Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Thomas Gleixner | 2218 | 43.08% | 50 | 31.25% |
Venkatesh Pallipadi | 543 | 10.55% | 8 | 5.00% |
Jiang Liu | 379 | 7.36% | 9 | 5.62% |
Andrew Morton | 337 | 6.54% | 2 | 1.25% |
Andreas Herrmann | 268 | 5.20% | 4 | 2.50% |
Waiman Long | 210 | 4.08% | 1 | 0.62% |
Jan Beulich | 209 | 4.06% | 6 | 3.75% |
John Stultz | 172 | 3.34% | 6 | 3.75% |
Bernhard Walle | 120 | 2.33% | 2 | 1.25% |
David Woodhouse | 93 | 1.81% | 2 | 1.25% |
Ingo Molnar | 92 | 1.79% | 7 | 4.38% |
Viresh Kumar | 65 | 1.26% | 1 | 0.62% |
Sebastian Andrzej Siewior | 51 | 0.99% | 1 | 0.62% |
Robert Picco | 36 | 0.70% | 1 | 0.62% |
Pavel Emelyanov | 32 | 0.62% | 1 | 0.62% |
Wagner Ferenc | 31 | 0.60% | 1 | 0.62% |
Clemens Ladisch | 28 | 0.54% | 4 | 2.50% |
David Brownell | 28 | 0.54% | 2 | 1.25% |
Balaji Rao | 22 | 0.43% | 1 | 0.62% |
Lu Yao | 20 | 0.39% | 1 | 0.62% |
Mateusz Jończyk | 19 | 0.37% | 1 | 0.62% |
Langsdorf, Mark | 18 | 0.35% | 1 | 0.62% |
OGAWA Hirofumi | 16 | 0.31% | 1 | 0.62% |
Shaohua Li | 16 | 0.31% | 1 | 0.62% |
Yinghai Lu | 13 | 0.25% | 2 | 1.25% |
Linus Torvalds (pre-git) | 12 | 0.23% | 6 | 3.75% |
Paul E. McKenney | 11 | 0.21% | 1 | 0.62% |
Amol Lad | 9 | 0.17% | 1 | 0.62% |
Andi Kleen | 9 | 0.17% | 2 | 1.25% |
Magnus Damm | 8 | 0.16% | 2 | 1.25% |
Andrew Lutomirski | 6 | 0.12% | 2 | 1.25% |
Ashok Raj | 5 | 0.10% | 1 | 0.62% |
Suresh B. Siddha | 5 | 0.10% | 2 | 1.25% |
Pavel Machek | 5 | 0.10% | 2 | 1.25% |
Alok N Kataria | 4 | 0.08% | 1 | 0.62% |
Maxim Levitsky | 4 | 0.08% | 1 | 0.62% |
Linus Torvalds | 4 | 0.08% | 2 | 1.25% |
Ralf Baechle | 3 | 0.06% | 1 | 0.62% |
Len Brown | 3 | 0.06% | 1 | 0.62% |
Paul Gortmaker | 3 | 0.06% | 1 | 0.62% |
Sergey Senozhatsky | 2 | 0.04% | 1 | 0.62% |
Aditya Pakki | 2 | 0.04% | 1 | 0.62% |
Kees Cook | 2 | 0.04% | 2 | 1.25% |
Janne Kulmala | 2 | 0.04% | 1 | 0.62% |
Joerg Roedel | 2 | 0.04% | 1 | 0.62% |
Justin Stitt | 1 | 0.02% | 1 | 0.62% |
Rasmus Villemoes | 1 | 0.02% | 1 | 0.62% |
Christoph Hellwig | 1 | 0.02% | 1 | 0.62% |
Rusty Russell | 1 | 0.02% | 1 | 0.62% |
Jim Cromie | 1 | 0.02% | 1 | 0.62% |
Arnd Bergmann | 1 | 0.02% | 1 | 0.62% |
Kai Germaschewski | 1 | 0.02% | 1 | 0.62% |
Jeremy Fitzhardinge | 1 | 0.02% | 1 | 0.62% |
Chris Wilson | 1 | 0.02% | 1 | 0.62% |
Stefani Seibold | 1 | 0.02% | 1 | 0.62% |
Denys Vlasenko | 1 | 0.02% | 1 | 0.62% |
Al Viro | 1 | 0.02% | 1 | 0.62% |
Total | 5149 | 160 |
// SPDX-License-Identifier: GPL-2.0-only #include <linux/clockchips.h> #include <linux/interrupt.h> #include <linux/export.h> #include <linux/delay.h> #include <linux/hpet.h> #include <linux/cpu.h> #include <linux/irq.h> #include <asm/irq_remapping.h> #include <asm/hpet.h> #include <asm/time.h> #include <asm/mwait.h> #undef pr_fmt #define pr_fmt(fmt) "hpet: " fmt enum hpet_mode { HPET_MODE_UNUSED, HPET_MODE_LEGACY, HPET_MODE_CLOCKEVT, HPET_MODE_DEVICE, }; struct hpet_channel { struct clock_event_device evt; unsigned int num; unsigned int cpu; unsigned int irq; unsigned int in_use; enum hpet_mode mode; unsigned int boot_cfg; char name[10]; }; struct hpet_base { unsigned int nr_channels; unsigned int nr_clockevents; unsigned int boot_cfg; struct hpet_channel *channels; }; #define HPET_MASK CLOCKSOURCE_MASK(32) #define HPET_MIN_CYCLES 128 #define HPET_MIN_PROG_DELTA (HPET_MIN_CYCLES + (HPET_MIN_CYCLES >> 1)) /* * HPET address is set in acpi/boot.c, when an ACPI entry exists */ unsigned long hpet_address; u8 hpet_blockid; /* OS timer block num */ bool hpet_msi_disable; #if defined(CONFIG_X86_LOCAL_APIC) && defined(CONFIG_GENERIC_MSI_IRQ) static DEFINE_PER_CPU(struct hpet_channel *, cpu_hpet_channel); static struct irq_domain *hpet_domain; #endif static void __iomem *hpet_virt_address; static struct hpet_base hpet_base; static bool hpet_legacy_int_enabled; static unsigned long hpet_freq; bool boot_hpet_disable; bool hpet_force_user; static bool hpet_verbose; static inline struct hpet_channel *clockevent_to_channel(struct clock_event_device *evt) { return container_of(evt, struct hpet_channel, evt); } inline unsigned int hpet_readl(unsigned int a) { return readl(hpet_virt_address + a); } static inline void hpet_writel(unsigned int d, unsigned int a) { writel(d, hpet_virt_address + a); } static inline void hpet_set_mapping(void) { hpet_virt_address = ioremap(hpet_address, HPET_MMAP_SIZE); } static inline void hpet_clear_mapping(void) { iounmap(hpet_virt_address); hpet_virt_address = NULL; } /* * HPET command line enable / disable */ static int __init hpet_setup(char *str) { while (str) { char *next = strchr(str, ','); if (next) *next++ = 0; if (!strncmp("disable", str, 7)) boot_hpet_disable = true; if (!strncmp("force", str, 5)) hpet_force_user = true; if (!strncmp("verbose", str, 7)) hpet_verbose = true; str = next; } return 