Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Tejun Heo | 1824 | 47.50% | 44 | 25.88% |
Alison Schofield | 318 | 8.28% | 1 | 0.59% |
Andi Kleen | 287 | 7.47% | 16 | 9.41% |
Mike Travis | 273 | 7.11% | 12 | 7.06% |
Dan J Williams | 197 | 5.13% | 5 | 2.94% |
Yinghai Lu | 103 | 2.68% | 16 | 9.41% |
Rusty Russell | 101 | 2.63% | 4 | 2.35% |
David Rientjes | 98 | 2.55% | 8 | 4.71% |
Thomas Gleixner | 72 | 1.88% | 6 | 3.53% |
Xishi Qiu | 72 | 1.88% | 1 | 0.59% |
Brian Gerst | 65 | 1.69% | 2 | 1.18% |
Tang Chen | 64 | 1.67% | 5 | 2.94% |
Jan Beulich | 58 | 1.51% | 1 | 0.59% |
Ingo Molnar | 45 | 1.17% | 5 | 2.94% |
Ravikiran G. Thirumalai | 38 | 0.99% | 3 | 1.76% |
Jonathan Cameron | 30 | 0.78% | 1 | 0.59% |
Fan Du | 23 | 0.60% | 1 | 0.59% |
Björn Helgaas | 20 | 0.52% | 1 | 0.59% |
Mike Rapoport | 16 | 0.42% | 5 | 2.94% |
Saurabh Sengar | 14 | 0.36% | 1 | 0.59% |
Kees Cook | 13 | 0.34% | 1 | 0.59% |
Matthew Dobson | 12 | 0.31% | 2 | 1.18% |
Joe Perches | 10 | 0.26% | 1 | 0.59% |
Petr Holasek | 10 | 0.26% | 1 | 0.59% |
Luiz Fernando N. Capitulino | 8 | 0.21% | 1 | 0.59% |
Siddh Raman Pant | 7 | 0.18% | 1 | 0.59% |
Suresh B. Siddha | 7 | 0.18% | 2 | 1.18% |
Dave Young | 6 | 0.16% | 1 | 0.59% |
Martin J. Bligh | 6 | 0.16% | 1 | 0.59% |
Oscar Salvador | 4 | 0.10% | 1 | 0.59% |
Lee Schermerhorn | 4 | 0.10% | 1 | 0.59% |
Daniel Yeisley | 4 | 0.10% | 1 | 0.59% |
Amul Shah | 4 | 0.10% | 1 | 0.59% |
Andrew Morton | 4 | 0.10% | 2 | 1.18% |
Peter Zijlstra | 4 | 0.10% | 1 | 0.59% |
Glauber de Oliveira Costa | 3 | 0.08% | 1 | 0.59% |
Cody P Schafer | 2 | 0.05% | 1 | 0.59% |
Wei Yang | 2 | 0.05% | 1 | 0.59% |
Dave Jones | 2 | 0.05% | 1 | 0.59% |
Linus Torvalds | 1 | 0.03% | 1 | 0.59% |
Florian Mickler | 1 | 0.03% | 1 | 0.59% |
Mel Gorman | 1 | 0.03% | 1 | 0.59% |
Alexey Dobriyan | 1 | 0.03% | 1 | 0.59% |
H. Peter Anvin | 1 | 0.03% | 1 | 0.59% |
Joerg Roedel | 1 | 0.03% | 1 | 0.59% |
Hans Rosenfeld | 1 | 0.03% | 1 | 0.59% |
Cao jin | 1 | 0.03% | 1 | 0.59% |
Andy Grover | 1 | 0.03% | 1 | 0.59% |
Wanlong Gao | 1 | 0.03% | 1 | 0.59% |
Total | 3840 | 170 |
// SPDX-License-Identifier: GPL-2.0-only /* Common code for 32 and 64-bit NUMA */ #include <linux/acpi.h> #include <linux/kernel.h> #include <linux/mm.h> #include <linux/of.h> #include <linux/string.h> #include <linux/init.h> #include <linux/memblock.h> #include <linux/mmzone.h> #include <linux/ctype.h> #include <linux/nodemask.h> #include <linux/sched.h> #include <linux/topology.h> #include <linux/sort.h> #include <asm/e820/api.h> #include <asm/proto.h> #include <asm/dma.h> #include <asm/amd_nb.h> #include "numa_internal.h" int numa_off; nodemask_t numa_nodes_parsed __initdata; struct pglist_data *node_data[MAX_NUMNODES] __read_mostly; EXPORT_SYMBOL(node_data); static struct numa_meminfo numa_meminfo __initdata_or_meminfo; static struct numa_meminfo numa_reserved_meminfo __initdata_or_meminfo; static int numa_distance_cnt; static u8 *numa_distance; static __init int numa_setup(char *opt) { if (!opt) return -EINVAL; if (!strncmp(opt, "off", 3)) numa_off = 1; if (!strncmp(opt, "fake=", 5)) return numa_emu_cmdline(opt + 5); if (!strncmp(opt, "noacpi", 6)) disable_srat(); if (!strncmp(opt, "nohmat", 6)) disable_hmat(); return 0; } early_param("numa", numa_setup); /* * apicid, cpu, node mappings */ s16 __apicid_to_node[MAX_LOCAL_APIC] = { [0 ... MAX_LOCAL_APIC-1] = NUMA_NO_NODE }; int numa_cpu_node(int cpu) { u32 apicid = early_per_cpu(x86_cpu_to_apicid, cpu); if (apicid != BAD_APICID) return __apicid_to_node[apicid]; return NUMA_NO_NODE; } cpumask_var_t node_to_cpumask_map[MAX_NUMNODES]; EXPORT_SYMBOL(node_to_cpumask_map); /* * Map cpu index to node index */ DEFINE_EARLY_PER_CPU(int, x86_cpu_to_node_map, NUMA_NO_NODE); EXPORT_EARLY_PER_CPU_SYMBOL(x86_cpu_to_node_map); void numa_set_node(int cpu, int node) { int *cpu_to_node_map = early_per_cpu_ptr(x86_cpu_to_node_map); /* early setting, no percpu area yet */ if (cpu_to_node_map) { cpu_to_node_map[cpu] = node; return; } #ifdef CONFIG_DEBUG_PER_CPU_MAPS if (cpu >= nr_cpu_ids || !cpu_possible(cpu)) { printk(KERN_ERR "numa_set_node: invalid cpu# (%d)\n", cpu); dump_stack(); return; } #endif per_cpu(x86_cpu_to_node_map, cpu) = node; set_cpu_numa_node(cpu, node); } void numa_clear_node(int cpu) { numa_set_node(cpu, NUMA_NO_NODE); } /* * Allocate node_to_cpumask_map based on number of available nodes * Requires node_possible_map to be valid. * * Note: cpumask_of_node() is not valid until after this is done. * (Use CONFIG_DEBUG_PER_CPU_MAPS to check this.) */ void __init setup_node_to_cpumask_map(void) { unsigned int node; /* setup nr_node_ids if not done yet */ if (nr_node_ids == MAX_NUMNODES) setup_nr_node_ids(); /* allocate the map */ for (node = 0; node < nr_node_ids; node++) alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]); /* cpumask_of_node() will now work */ pr_debug("Node to cpumask map for %u nodes\n", nr_node_ids); } static int __init numa_add_memblk_to(int nid, u64 start, u64 end, struct numa_meminfo *mi) { /* ignore zero length blks */ if (start == end) return 0; /* whine about and ignore invalid blks */ if (start > end || nid < 0 || nid >= MAX_NUMNODES) { pr_warn("Warning: invalid memblk node %d [mem %#010Lx-%#010Lx]\n", nid, start, end - 1); return 0; } if (mi->nr_blks >= NR_NODE_MEMBLKS) { pr_err("too many memblk ranges\n"); return -EINVAL; } mi->blk[mi->nr_blks].start = start; mi->blk[mi->nr_blks].end = end; mi->blk[mi->nr_blks].nid = nid; mi->nr_blks++; return 0; } /** * numa_remove_memblk_from - Remove one numa_memblk from a numa_meminfo * @idx: Index of memblk to remove * @mi: numa_meminfo to remove memblk from * * Remove @idx'th numa_memblk from @mi by shifting @mi->blk[] and * decrementing @mi->nr_blks. */ void __init numa_remove_memblk_from(int idx, struct numa_meminfo *mi) { mi->nr_blks--; memmove(&mi->blk[idx], &mi->blk[idx + 1], (mi->nr_blks - idx) * sizeof(mi->blk[0])); } /** * numa_move_tail_memblk - Move a numa_memblk from one numa_meminfo to another * @dst: numa_meminfo to append block to * @idx: Index of memblk to remove * @src: numa_meminfo to remove memblk from */ static void __init numa_move_tail_memblk(struct numa_meminfo *dst, int idx, struct numa_meminfo *src) { dst->blk[dst->nr_blks++] = src->blk[idx]; numa_remove_memblk_from(idx, src); } /** * numa_add_memblk - Add one numa_memblk to numa_meminfo * @nid: NUMA node ID of the new memblk * @start: Start address of the new memblk * @end: End address of the new memblk * * Add a new memblk to the default numa_meminfo. * * RETURNS: * 0 on success, -errno on failure. */ int __init numa_add_memblk(int nid, u64 start, u64 end) { return numa_add_memblk_to(nid, start, end, &numa_meminfo); } /* Allocate NODE_DATA for a node on the local memory */ static void __init alloc_node_data(int nid) { const size_t nd_size = roundup(sizeof(pg_data_t), PAGE_SIZE); u64 nd_pa; void *nd; int tnid; /* * Allocate node data. Try node-local memory and then