Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Dave Jones | 1604 | 57.86% | 2 | 4.44% |
Matt Domsch | 227 | 8.19% | 1 | 2.22% |
Davidlohr Bueso A | 193 | 6.96% | 7 | 15.56% |
Andrew Morton | 143 | 5.16% | 2 | 4.44% |
Will Drewry | 84 | 3.03% | 1 | 2.22% |
Nikolai Merinov | 67 | 2.42% | 1 | 2.22% |
Al Viro | 59 | 2.13% | 1 | 2.22% |
Dmitry Osipenko | 56 | 2.02% | 1 | 2.22% |
Karel Zak | 54 | 1.95% | 2 | 4.44% |
Timo Warns | 50 | 1.80% | 2 | 4.44% |
Christoph Hellwig | 47 | 1.70% | 3 | 6.67% |
Alden Tondettar | 39 | 1.41% | 1 | 2.22% |
Peter Jones | 34 | 1.23% | 1 | 2.22% |
Tejun Heo | 31 | 1.12% | 1 | 2.22% |
Linus Torvalds (pre-git) | 19 | 0.69% | 4 | 8.89% |
Doug Anderson | 18 | 0.65% | 1 | 2.22% |
Thomas Gleixner | 8 | 0.29% | 1 | 2.22% |
Linus Torvalds | 8 | 0.29% | 3 | 6.67% |
Alexey Dobriyan | 7 | 0.25% | 1 | 2.22% |
Fabian Frederick | 6 | 0.22% | 1 | 2.22% |
Antti P. Miettinen | 5 | 0.18% | 1 | 2.22% |
Andries E. Brouwer | 5 | 0.18% | 1 | 2.22% |
Masanari Iida | 2 | 0.07% | 1 | 2.22% |
Philippe De Muyter | 2 | 0.07% | 1 | 2.22% |
Panagiotis Issaris | 1 | 0.04% | 1 | 2.22% |
Bart Van Assche | 1 | 0.04% | 1 | 2.22% |
Borislav Petkov | 1 | 0.04% | 1 | 2.22% |
Cesar Eduardo Barros | 1 | 0.04% | 1 | 2.22% |
Total | 2772 | 45 |
// SPDX-License-Identifier: GPL-2.0-or-later /************************************************************ * EFI GUID Partition Table handling * * http://www.uefi.org/specs/ * http://www.intel.com/technology/efi/ * * efi.[ch] by Matt Domsch <Matt_Domsch@dell.com> * Copyright 2000,2001,2002,2004 Dell Inc. * * TODO: * * Changelog: * Mon August 5th, 2013 Davidlohr Bueso <davidlohr@hp.com> * - detect hybrid MBRs, tighter pMBR checking & cleanups. * * Mon Nov 09 2004 Matt Domsch <Matt_Domsch@dell.com> * - test for valid PMBR and valid PGPT before ever reading * AGPT, allow override with 'gpt' kernel command line option. * - check for first/last_usable_lba outside of size of disk * * Tue Mar 26 2002 Matt Domsch <Matt_Domsch@dell.com> * - Ported to 2.5.7-pre1 and 2.5.7-dj2 * - Applied patch to avoid fault in alternate header handling * - cleaned up find_valid_gpt * - On-disk structure and copy in memory is *always* LE now - * swab fields as needed * - remove print_gpt_header() * - only use first max_p partition entries, to keep the kernel minor number * and partition numbers tied. * * Mon Feb 04 2002 Matt Domsch <Matt_Domsch@dell.com> * - Removed __PRIPTR_PREFIX - not being used * * Mon Jan 14 2002 Matt Domsch <Matt_Domsch@dell.com> * - Ported to 2.5.2-pre11 + library crc32 patch Linus applied * * Thu Dec 6 2001 Matt Domsch <Matt_Domsch@dell.com> * - Added compare_gpts(). * - moved le_efi_guid_to_cpus() back into this file. GPT is the only * thing that keeps EFI GUIDs on disk. * - Changed gpt structure names and members to be simpler and more Linux-like. * * Wed Oct 17 2001 Matt Domsch <Matt_Domsch@dell.com> * - Removed CONFIG_DEVFS_VOLUMES_UUID code entirely per Martin Wilck * * Wed Oct 10 2001 Matt Domsch <Matt_Domsch@dell.com> * - Changed function comments to DocBook style per Andreas Dilger suggestion. * * Mon Oct 08 2001 Matt Domsch <Matt_Domsch@dell.com> * - Change read_lba() to use the page cache per Al Viro's work. * - print u64s properly on all architectures * - fixed debug_printk(), now Dprintk() * * Mon Oct 01 2001 Matt Domsch <Matt_Domsch@dell.com> * - Style cleanups * - made most functions static * - Endianness addition * - remove test for second alternate header, as it's not per spec, * and is unnecessary. There's now a method to read/write the last * sector of an odd-sized disk from user space. No tools have ever * been released which used this code, so it's effectively dead. * - Per Asit Mallick of Intel, added a test for a valid PMBR. * - Added