_list); if (is_mbm_local_enabled()) list_add_tail(&mbm_local_event.list, &r->evt_list); } int __init rdt_get_mon_l3_config(struct rdt_resource *r) { unsigned int mbm_offset = boot_cpu_data.x86_cache_mbm_width_offset; struct rdt_hw_resource *hw_res = resctrl_to_arch_res(r); unsigned int threshold; int ret; resctrl_rmid_realloc_limit = boot_cpu_data.x86_cache_size * 1024; hw_res->mon_scale = boot_cpu_data.x86_cache_occ_scale; r->num_rmid = boot_cpu_data.x86_cache_max_rmid + 1; hw_res->mbm_width = MBM_CNTR_WIDTH_BASE; if (mbm_offset > 0 && mbm_offset <= MBM_CNTR_WIDTH_OFFSET_MAX) hw_res->mbm_width += mbm_offset; else if (mbm_offset > MBM_CNTR_WIDTH_OFFSET_MAX) pr_warn("Ignoring impossible MBM counter offset\n"); /* * A reasonable upper limit on the max threshold is the number * of lines tagged per RMID if all RMIDs have the same number of * lines tagged in the LLC. * * For a 35MB LLC and 56 RMIDs, this is ~1.8% of the LLC. */ threshold = resctrl_rmid_realloc_limit / r->num_rmid; /* * Because num_rmid may not be a power of two, round the value * to the nearest multiple of hw_res->mon_scale so it matches a * value the hardware will measure. mon_scale may not be a power of 2. */ resctrl_rmid_realloc_threshold = resctrl_arch_round_mon_val(threshold); ret = dom_data_init(r); if (ret) return ret; if (rdt_cpu_has(X86_FEATURE_BMEC)) { if (rdt_cpu_has(X86_FEATURE_CQM_MBM_TOTAL)) { mbm_total_event.configurable = true; mbm_config_rftype_init("mbm_total_bytes_config"); } if (rdt_cpu_has(X86_FEATURE_CQM_MBM_LOCAL)) { mbm_local_event.configurable = true; mbm_config_rftype_init("mbm_local_bytes_config"); } } l3_mon_evt_init(r); r->mon_capable = true; return 0; } void __init intel_rdt_mbm_apply_quirk(void) { int cf_index; cf_index = (boot_cpu_data.x86_cache_max_rmid + 1) / 8 - 1; if (cf_index >= ARRAY_SIZE(mbm_cf_table)) { pr_info("No MBM correction factor available\n"); return; } mbm_cf_rmidthreshold = mbm_cf_table[cf_index].rmidthreshold; mbm_cf = mbm_cf_table[cf_index].cf; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1