any node. * Never allocate in DMA zone. */ nd_pa = memblock_phys_alloc_try_nid(nd_size, SMP_CACHE_BYTES, nid); if (!nd_pa) { pr_err("Cannot find %zu bytes in any node (initial node: %d)\n", nd_size, nid); return; } nd = __va(nd_pa); /* report and initialize */ printk(KERN_INFO "NODE_DATA(%d) allocated [mem %#010Lx-%#010Lx]\n", nid, nd_pa, nd_pa + nd_size - 1); tnid = early_pfn_to_nid(nd_pa >> PAGE_SHIFT); if (tnid != nid) printk(KERN_INFO " NODE_DATA(%d) on node %d\n", nid, tnid); node_data[nid] = nd; memset(NODE_DATA(nid), 0, sizeof(pg_data_t)); node_set_online(nid); } /** * numa_cleanup_meminfo - Cleanup a numa_meminfo * @mi: numa_meminfo to clean up * * Sanitize @mi by merging and removing unnecessary memblks. Also check for * conflicts and clear unused memblks. * * RETURNS: * 0 on success, -errno on failure. */ int __init numa_cleanup_meminfo(struct numa_meminfo *mi) { const u64 low = 0; const u64 high = PFN_PHYS(max_pfn); int i, j, k; /* first, trim all entries */ for (i = 0; i < mi->nr_blks; i++) { struct numa_memblk *bi = &mi->blk[i]; /* move / save reserved memory ranges */ if (!memblock_overlaps_region(&memblock.memory, bi->start, bi->end - bi->start)) { numa_move_tail_memblk(&numa_reserved_meminfo, i--, mi); continue; } /* make sure all non-reserved blocks are inside the limits */ bi->start = max(bi->start, low); /* preserve info for non-RAM areas above 'max_pfn': */ if (bi->end > high) { numa_add_memblk_to(bi->nid, high, bi->end, &numa_reserved_meminfo); bi->end = high; } /* and there's no empty block */ if (bi->start >= bi->end) numa_remove_memblk_from(i--, mi); } /* merge neighboring / overlapping entries */ for (i = 0; i < mi->nr_blks; i++) { struct numa_memblk *bi = &mi->blk[i]; for (j = i + 1; j < mi->nr_blks; j++) { struct numa_memblk *bj = &mi->blk[j]; u64 start, end; /* * See whether there are overlapping blocks. Whine * about but allow overlaps of the same nid. They * will be merged below. */ if (bi->end > bj->start && bi->start < bj->end) { if (bi->nid != bj->nid) { pr_err("node %d [mem %#010Lx-%#010Lx] overlaps with node %d [mem %#010Lx-%#010Lx]\n", bi->nid, bi->start, bi->end - 1, bj->nid, bj->start, bj->end - 1); return -EINVAL; } pr_warn("Warning: node %d [mem %#010Lx-%#010Lx] overlaps with itself [mem %#010Lx-%#010Lx]\n", bi->nid, bi->start, bi->end - 1, bj->start, bj->end - 1); } /* * Join together blocks on the same node, holes * between which don't overlap with memory on other * nodes. */ if (bi->nid != bj->nid) continue; start = min(bi->start, bj->start); end = max(bi->end, bj->end); for (k = 0; k < mi->nr_blks; k++) { struct numa_memblk *bk = &mi->blk[k]; if (bi->nid == bk->nid) continue; if (start < bk->end && end > bk->start) break; } if (k < mi->nr_blks) continue; printk(KERN_INFO "NUMA: Node %d [mem %#010Lx-%#010Lx] + [mem %#010Lx-%#010Lx] -> [mem %#010Lx-%#010Lx]\n", bi->nid, bi->start, bi->end - 1, bj->start, bj->end - 1, start, end - 1); bi->start = start; bi->end = end; numa_remove_memblk_from(j--, mi); } } /* clear unused ones */ for (i = mi->nr_blks; i < ARRAY_SIZE(mi->blk); i++) { mi->blk[i].start = mi->blk[i].end = 0; mi->blk[i].nid = NUMA_NO_NODE; } return 0; } /* * Set nodes, which have memory in @mi, in *@nodemask. */ static void __init numa_nodemask_from_meminfo(nodemask_t *nodemask, const struct numa_meminfo *mi) { int i; for (i = 0; i < ARRAY_SIZE(mi->blk); i++) if (mi->blk[i].start != mi->blk[i].end && mi->blk[i].nid != NUMA_NO_NODE) node_set(mi->blk[i].nid, *nodemask); } /** * numa_reset_distance - Reset NUMA distance table * * The current table is freed. The next numa_set_distance() call will * create a new one. */ void __init numa_reset_distance(void) { size_t size = numa_distance_cnt * numa_distance_cnt * sizeof(numa_distance[0]); /* numa_distance could be 1LU marking allocation failure, test cnt */ if (numa_distance_cnt) memblock_free(numa_distance, size); numa_distance_cnt = 0; numa_distance = NULL; /* enable table creation */ } static int __init numa_alloc_distance(void) { nodemask_t nodes_parsed; size_t size; int i, j, cnt = 0; u64 phys; /* size the new table and allocate it */ nodes_parsed = numa_nodes_parsed; numa_nodemask_from_meminfo(&nodes_parsed, &numa_meminfo); for_each_node_mask(i, nodes_parsed) cnt = i; cnt++; size = cnt * cnt * sizeof(numa_distance[0]); phys = memblock_phys_alloc_range(size, PAGE_SIZE, 0, PFN_PHYS(max_pfn_mapped)); if (!phys) { pr_warn("Warning: can't allocate distance table!\n"); /* don't retry until explicitly reset */ numa_distance = (void *)1LU; return -ENOMEM; } numa_distance = __va(phys); numa_distance_cnt = cnt; /* fill with the default distances */ for (i = 0; i < cnt; i++) for (j = 0; j < cnt; j++) numa_distance[i * cnt + j] = i == j ? LOCAL_DISTANCE : REMOTE_DISTANCE; printk(KERN_DEBUG "NUMA: Initialized distance table, cnt=%d\n", cnt); return 0; } /** * numa_set_distance - Set NUMA distance from one NUMA to another * @from: the 'from' node to set distance * @to: the 'to' node to set distance * @distance: NUMA distance * * Set the distance from node @from to @to to @distance. If distance table * doesn't exist, one which is large enough to accommodate all the currently * known nodes will be created. * * If such table cannot be allocated, a warning is printed and further * calls are ignored until the distance table is reset with * numa_reset_distance(). * * If @from or @to is higher than the highest known node or lower than zero * at the time of table creation or @distance doesn't make sense, the call * is ignored. * This is to allow simplification of specific NUMA config implementations. */ void __init numa_set_distance(int from, int to, int distance) { if (!numa_distance && numa_alloc_distance() < 0) return; if (from >= numa_distance_cnt || to >= numa_distance_cnt || from < 0 || to < 0) { pr_warn_once("Warning: node ids are out of bound, from=%d to=%d distance=%d\n", from, to, distance); return; } if ((u8)distance != distance || (from == to && distance != LOCAL_DISTANCE)) { pr_warn_once("Warning: invalid distance parameter, from=%d to=%d distance=%d\n", from, to, distance); return; } numa_distance[from * numa_distance_cnt + to] = distance; } int __node_distance(int from, int to) { if (from >= numa_distance_cnt || to >= numa_distance_cnt) return from == to ? LOCAL_DISTANCE : REMOTE_DISTANCE; return numa_distance[from * numa_distance_cnt + to]; } EXPORT_SYMBOL(__node_distance); /* * Sanity check to catch more bad NUMA configurations (they are amazingly * common). Make sure the nodes cover all memory. */ static bool __init numa_meminfo_cover_memory(const struct numa_meminfo *mi) { u64 numaram, e820ram; int i; numaram = 0; for (i = 0; i < mi->nr_blks; i++) { u64 s = mi->blk[i].start >> PAGE_SHIFT; u64 e = mi->blk[i].end >> PAGE_SHIFT; numaram += e - s; numaram -= __absent_pages_in_range(mi->blk[i].nid, s, e); if ((s64)numaram < 0) numaram = 0; } e820ram = max_pfn - absent_pages_in_range(0, max_pfn); /* We seem to lose 3 pages somewhere. Allow 1M of slack. */ if ((s64)(e820ram - numaram) >= (1 << (20 - PAGE_SHIFT))) { printk(KERN_ERR "NUMA: nodes only cover %LuMB of your %LuMB e820 RAM. Not used.