1; } __setup("hpet=", hpet_setup); static int __init disable_hpet(char *str) { boot_hpet_disable = true; return 1; } __setup("nohpet", disable_hpet); static inline int is_hpet_capable(void) { return !boot_hpet_disable && hpet_address; } /** * is_hpet_enabled - Check whether the legacy HPET timer interrupt is enabled */ int is_hpet_enabled(void) { return is_hpet_capable() && hpet_legacy_int_enabled; } EXPORT_SYMBOL_GPL(is_hpet_enabled); static void _hpet_print_config(const char *function, int line) { u32 i, id, period, cfg, status, channels, l, h; pr_info("%s(%d):\n", function, line); id = hpet_readl(HPET_ID); period = hpet_readl(HPET_PERIOD); pr_info("ID: 0x%x, PERIOD: 0x%x\n", id, period); cfg = hpet_readl(HPET_CFG); status = hpet_readl(HPET_STATUS); pr_info("CFG: 0x%x, STATUS: 0x%x\n", cfg, status); l = hpet_readl(HPET_COUNTER); h = hpet_readl(HPET_COUNTER+4); pr_info("COUNTER_l: 0x%x, COUNTER_h: 0x%x\n", l, h); channels = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1; for (i = 0; i < channels; i++) { l = hpet_readl(HPET_Tn_CFG(i)); h = hpet_readl(HPET_Tn_CFG(i)+4); pr_info("T%d: CFG_l: 0x%x, CFG_h: 0x%x\n", i, l, h); l = hpet_readl(HPET_Tn_CMP(i)); h = hpet_readl(HPET_Tn_CMP(i)+4); pr_info("T%d: CMP_l: 0x%x, CMP_h: 0x%x\n", i, l, h); l = hpet_readl(HPET_Tn_ROUTE(i)); h = hpet_readl(HPET_Tn_ROUTE(i)+4); pr_info("T%d ROUTE_l: 0x%x, ROUTE_h: 0x%x\n", i, l, h); } } #define hpet_print_config() \ do { \ if (hpet_verbose) \ _hpet_print_config(__func__, __LINE__); \ } while (0) /* * When the HPET driver (/dev/hpet) is enabled, we need to reserve * timer 0 and timer 1 in case of RTC emulation. */ #ifdef CONFIG_HPET static void __init hpet_reserve_platform_timers(void) { struct hpet_data hd; unsigned int i; memset(&hd, 0, sizeof(hd)); hd.hd_phys_address = hpet_address; hd.hd_address = hpet_virt_address; hd.hd_nirqs = hpet_base.nr_channels; /* * NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254 * is wrong for i8259!) not the output IRQ. Many BIOS writers * don't bother configuring *any* comparator interrupts. */ hd.hd_irq[0] = HPET_LEGACY_8254; hd.hd_irq[1] = HPET_LEGACY_RTC; for (i = 0; i < hpet_base.nr_channels; i++) { struct hpet_channel *hc = hpet_base.channels + i; if (i >= 2) hd.hd_irq[i] = hc->irq; switch (hc->mode) { case HPET_MODE_UNUSED: case HPET_MODE_DEVICE: hc->mode = HPET_MODE_DEVICE; break; case HPET_MODE_CLOCKEVT: case HPET_MODE_LEGACY: hpet_reserve_timer(&hd, hc->num); break; } } hpet_alloc(&hd); } static void __init hpet_select_device_channel(void) { int i; for (i = 0; i < hpet_base.nr_channels; i++) { struct hpet_channel *hc = hpet_base.channels + i; /* Associate the first unused channel to /dev/hpet */ if (hc->mode == HPET_MODE_UNUSED) { hc->mode = HPET_MODE_DEVICE; return; } } } #else static inline void hpet_reserve_platform_timers(void) { } static inline void hpet_select_device_channel(void) {} #endif /* Common HPET functions */ static void hpet_stop_counter(void) { u32 cfg = hpet_readl(HPET_CFG); cfg &= ~HPET_CFG_ENABLE; hpet_writel(cfg, HPET_CFG); } static void hpet_reset_counter(void) { hpet_writel(0, HPET_COUNTER); hpet_writel(0, HPET_COUNTER + 4); } static void hpet_start_counter(void) { unsigned int cfg = hpet_readl(HPET_CFG); cfg |= HPET_CFG_ENABLE; hpet_writel(cfg, HPET_CFG); } static void hpet_restart_counter(void) { hpet_stop_counter(); hpet_reset_counter(); hpet_start_counter(); } static void hpet_resume_device(void) { force_hpet_resume(); } static void hpet_resume_counter(struct clocksource *cs) { hpet_resume_device(); hpet_restart_counter(); } static void hpet_enable_legacy_int(void) { unsigned int cfg = hpet_readl(HPET_CFG); cfg |= HPET_CFG_LEGACY; hpet_writel(cfg, HPET_CFG); hpet_legacy_int_enabled = true; } static int hpet_clkevt_set_state_periodic(struct clock_event_device *evt) { unsigned int channel = clockevent_to_channel(evt)->num; unsigned int cfg, cmp, now; uint64_t delta; hpet_stop_counter(); delta = ((uint64_t)(NSEC_PER_SEC / HZ)) * evt->mult; delta >>= evt->shift; now = hpet_readl(HPET_COUNTER); cmp = now + (unsigned int)delta; cfg = hpet_readl(HPET_Tn_CFG(channel)); cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC | HPET_TN_SETVAL | HPET_TN_32BIT; hpet_writel(cfg, HPET_Tn_CFG(channel)); hpet_writel(cmp, HPET_Tn_CMP(channel)); udelay(1); /* * HPET on AMD 81xx needs a second write (with HPET_TN_SETVAL * cleared) to T0_CMP to set the period. The HPET_TN_SETVAL * bit is automatically cleared after the first write. * (See AMD-8111 HyperTransport I/O Hub Data Sheet, * Publication # 24674) */ hpet_writel((unsigned int)delta, HPET_Tn_CMP(channel)); hpet_start_counter(); hpet_print_config(); return 0; } static int hpet_clkevt_set_state_oneshot(struct clock_event_device *evt) { unsigned int channel = clockevent_to_channel(evt)->num; unsigned int cfg; cfg = hpet_readl(HPET_Tn_CFG(channel)); cfg &= ~HPET_TN_PERIODIC; cfg |= HPET_TN_ENABLE | HPET_TN_32BIT; hpet_writel(cfg, HPET_Tn_CFG(channel)); return 0; } static int hpet_clkevt_set_state_shutdown(struct clock_event_device *evt) { unsigned int channel = clockevent_to_channel(evt)->num; unsigned int cfg; cfg = hpet_readl(HPET_Tn_CFG(channel)); cfg &= ~HPET_TN_ENABLE; hpet_writel(cfg, HPET_Tn_CFG(channel)); return 0; } static int hpet_clkevt_legacy_resume(struct clock_event_device *evt) { hpet_enable_legacy_int(); hpet_print_config(); return 0; } static int hpet_clkevt_set_next_event(unsigned long delta, struct clock_event_device *evt) { unsigned int channel = clockevent_to_channel(evt)->num; u32 cnt; s32 res; cnt = hpet_readl(HPET_COUNTER); cnt += (u32) delta; hpet_writel(cnt, HPET_Tn_CMP(channel)); /* * HPETs are a complete disaster. The compare register is * based on a equal comparison and neither provides a less * than or equal functionality (which would require to take * the wraparound into account) nor a simple count down event * mode. Further the write to the comparator register is * delayed internally up to two HPET clock cycles in certain * chipsets (ATI, ICH9,10). Some newer AMD chipsets have even * longer delays. We worked around that by reading back the * compare register, but that required another workaround for * ICH9,10 chips where the first readout after write can * return the old stale value. We already had a minimum * programming delta of 5us enforced, but a NMI or SMI hitting * between the counter readout and the comparator write can * move us behind that point easily. Now instead of reading * the compare register back several times, we make the ETIME * decision based on the following: Return ETIME if the * counter value after the write is less than HPET_MIN_CYCLES * away from the event or if the counter is already ahead of * the event. The minimum programming delta for the generic * clockevents code is set to 1.5 * HPET_MIN_CYCLES. */ res = (s32)(cnt - hpet_readl(HPET_COUNTER)); return res < HPET_MIN_CYCLES ? -ETIME : 0; } static void hpet_init_clockevent(struct hpet_channel *hc, unsigned int rating) { struct clock_event_device *evt = &hc->evt; evt->rating = rating; evt->irq = hc->irq; evt->name = hc->name; evt->cpumask = cpumask_of(hc->cpu); evt->set_state_oneshot = hpet_clkevt_set_state_oneshot; evt->set_next_event = hpet_clkevt_set_next_event; evt->set_state_shutdown = hpet_clkevt_set_state_shutdown; evt->features = CLOCK_EVT_FEAT_ONESHOT; if (hc->boot_cfg & HPET_TN_PERIODIC) { evt->features |= CLOCK_EVT_FEAT_PERIODIC; evt->set_state_periodic = hpet_clkevt_set_state_periodic; } } static void __init hpet_legacy_clockevent_register(struct hpet_channel *hc) { /* * Start HPET with the boot CPU's cpumask and make it global after * the IO_APIC has been initialized. */ hc->cpu = boot_cpu_data.cpu_index; strscpy(hc->name, "hpet", sizeof(hc->name)); hpet_init_clockevent(hc, 50); hc->evt.tick_resume = hpet_clkevt_legacy_resume; /* * Legacy horrors and sins from the past. HPET used periodic mode * unconditionally forever on the legacy channel 0. Removing the * below hack and using the conditional in hpet_init_clockevent() * makes at least Qemu and one hardware machine fail to boot. * There are two issues which cause the boot failure: * * #1 After the timer delivery test in IOAPIC and the IOAPIC setup * the next interrupt is not delivered despite the HPET channel * being programmed correctly. Reprogramming the HPET after * switching to IOAPIC makes it work again. After fixing this, * the next issue surfaces: * * #2 Due to the unconditional periodic mode availability the Local * APIC timer calibration can hijack the global clockevents * event handler without causing damage. Using oneshot at this * stage makes if hang because the HPET does not get * reprogrammed due to the handler hijacking. Duh, stupid me! * * Both issues require major surgery and especially the kick HPET * again after enabling IOAPIC results in really nasty hackery. * This 'assume periodic works' magic has survived since HPET * support got added, so it's questionable whether this should be * fixed. Both Qemu and the failing hardware machine support * periodic mode despite the fact that both don't advertise it in * the configuration register and both need that extra kick after * switching to IOAPIC. Seems to be a feature... */ hc->evt.features |= CLOCK_EVT_FEAT_PERIODIC; hc->evt.set_state_periodic = hpet_clkevt_set_state_periodic; /* Start HPET legacy interrupts */ hpet_enable_legacy_int(); clockevents_config_and_register(&hc->evt, hpet_freq, HPET_MIN_PROG_DELTA, 0x7FFFFFFF); global_clock_event = &hc->evt; pr_debug("Clockevent registered\n"); } /* * HPET MSI Support */ #if defined(CONFIG_X86_LOCAL_APIC) && defined(CONFIG_GENERIC_MSI_IRQ) static void hpet_msi_unmask(struct irq_data *data) { struct hpet_channel *hc = irq_data_get_irq_handler_data(data); unsigned int cfg; cfg = hpet_readl(HPET_Tn_CFG(hc->num)); cfg |= HPET_TN_ENABLE | HPET_TN_FSB; hpet_writel(cfg, HPET_Tn_CFG(hc->num)); } static void hpet_msi_mask(struct irq_data *data) { struct hpet_channel *hc = irq_data_get_irq_handler_data(data); unsigned int cfg; cfg = hpet_readl(HPET_Tn_CFG(hc->num)); cfg &= ~(HPET_TN_ENABLE | HPET_TN_FSB); hpet_writel(cfg, HPET_Tn_CFG(hc->num)); } static void hpet_msi_write(struct hpet_channel *hc, struct msi_msg *msg) { hpet_writel(msg->data, HPET_Tn_ROUTE(hc->num)); hpet_writel(msg->address_lo, HPET_Tn_ROUTE(hc->num) + 4); } static void hpet_msi_write_msg(struct irq_data *data, struct msi_msg *msg) { hpet_msi_write(irq_data_get_irq_handler_data(data), msg); } static struct irq_chip hpet_msi_controller __ro_after_init = { .name = "HPET-MSI", .irq_unmask = hpet_msi_unmask, .irq_mask = hpet_msi_mask, .irq_ack = irq_chip_ack_parent, .irq_set_affinity = msi_domain_set_affinity, .irq_retrigger = irq_chip_retrigger_hierarchy, .irq_write_msi_msg = hpet_msi_write_msg, .flags = IRQCHIP_SKIP_SET_WAKE | IRQCHIP_AFFINITY_PRE_STARTUP, }; static int hpet_msi_init(struct irq_domain *domain, struct msi_domain_info *info, unsigned int virq, irq_hw_number_t hwirq, msi_alloc_info_t *arg) { irq_set_status_flags(virq, IRQ_MOVE_PCNTXT); irq_domain_set_info(domain, virq, arg->hwirq, info->chip, NULL, handle_edge_irq, arg->data, "edge"); return 0; } static void hpet_msi_free(struct irq_domain *domain, struct msi_domain_info *info, unsigned int virq) { irq_clear_status_flags(virq, IRQ_MOVE_PCNTXT); } static struct msi_domain_ops hpet_msi_domain_ops = { .msi_init = hpet_msi_init, .msi_free = hpet_msi_free, }; static struct msi_domain_info hpet_msi_domain_info = { .ops = &hpet_msi_domain_ops, .chip = &hpet_msi_controller, .flags = MSI_FLAG_USE_DEF_DOM_OPS, }; static struct irq_domain *hpet_create_irq_domain(int hpet_id) { struct msi_domain_info *domain_info; struct irq_domain *parent, *d; struct fwnode_handle *fn; struct irq_fwspec fwspec; if (x86_vector_domain == NULL) return NULL; domain_info = kzalloc(sizeof(*domain_info), GFP_KERNEL); if (!domain_info) return NULL; *domain_info = hpet_msi_domain_info; domain_info->data = (void *)(long)hpet_id; fn = irq_domain_alloc_named_id_fwnode(hpet_msi_controller.name, hpet_id); if (!fn) { kfree(domain_info); return NULL; } fwspec.fwnode = fn; fwspec.param_count = 1; fwspec.param[0] = hpet_id; parent = irq_find_matching_fwspec(&fwspec, DOMAIN_BUS_ANY); if (!parent) { irq_domain_free_fwnode(fn); kfree(domain_info); return NULL; } if (parent != x86_vector_domain) hpet_msi_controller.name = "IR-HPET-MSI"; d = msi_create_irq_domain(fn, domain_info, parent); if (!d) { irq_domain_free_fwnode(fn); kfree(domain_info); } return d; } static inline int hpet_dev_id(struct irq_domain *domain) { struct msi_domain_info *info = msi_get_domain_info(domain); return (int)(long)info->data; } static int hpet_assign_irq(struct irq_domain *domain, struct hpet_channel *hc, int dev_num) { struct irq_alloc_info info; init_irq_alloc_info(&info, NULL); info.type = X86_IRQ_ALLOC_TYPE_HPET; info.data = hc; info.devid = hpet_dev_id(domain); info.hwirq = dev_num; return irq_domain_alloc_irqs(domain, 1, NUMA_NO_NODE, &info); } static int hpet_clkevt_msi_resume(struct clock_event_device *evt) { struct hpet_channel *hc = clockevent_to_channel(evt); struct irq_data *data = irq_get_irq_data(hc->irq); struct msi_msg msg; /* Restore the MSI msg and unmask the interrupt */ irq_chip_compose_msi_msg(data, &msg); hpet_msi_write(hc, &msg); hpet_msi_unmask(data); return 0; } static irqreturn_t hpet_msi_interrupt_handler(int irq, void *data) { struct hpet_channel *hc = data; struct clock_event_device *evt = &hc->evt; if (!evt->event_handler) { pr_info("Spurious interrupt HPET channel %d\n", hc->num); return IRQ_HANDLED; } evt->event_handler(evt); return IRQ_HANDLED; } static int hpet_setup_msi_irq(struct hpet_channel *hc) { if (request_irq(hc->irq, hpet_msi_interrupt_handler, IRQF_TIMER | IRQF_NOBALANCING, hc->name, hc)) return -1; disable_irq(hc->irq); irq_set_affinity(hc->irq, cpumask_of(hc->cpu)); enable_irq(hc->irq); pr_debug("%s irq %u for MSI\n", hc->name, hc->irq); return 0; } /* Invoked from the hotplug callback on @cpu */ static void init_one_hpet_msi_clockevent(struct hpet_channel *hc, int cpu) { struct clock_event_device *evt = &hc->evt; hc->cpu = cpu; per_cpu(cpu_hpet_channel, cpu) = hc; hpet_setup_msi_irq(hc); hpet_init_clockevent(hc, 110); evt->tick_resume = hpet_clkevt_msi_resume; clockevents_config_and_register(evt, hpet_freq, HPET_MIN_PROG_DELTA, 0x7FFFFFFF); } static struct hpet_channel *hpet_get_unused_clockevent(void) { int i; for (i = 0; i < hpet_base.nr_channels; i++) { struct