\n", (numaram << PAGE_SHIFT) >> 20, (e820ram << PAGE_SHIFT) >> 20); return false; } return true; } /* * Mark all currently memblock-reserved physical memory (which covers the * kernel's own memory ranges) as hot-unswappable. */ static void __init numa_clear_kernel_node_hotplug(void) { nodemask_t reserved_nodemask = NODE_MASK_NONE; struct memblock_region *mb_region; int i; /* * We have to do some preprocessing of memblock regions, to * make them suitable for reservation. * * At this time, all memory regions reserved by memblock are * used by the kernel, but those regions are not split up * along node boundaries yet, and don't necessarily have their * node ID set yet either. * * So iterate over all memory known to the x86 architecture, * and use those ranges to set the nid in memblock.reserved. * This will split up the memblock regions along node * boundaries and will set the node IDs as well. */ for (i = 0; i < numa_meminfo.nr_blks; i++) { struct numa_memblk *mb = numa_meminfo.blk + i; int ret; ret = memblock_set_node(mb->start, mb->end - mb->start, &memblock.reserved, mb->nid); WARN_ON_ONCE(ret); } /* * Now go over all reserved memblock regions, to construct a * node mask of all kernel reserved memory areas. * * [ Note, when booting with mem=nn[kMG] or in a kdump kernel, * numa_meminfo might not include all memblock.reserved * memory ranges, because quirks such as trim_snb_memory() * reserve specific pages for Sandy Bridge graphics. ] */ for_each_reserved_mem_region(mb_region) { int nid = memblock_get_region_node(mb_region); if (nid != MAX_NUMNODES) node_set(nid, reserved_nodemask); } /* * Finally, clear the MEMBLOCK_HOTPLUG flag for all memory * belonging to the reserved node mask. * * Note that this will include memory regions that reside * on nodes that contain kernel memory - entire nodes * become hot-unpluggable: */ for (i = 0; i < numa_meminfo.nr_blks; i++) { struct numa_memblk *mb = numa_meminfo.blk + i; if (!node_isset(mb->nid, reserved_nodemask)) continue; memblock_clear_hotplug(mb->start, mb->end - mb->start); } } static int __init numa_register_memblks(struct numa_meminfo *mi) { int i, nid; /* Account for nodes with cpus and no memory */ node_possible_map = numa_nodes_parsed; numa_nodemask_from_meminfo(&node_possible_map, mi); if (WARN_ON(nodes_empty(node_possible_map))) return -EINVAL; for (i = 0; i < mi->nr_blks; i++) { struct numa_memblk *mb = &mi->blk[i]; memblock_set_node(mb->start, mb->end - mb->start, &memblock.memory, mb->nid); } /* * At very early time, the kernel have to use some memory such as * loading the kernel image. We cannot prevent this anyway. So any * node the kernel resides in should be un-hotpluggable. * * And when we come here, alloc node data won't fail. */ numa_clear_kernel_node_hotplug(); /* * If sections array is gonna be used for pfn -> nid mapping, check * whether its granularity is fine enough. */ if (IS_ENABLED(NODE_NOT_IN_PAGE_FLAGS)) { unsigned long pfn_align = node_map_pfn_alignment(); if (pfn_align && pfn_align < PAGES_PER_SECTION) { pr_warn("Node alignment %LuMB < min %LuMB, rejecting NUMA config\n", PFN_PHYS(pfn_align) >> 20, PFN_PHYS(PAGES_PER_SECTION) >> 20); return -EINVAL; } } if (!numa_meminfo_cover_memory(mi)) return -EINVAL; /* Finally register nodes. */ for_each_node_mask(nid, node_possible_map) { u64 start = PFN_PHYS(max_pfn); u64 end = 0; for (i = 0; i < mi->nr_blks; i++) { if (nid != mi->blk[i].nid) continue; start = min(mi->blk[i].start, start); end = max(mi->blk[i].end, end); } if (start >= end) continue; alloc_node_data(nid); } /* Dump memblock with node info and return. */ memblock_dump_all(); return 0; } /* * There are unfortunately some poorly designed mainboards around that * only connect memory to a single CPU. This breaks the 1:1 cpu->node * mapping. To avoid this fill in the mapping for all possible CPUs, * as the number of CPUs is not known yet. We round robin the existing * nodes. */ static void __init numa_init_array(void) { int rr, i; rr = first_node(node_online_map); for (i = 0; i < nr_cpu_ids; i++) { if (early_cpu_to_node(i) != NUMA_NO_NODE) continue; numa_set_node(i, rr); rr = next_node_in(rr, node_online_map); } } static int __init numa_init(int (*init_func)(void)) { int i; int ret; for (i = 0; i < MAX_LOCAL_APIC; i++) set_apicid_to_node(i, NUMA_NO_NODE); nodes_clear(numa_nodes_parsed); nodes_clear(node_possible_map); nodes_clear(node_online_map); memset(&numa_meminfo, 0, sizeof(numa_meminfo)); WARN_ON(memblock_set_node(0, ULLONG_MAX, &memblock.memory, MAX_NUMNODES)); WARN_ON(memblock_set_node(0, ULLONG_MAX, &memblock.reserved, MAX_NUMNODES)); /* In case that parsing SRAT failed. */ WARN_ON(memblock_clear_hotplug(0, ULLONG_MAX)); numa_reset_distance(); ret = init_func(); if (ret < 0) return ret; /* * We reset memblock back to the top-down direction * here because if we configured ACPI_NUMA, we have * parsed SRAT in init_func(). It is ok to have the * reset here even if we did't configure ACPI_NUMA * or acpi numa init fails and fallbacks to dummy * numa init. */ memblock_set_bottom_up(false); ret = numa_cleanup_meminfo(&numa_meminfo); if (ret < 0) return ret; numa_emulation(&numa_meminfo, numa_distance_cnt); ret = numa_register_memblks(&numa_meminfo); if (ret < 0) return ret; for (i = 0; i < nr_cpu_ids; i++) { int nid = early_cpu_to_node(i); if (nid == NUMA_NO_NODE) continue; if (!node_online(nid)) numa_clear_node(i); } numa_init_array(); return 0; } /** * dummy_numa_init - Fallback dummy NUMA init * * Used if there's no underlying NUMA architecture, NUMA initialization * fails, or NUMA is disabled on the command line. * * Must online at least one node and add memory blocks that cover all * allowed memory. This function must not fail. */ static int __init dummy_numa_init(void) { printk(KERN_INFO "%s\n", numa_off ? "NUMA turned off" : "No NUMA configuration found"); printk(KERN_INFO "Faking a node at [mem %#018Lx-%#018Lx]\n", 0LLU, PFN_PHYS(max_pfn) - 1); node_set(0, numa_nodes_parsed); numa_add_memblk(0, 0, PFN_PHYS(max_pfn)); return 0; } /** * x86_numa_init - Initialize NUMA * * Try each configured NUMA initialization method until one succeeds. The * last fallback is dummy single node config encompassing whole memory and * never fails. */ void __init x86_numa_init(void) { if (!numa_off) { #ifdef CONFIG_ACPI_NUMA if (!numa_init(x86_acpi_numa_init)) return; #endif #ifdef CONFIG_AMD_NUMA if (!numa_init(amd_numa_init)) return; #endif if (acpi_disabled && !numa_init(of_numa_init)) return; } numa_init(dummy_numa_init); } /* * A node may exist which has one or more Generic Initiators but no CPUs and no * memory. * * This function must be called after init_cpu_to_node(), to ensure that any * memoryless CPU nodes have already been brought