hpet_channel *hc = hpet_base.channels + i; if (hc->mode != HPET_MODE_CLOCKEVT || hc->in_use) continue; hc->in_use = 1; return hc; } return NULL; } static int hpet_cpuhp_online(unsigned int cpu) { struct hpet_channel *hc = hpet_get_unused_clockevent(); if (hc) init_one_hpet_msi_clockevent(hc, cpu); return 0; } static int hpet_cpuhp_dead(unsigned int cpu) { struct hpet_channel *hc = per_cpu(cpu_hpet_channel, cpu); if (!hc) return 0; free_irq(hc->irq, hc); hc->in_use = 0; per_cpu(cpu_hpet_channel, cpu) = NULL; return 0; } static void __init hpet_select_clockevents(void) { unsigned int i; hpet_base.nr_clockevents = 0; /* No point if MSI is disabled or CPU has an Always Runing APIC Timer */ if (hpet_msi_disable || boot_cpu_has(X86_FEATURE_ARAT)) return; hpet_print_config(); hpet_domain = hpet_create_irq_domain(hpet_blockid); if (!hpet_domain) return; for (i = 0; i < hpet_base.nr_channels; i++) { struct hpet_channel *hc = hpet_base.channels + i; int irq; if (hc->mode != HPET_MODE_UNUSED) continue; /* Only consider HPET channel with MSI support */ if (!(hc->boot_cfg & HPET_TN_FSB_CAP)) continue; sprintf(hc->name, "hpet%d", i); irq = hpet_assign_irq(hpet_domain, hc, hc->num); if (irq <= 0) continue; hc->irq = irq; hc->mode = HPET_MODE_CLOCKEVT; if (++hpet_base.nr_clockevents == num_possible_cpus()) break; } pr_info("%d channels of %d reserved for per-cpu timers\n", hpet_base.nr_channels, hpet_base.nr_clockevents); } #else static inline void hpet_select_clockevents(void) { } #define hpet_cpuhp_online NULL #define hpet_cpuhp_dead NULL #endif /* * Clock source related code */ #if defined(CONFIG_SMP) && defined(CONFIG_64BIT) /* * Reading the HPET counter is a very slow operation. If a large number of * CPUs are trying to access the HPET counter simultaneously, it can cause * massive delays and slow down system performance dramatically. This may * happen when HPET is the default clock source instead of TSC. For a * really large system with hundreds of CPUs, the slowdown may be so * severe, that it can actually crash the system because of a NMI watchdog * soft lockup, for example. * * If multiple CPUs are trying to access the HPET counter at the same time, * we don't actually need to read the counter multiple times. Instead, the * other CPUs can use the counter value read by the first CPU in the group. * * This special feature is only enabled on x86-64 systems. It is unlikely * that 32-bit x86 systems will have enough CPUs to require this feature * with its associated locking overhead. We also need 64-bit atomic read. * * The lock and the HPET value are stored together and can be read in a * single atomic 64-bit read. It is explicitly assumed that arch_spinlock_t * is 32 bits in size. */ union hpet_lock { struct { arch_spinlock_t lock; u32 value; }; u64 lockval; }; static union hpet_lock hpet __cacheline_aligned = { { .lock = __ARCH_SPIN_LOCK_UNLOCKED, }, }; static u64 read_hpet(struct clocksource *cs) { unsigned long flags; union hpet_lock old, new; BUILD_BUG_ON(sizeof(union hpet_lock) != 8); /* * Read HPET directly if in NMI. */ if (in_nmi()) return (u64)hpet_readl(HPET_COUNTER); /* * Read the current state of the lock and HPET value atomically. */ old.lockval = READ_ONCE(hpet.lockval); if (arch_spin_is_locked(&old.lock)) goto contended; local_irq_save(flags); if (arch_spin_trylock(&hpet.lock)) { new.value = hpet_readl(HPET_COUNTER); /* * Use WRITE_ONCE() to prevent store tearing. */ WRITE_ONCE(hpet.value, new.value); arch_spin_unlock(&hpet.lock); local_irq_restore(flags); return (u64)new.value; } local_irq_restore(flags); contended: /* * Contended case * -------------- * Wait until the HPET value change or the lock is free to indicate * its value is up-to-date. * * It is possible that old.value has already contained the latest * HPET value while the lock holder was in the process of releasing * the lock. Checking for lock state change will enable us to return * the value immediately instead of waiting for the next HPET reader * to come along. */ do { cpu_relax(); new.lockval = READ_ONCE(hpet.lockval); } while ((new.value == old.value) && arch_spin_is_locked(&new.lock)); return (u64)new.value; } #else /* * For UP or 32-bit. */ static u64 read_hpet(struct clocksource *cs) { return (u64)hpet_readl(HPET_COUNTER); } #endif static struct clocksource clocksource_hpet = { .name = "hpet", .rating = 250, .read = read_hpet, .mask = HPET_MASK, .flags = CLOCK_SOURCE_IS_CONTINUOUS, .resume = hpet_resume_counter, }; /* * AMD SB700 based systems with spread spectrum enabled use a SMM based * HPET emulation to provide proper frequency setting. * * On such systems the SMM code is initialized with the first HPET register * access and takes some time to complete. During this time the config * register reads 0xffffffff. We check for max 1000 loops whether the * config register reads a non-0xffffffff value to make sure that the * HPET is up and running before we proceed any further. * * A counting loop is safe, as the HPET access takes thousands of CPU cycles. * * On non-SB700 based machines this check is only done once and has no * side effects. */ static bool __init hpet_cfg_working(void) { int i; for (i = 0; i < 1000; i++) { if (hpet_readl(HPET_CFG) != 0xFFFFFFFF) return true; } pr_warn("Config register invalid. Disabling HPET\n"); return false; } static bool __init hpet_counting(void) { u64 start, now, t1; hpet_restart_counter(); t1 = hpet_readl(HPET_COUNTER); start = rdtsc(); /* * We don't know the TSC frequency yet, but waiting for * 200000 TSC cycles is safe: * 4 GHz == 50us * 1 GHz == 200us */ do { if (t1 != hpet_readl(HPET_COUNTER)) return true; now = rdtsc(); } while ((now - start) < 200000UL); pr_warn("Counter not counting. HPET disabled\n"); return false; } static bool __init mwait_pc10_supported(void) { unsigned int eax, ebx, ecx, mwait_substates; if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) return false; if (!cpu_feature_enabled(X86_FEATURE_MWAIT)) return false; if (boot_cpu_data.cpuid_level < CPUID_MWAIT_LEAF) return false; cpuid(CPUID_MWAIT_LEAF, &eax, &ebx, &ecx, &mwait_substates); return (ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED) && (ecx & CPUID5_ECX_INTERRUPT_BREAK) && (mwait_substates & (0xF << 28)); } /* * Check whether the system supports PC10. If so force disable HPET as that * stops counting in PC10. This check is overbroad as it does not take any * of the following into account: * * - ACPI tables * - Enablement of intel_idle * - Command line arguments which limit intel_idle C-state support * * That's perfectly fine. HPET is a piece of hardware designed by committee * and the only reasons why it is still in use on modern systems is the * fact that it is impossible to reliably query TSC and CPU frequency via * CPUID or firmware. * * If HPET is functional it is useful for calibrating TSC, but this can be * done via PMTIMER as well which seems to be the last remaining timer on * X86/INTEL platforms that has not been completely wreckaged by feature * creep. * * In theory HPET support should be removed altogether, but there are older * systems out there which depend on it because TSC and APIC timer are * dysfunctional in deeper C-states. * * It's only 20 years now that hardware people have been asked to provide * reliable and discoverable facilities which can be used for timekeeping * and per CPU timer interrupts. * * The probability that this problem is going to be solved in the * forseeable future is close to zero, so the kernel has to be cluttered * with heuristics to keep up with the ever growing amount of hardware and * firmware trainwrecks. Hopefully some day hardware people will understand * that the approach of "This can be fixed in software" is not sustainable. * Hope dies last... */ static bool __init hpet_is_pc10_damaged(void) { unsigned long long pcfg; /* Check whether PC10 substates are supported */ if (!mwait_pc10_supported()) return false; /* Check whether PC10 is enabled in PKG C-state limit */ rdmsrl(MSR_PKG_CST_CONFIG_CONTROL, pcfg); if ((pcfg & 0xF) < 8) return false; if (hpet_force_user) { pr_warn("HPET force enabled via command line, but dysfunctional in PC10.\n"); return false; } pr_info("HPET dysfunctional in PC10. Force disabled.\n"); boot_hpet_disable = true; return true; } /** * hpet_enable - Try to setup the HPET timer. Returns 1 on success. */ int __init hpet_enable(void) { u32 hpet_period, cfg, id, irq; unsigned int i, channels; struct hpet_channel *hc; u64 freq; if (!is_hpet_capable()) return 0; if (hpet_is_pc10_damaged()) return 0; hpet_set_mapping(); if (!hpet_virt_address) return 0; /* Validate that the config register is working */ if (!hpet_cfg_working()) goto out_nohpet; /* * Read the period and check for a sane value: */ hpet_period = hpet_readl(HPET_PERIOD); if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD) goto out_nohpet; /* The period is a femtoseconds value. Convert it to a frequency. */ freq = FSEC_PER_SEC; do_div(freq, hpet_period); hpet_freq = freq; /* * Read the HPET ID register to retrieve the IRQ routing * information and the number of channels */ id = hpet_readl(HPET_ID); hpet_print_config(); /* This is the HPET channel number which is zero based */ channels = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1; /* * The legacy routing mode needs at least two channels, tick timer * and the rtc emulation channel. */ if (IS_ENABLED(CONFIG_HPET_EMULATE_RTC) && channels < 2) goto out_nohpet; hc = kcalloc(channels, sizeof(*hc), GFP_KERNEL); if (!hc) { pr_warn("Disabling HPET.