online, and before the * node_data[nid] is needed for zone list setup in build_all_zonelists(). * * When this function is called, any nodes containing either memory and/or CPUs * will already be online and there is no need to do anything extra, even if * they also contain one or more Generic Initiators. */ void __init init_gi_nodes(void) { int nid; /* * Exclude this node from * bringup_nonboot_cpus * cpu_up * __try_online_node * register_one_node * because node_subsys is not initialized yet. * TODO remove dependency on node_online */ for_each_node_state(nid, N_GENERIC_INITIATOR) if (!node_online(nid)) node_set_online(nid); } /* * Setup early cpu_to_node. * * Populate cpu_to_node[] only if x86_cpu_to_apicid[], * and apicid_to_node[] tables have valid entries for a CPU. * This means we skip cpu_to_node[] initialisation for NUMA * emulation and faking node case (when running a kernel compiled * for NUMA on a non NUMA box), which is OK as cpu_to_node[] * is already initialized in a round robin manner at numa_init_array, * prior to this call, and this initialization is good enough * for the fake NUMA cases. * * Called before the per_cpu areas are setup. */ void __init init_cpu_to_node(void) { int cpu; u32 *cpu_to_apicid = early_per_cpu_ptr(x86_cpu_to_apicid); BUG_ON(cpu_to_apicid == NULL); for_each_possible_cpu(cpu) { int node = numa_cpu_node(cpu); if (node == NUMA_NO_NODE) continue; /* * Exclude this node from * bringup_nonboot_cpus * cpu_up * __try_online_node * register_one_node * because node_subsys is not initialized yet. * TODO remove dependency on node_online */ if (!node_online(node)) node_set_online(node); numa_set_node(cpu, node); } } #ifndef CONFIG_DEBUG_PER_CPU_MAPS # ifndef CONFIG_NUMA_EMU void numa_add_cpu(int cpu) { cpumask_set_cpu(cpu, node_to_cpumask_map[early_cpu_to_node(cpu)]); } void numa_remove_cpu(int cpu) { cpumask_clear_cpu(cpu, node_to_cpumask_map[early_cpu_to_node(cpu)]); } # endif /* !CONFIG_NUMA_EMU */ #else /* !CONFIG_DEBUG_PER_CPU_MAPS */ int __cpu_to_node(int cpu) { if (early_per_cpu_ptr(x86_cpu_to_node_map)) { printk(KERN_WARNING "cpu_to_node(%d): usage too early!\n", cpu); dump_stack(); return early_per_cpu_ptr(x86_cpu_to_node_map)[cpu]; } return per_cpu(x86_cpu_to_node_map, cpu); } EXPORT_SYMBOL(__cpu_to_node); /* * Same function as cpu_to_node() but used if called before the * per_cpu areas are setup. */ int early_cpu_to_node(int cpu) { if (early_per_cpu_ptr(x86_cpu_to_node_map)) return early_per_cpu_ptr(x86_cpu_to_node_map)[cpu]; if (!cpu_possible(cpu)) { printk(KERN_WARNING "early_cpu_to_node(%d): no per_cpu area!\n", cpu); dump_stack(); return NUMA_NO_NODE; } return per_cpu(x86_cpu_to_node_map, cpu); } void debug_cpumask_set_cpu(int cpu, int node, bool enable) { struct cpumask *mask; if (node == NUMA_NO_NODE) { /* early_cpu_to_node() already emits a warning and trace */ return; } mask = node_to_cpumask_map[node]; if (!cpumask_available(mask)) { pr_err("node_to_cpumask_map[%i] NULL\n", node); dump_stack(); return; } if (enable) cpumask_set_cpu(cpu, mask); else cpumask_clear_cpu(cpu, mask); printk(KERN_DEBUG "%s cpu %d node %d: mask now %*pbl\n", enable ? "numa_add_cpu" : "numa_remove_cpu", cpu, node, cpumask_pr_args(mask)); return; } # ifndef CONFIG_NUMA_EMU static void numa_set_cpumask(int cpu, bool enable) { debug_cpumask_set_cpu(cpu, early_cpu_to_node(cpu), enable); } void numa_add_cpu(int cpu) { numa_set_cpumask(cpu, true); } void numa_remove_cpu(int cpu) { numa_set_cpumask(cpu, false); } # endif /* !CONFIG_NUMA_EMU */ /* * Returns a pointer to the bitmask of CPUs on Node 'node'. */ const struct cpumask *cpumask_of_node(int node) { if ((unsigned)node >= nr_node_ids) { printk(KERN_WARNING "cpumask_of_node(%d): (unsigned)node >= nr_node_ids(%u)\n", node, nr_node_ids); dump_stack(); return cpu_none_mask; } if (!cpumask_available(node_to_cpumask_map[node])) { printk(KERN_WARNING "cpumask_of_node(%d): no node_to_cpumask_map!