\n"); goto out_nohpet; } hpet_base.channels = hc; hpet_base.nr_channels = channels; /* Read, store and sanitize the global configuration */ cfg = hpet_readl(HPET_CFG); hpet_base.boot_cfg = cfg; cfg &= ~(HPET_CFG_ENABLE | HPET_CFG_LEGACY); hpet_writel(cfg, HPET_CFG); if (cfg) pr_warn("Global config: Unknown bits %#x\n", cfg); /* Read, store and sanitize the per channel configuration */ for (i = 0; i < channels; i++, hc++) { hc->num = i; cfg = hpet_readl(HPET_Tn_CFG(i)); hc->boot_cfg = cfg; irq = (cfg & Tn_INT_ROUTE_CNF_MASK) >> Tn_INT_ROUTE_CNF_SHIFT; hc->irq = irq; cfg &= ~(HPET_TN_ENABLE | HPET_TN_LEVEL | HPET_TN_FSB); hpet_writel(cfg, HPET_Tn_CFG(i)); cfg &= ~(HPET_TN_PERIODIC | HPET_TN_PERIODIC_CAP | HPET_TN_64BIT_CAP | HPET_TN_32BIT | HPET_TN_ROUTE | HPET_TN_FSB | HPET_TN_FSB_CAP); if (cfg) pr_warn("Channel #%u config: Unknown bits %#x\n", i, cfg); } hpet_print_config(); /* * Validate that the counter is counting. This needs to be done * after sanitizing the config registers to properly deal with * force enabled HPETs. */ if (!hpet_counting()) goto out_nohpet; if (tsc_clocksource_watchdog_disabled()) clocksource_hpet.flags |= CLOCK_SOURCE_MUST_VERIFY; clocksource_register_hz(&clocksource_hpet, (u32)hpet_freq); if (id & HPET_ID_LEGSUP) { hpet_legacy_clockevent_register(&hpet_base.channels[0]); hpet_base.channels[0].mode = HPET_MODE_LEGACY; if (IS_ENABLED(CONFIG_HPET_EMULATE_RTC)) hpet_base.channels[1].mode = HPET_MODE_LEGACY; return 1; } return 0; out_nohpet: kfree(hpet_base.channels); hpet_base.channels = NULL; hpet_base.nr_channels = 0; hpet_clear_mapping(); hpet_address = 0; return 0; } /* * The late initialization runs after the PCI quirks have been invoked * which might have detected a system on which the HPET can be enforced. * * Also, the MSI machinery is not working yet when the HPET is initialized * early. * * If the HPET is enabled, then: * * 1) Reserve one channel for /dev/hpet if CONFIG_HPET=y * 2) Reserve up to num_possible_cpus() channels as per CPU clockevents * 3) Setup /dev/hpet if CONFIG_HPET=y * 4) Register hotplug callbacks when clockevents are available */ static __init int hpet_late_init(void) { int ret; if (!hpet_address) { if (!force_hpet_address) return -ENODEV; hpet_address = force_hpet_address; hpet_enable(); } if (!hpet_virt_address) return -ENODEV; hpet_select_device_channel(); hpet_select_clockevents(); hpet_reserve_platform_timers(); hpet_print_config(); if (!hpet_base.nr_clockevents) return 0; ret = cpuhp_setup_state(CPUHP_AP_X86_HPET_ONLINE, "x86/hpet:online", hpet_cpuhp_online, NULL); if (ret) return ret; ret = cpuhp_setup_state(CPUHP_X86_HPET_DEAD, "x86/hpet:dead", NULL, hpet_cpuhp_dead); if (ret) goto err_cpuhp; return 0; err_cpuhp: cpuhp_remove_state(CPUHP_AP_X86_HPET_ONLINE); return ret; } fs_initcall(hpet_late_init); void hpet_disable(void) { unsigned int i; u32 cfg; if (!is_hpet_capable() || !hpet_virt_address) return; /* Restore boot configuration with the enable bit cleared */ cfg = hpet_base.boot_cfg; cfg &= ~HPET_CFG_ENABLE; hpet_writel(cfg, HPET_CFG); /* Restore the channel boot configuration */ for (i = 0; i < hpet_base.nr_channels; i++) hpet_writel(hpet_base.channels[i].boot_cfg, HPET_Tn_CFG(i)); /* If the HPET was enabled at boot time, reenable it */ if (hpet_base.boot_cfg & HPET_CFG_ENABLE) hpet_writel(hpet_base.boot_cfg, HPET_CFG); } #ifdef CONFIG_HPET_EMULATE_RTC /* * HPET in LegacyReplacement mode eats up the RTC interrupt line. When HPET * is enabled, we support RTC interrupt functionality in software. * * RTC has 3 kinds of interrupts: * * 1) Update Interrupt - generate an interrupt, every second, when the * RTC clock is updated * 2) Alarm Interrupt - generate an interrupt at a specific time of day * 3) Periodic Interrupt - generate periodic interrupt, with frequencies * 2Hz-8192Hz (2Hz-64Hz for non-root user) (all frequencies in powers of 2) * * (1) and (2) above are implemented using polling at a frequency of 64 Hz: * DEFAULT_RTC_INT_FREQ. * * The exact frequency is a tradeoff between accuracy and interrupt overhead. * * For (3), we use interrupts at 64 Hz, or the user specified periodic frequency, * if it's higher. */ #include <linux/mc146818rtc.h> #include <linux/rtc.h> #define DEFAULT_RTC_INT_FREQ 64 #define DEFAULT_RTC_SHIFT 6 #define RTC_NUM_INTS 1 static unsigned long hpet_rtc_flags; static int hpet_prev_update_sec; static struct rtc_time hpet_alarm_time; static unsigned long hpet_pie_count; static u32 hpet_t1_cmp; static u32 hpet_default_delta; static u32 hpet_pie_delta; static unsigned long hpet_pie_limit; static rtc_irq_handler irq_handler; /* * Check that the HPET counter c1 is ahead of c2 */ static inline int hpet_cnt_ahead(u32 c1, u32 c2) { return (s32)(c2 - c1) < 0; } /* * Registers a IRQ handler. */ int hpet_register_irq_handler(rtc_irq_handler handler) { if (!is_hpet_enabled()) return -ENODEV; if (irq_handler) return -EBUSY; irq_handler = handler; return 0; } EXPORT_SYMBOL_GPL(hpet_register_irq_handler); /* * Deregisters the IRQ handler registered with hpet_register_irq_handler() * and does cleanup. */ void hpet_unregister_irq_handler(rtc_irq_handler handler) { if (!is_hpet_enabled()) return; irq_handler = NULL; hpet_rtc_flags = 0; } EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler); /* * Channel 1 for RTC emulation. We use one shot mode, as periodic mode * is not supported by all HPET implementations for channel 1. * * hpet_rtc_timer_init() is called when the rtc is initialized. */ int hpet_rtc_timer_init(void) { unsigned int cfg, cnt, delta; unsigned long flags; if (!is_hpet_enabled()) return 0; if (!hpet_default_delta) { struct clock_event_device *evt = &hpet_base.channels[0].evt; uint64_t clc; clc = (uint64_t) evt->mult * NSEC_PER_SEC; clc >>= evt->shift + DEFAULT_RTC_SHIFT; hpet_default_delta = clc; } if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit) delta = hpet_default_delta; else delta = hpet_pie_delta; local_irq_save(flags); cnt = delta + hpet_readl(HPET_COUNTER); hpet_writel(cnt, HPET_T1_CMP); hpet_t1_cmp = cnt; cfg = hpet_readl(HPET_T1_CFG); cfg &= ~HPET_TN_PERIODIC; cfg |= HPET_TN_ENABLE | HPET_TN_32BIT; hpet_writel(cfg, HPET_T1_CFG); local_irq_restore(flags); return 1; } EXPORT_SYMBOL_GPL(hpet_rtc_timer_init); static void hpet_disable_rtc_channel(void) { u32 cfg = hpet_readl(HPET_T1_CFG); cfg &= ~HPET_TN_ENABLE; hpet_writel(cfg, HPET_T1_CFG); } /* * The functions below are called from rtc driver. * Return 0 if HPET is not being used. * Otherwise do the necessary changes and return 1. */ int hpet_mask_rtc_irq_bit(unsigned long bit_mask) { if (!is_hpet_enabled()) return 0; hpet_rtc_flags &= ~bit_mask; if (unlikely(!hpet_rtc_flags)) hpet_disable_rtc_channel(); return 1; } EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit); int hpet_set_rtc_irq_bit(unsigned long bit_mask) { unsigned long oldbits = hpet_rtc_flags; if (!is_hpet_enabled()) return 0; hpet_rtc_flags |= bit_mask; if ((bit_mask & RTC_UIE) && !(oldbits & RTC_UIE)) hpet_prev_update_sec = -1; if (!oldbits) hpet_rtc_timer_init(); return 1; } EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit); int hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec) { if (!is_hpet_enabled()) return 0; hpet_alarm_time.tm_hour = hrs; hpet_alarm_time.tm_min = min; hpet_alarm_time.tm_sec = sec; return 1; } EXPORT_SYMBOL_GPL(hpet_set_alarm_time); int hpet_set_periodic_freq(unsigned long freq) { uint64_t clc; if (!is_hpet_enabled()) return 0; if (freq <= DEFAULT_RTC_INT_FREQ) { hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq; } else { struct clock_event_device *evt = &hpet_base.channels[0].evt; clc = (uint64_t) evt->mult * NSEC_PER_SEC; do_div(clc, freq); clc >>= evt->shift; hpet_pie_delta = clc; hpet_pie_limit = 0; } return 1; } EXPORT_SYMBOL_GPL(hpet_set_periodic_freq); int hpet_rtc_dropped_irq(void) { return is_hpet_enabled(); } EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq); static void hpet_rtc_timer_reinit(void) { unsigned int delta; int lost_ints = -1; if (unlikely(!hpet_rtc_flags)) hpet_disable_rtc_channel(); if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit) delta = hpet_default_delta; else delta = hpet_pie_delta; /* * Increment the comparator value until we are ahead of the * current count. */ do { hpet_t1_cmp += delta; hpet_writel(hpet_t1_cmp, HPET_T1_CMP); lost_ints++; } while (!hpet_cnt_ahead(hpet_t1_cmp, hpet_readl(HPET_COUNTER))); if (lost_ints) { if (hpet_rtc_flags & RTC_PIE) hpet_pie_count += lost_ints; if (printk_ratelimit()) pr_warn("Lost %d RTC interrupts\n", lost_ints); } } irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id) { struct rtc_time curr_time; unsigned long rtc_int_flag = 0; hpet_rtc_timer_reinit(); memset(&curr_time, 0, sizeof(struct rtc_time)); if (hpet_rtc_flags & (RTC_UIE | RTC_AIE)) { if (unlikely(mc146818_get_time(&curr_time) < 0)) { pr_err_ratelimited("unable to read current time from RTC\n"); return IRQ_HANDLED; } } if (hpet_rtc_flags & RTC_UIE && curr_time.tm_sec != hpet_prev_update_sec) { if (hpet_prev_update_sec >= 0) rtc_int_flag = RTC_UF; hpet_prev_update_sec = curr_time.tm_sec; } if (hpet_rtc_flags & RTC_PIE && ++hpet_pie_count >= hpet_pie_limit) { rtc_int_flag |= RTC_PF; hpet_pie_count = 0; } if (hpet_rtc_flags & RTC_AIE && (curr_time.tm_sec == hpet_alarm_time.tm_sec) && (curr_time.tm_min == hpet_alarm_time.tm_min) && (curr_time.tm_hour == hpet_alarm_time.tm_hour)) rtc_int_flag |= RTC_AF; if (rtc_int_flag) { rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8)); if (irq_handler) irq_handler(rtc_int_flag, dev_id); } return IRQ_HANDLED; } EXPORT_SYMBOL_GPL(hpet_rtc_interrupt); #endif
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1