\n", node); dump_stack(); return cpu_online_mask; } return node_to_cpumask_map[node]; } EXPORT_SYMBOL(cpumask_of_node); #endif /* !CONFIG_DEBUG_PER_CPU_MAPS */ #ifdef CONFIG_NUMA_KEEP_MEMINFO static int meminfo_to_nid(struct numa_meminfo *mi, u64 start) { int i; for (i = 0; i < mi->nr_blks; i++) if (mi->blk[i].start <= start && mi->blk[i].end > start) return mi->blk[i].nid; return NUMA_NO_NODE; } int phys_to_target_node(phys_addr_t start) { int nid = meminfo_to_nid(&numa_meminfo, start); /* * Prefer online nodes, but if reserved memory might be * hot-added continue the search with reserved ranges. */ if (nid != NUMA_NO_NODE) return nid; return meminfo_to_nid(&numa_reserved_meminfo, start); } EXPORT_SYMBOL_GPL(phys_to_target_node); int memory_add_physaddr_to_nid(u64 start) { int nid = meminfo_to_nid(&numa_meminfo, start); if (nid == NUMA_NO_NODE) nid = numa_meminfo.blk[0].nid; return nid; } EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid); static int __init cmp_memblk(const void *a, const void *b) { const struct numa_memblk *ma = *(const struct numa_memblk **)a; const struct numa_memblk *mb = *(const struct numa_memblk **)b; return ma->start - mb->start; } static struct numa_memblk *numa_memblk_list[NR_NODE_MEMBLKS] __initdata; /** * numa_fill_memblks - Fill gaps in numa_meminfo memblks * @start: address to begin fill * @end: address to end fill * * Find and extend numa_meminfo memblks to cover the @start-@end * physical address range, such that the first memblk includes * @start, the last memblk includes @end, and any gaps in between * are filled. * * RETURNS: * 0 : Success * NUMA_NO_MEMBLK : No memblk exists in @start-@end range */ int __init numa_fill_memblks(u64 start, u64 end) { struct numa_memblk **blk = &numa_memblk_list[0]; struct numa_meminfo *mi = &numa_meminfo; int count = 0; u64 prev_end; /* * Create a list of pointers to numa_meminfo memblks that * overlap start, end. Exclude (start == bi->end) since * end addresses in both a CFMWS range and a memblk range * are exclusive. * * This list of pointers is used to make in-place changes * that fill out the numa_meminfo memblks. */ for (int i = 0; i < mi->nr_blks; i++) { struct numa_memblk *bi = &mi->blk[i]; if (start < bi->end && end >= bi->start) { blk[count] = &mi->blk[i]; count++; } } if (!count) return NUMA_NO_MEMBLK; /* Sort the list of pointers in memblk->start order */ sort(&blk[0], count, sizeof(blk[0]), cmp_memblk, NULL); /* Make sure the first/last memblks include start/end */ blk[0]->start = min(blk[0]->start, start); blk[count - 1]->end = max(blk[count - 1]->end, end); /* * Fill any gaps by tracking the previous memblks * end address and backfilling to it if needed. */ prev_end = blk[0]->end; for (int i = 1; i < count; i++) { struct numa_memblk *curr = blk[i]; if (prev_end >= curr->start) { if (prev_end < curr->end) prev_end = curr->end; } else { curr->start = prev_end; prev_end = curr->end; } } return 0; } #endif
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1