kernel command line option 'gpt' to override valid PMBR test. * * Wed Jun 6 2001 Martin Wilck <Martin.Wilck@Fujitsu-Siemens.com> * - added devfs volume UUID support (/dev/volumes/uuids) for * mounting file systems by the partition GUID. * * Tue Dec 5 2000 Matt Domsch <Matt_Domsch@dell.com> * - Moved crc32() to linux/lib, added efi_crc32(). * * Thu Nov 30 2000 Matt Domsch <Matt_Domsch@dell.com> * - Replaced Intel's CRC32 function with an equivalent * non-license-restricted version. * * Wed Oct 25 2000 Matt Domsch <Matt_Domsch@dell.com> * - Fixed the last_lba() call to return the proper last block * * Thu Oct 12 2000 Matt Domsch <Matt_Domsch@dell.com> * - Thanks to Andries Brouwer for his debugging assistance. * - Code works, detects all the partitions. * ************************************************************/ #include <linux/kernel.h> #include <linux/crc32.h> #include <linux/ctype.h> #include <linux/math64.h> #include <linux/slab.h> #include "check.h" #include "efi.h" /* This allows a kernel command line option 'gpt' to override * the test for invalid PMBR. Not __initdata because reloading * the partition tables happens after init too. */ static int force_gpt; static int __init force_gpt_fn(char *str) { force_gpt = 1; return 1; } __setup("gpt", force_gpt_fn); /** * efi_crc32() - EFI version of crc32 function * @buf: buffer to calculate crc32 of * @len: length of buf * * Description: Returns EFI-style CRC32 value for @buf * * This function uses the little endian Ethernet polynomial * but seeds the function with ~0, and xor's with ~0 at the end. * Note, the EFI Specification, v1.02, has a reference to * Dr. Dobbs Journal, May 1994 (actually it's in May 1992). */ static inline u32 efi_crc32(const void *buf, unsigned long len) { return (crc32(~0L, buf, len) ^ ~0L); } /** * last_lba(): return number of last logical block of device * @disk: block device * * Description: Returns last LBA value on success, 0 on error. * This is stored (by sd and ide-geometry) in * the part[0] entry for this disk, and is the number of * physical sectors available on the disk. */ static u64 last_lba(struct gendisk *disk) { return div_u64(bdev_nr_bytes(disk->part0), queue_logical_block_size(disk->queue)) - 1ULL; } static inline int pmbr_part_valid(gpt_mbr_record *part) { if (part->os_type != EFI_PMBR_OSTYPE_EFI_GPT) goto invalid; /* set to 0x00000001 (i.e., the LBA of the GPT Partition Header) */ if (le32_to_cpu(part->starting_lba) != GPT_PRIMARY_PARTITION_TABLE_LBA) goto invalid; return GPT_MBR_PROTECTIVE; invalid: return 0; } /** * is_pmbr_valid(): test Protective MBR for validity * @mbr: pointer to a legacy mbr structure * @total_sectors: amount of sectors in the device * * Description: Checks for a valid protective or hybrid * master boot record (MBR). The validity of a pMBR depends * on all of the following properties: * 1) MSDOS signature is in the last two bytes of the MBR * 2) One partition of type 0xEE is found * * In addition, a hybrid MBR will have up to three additional * primary partitions, which point to the same space that's * marked out by up to three GPT partitions. * * Returns 0 upon invalid MBR, or GPT_MBR_PROTECTIVE or * GPT_MBR_HYBRID depending on the device layout. */ static int is_pmbr_valid(legacy_mbr *mbr, sector_t total_sectors) { uint32_t sz = 0; int i, part = 0, ret = 0; /* invalid by default */ if (!mbr || le16_to_cpu(mbr->signature) != MSDOS_MBR_SIGNATURE) goto done; for (i = 0; i < 4; i++) { ret = pmbr_part_valid(&mbr->partition_record[i]); if (ret == GPT_MBR_PROTECTIVE) { part = i; /* * Ok, we at least know that there's a protective MBR, * now check if there are other partition types for * hybrid MBR. */ goto check_hybrid; } } if (ret != GPT_MBR_PROTECTIVE) goto done; check_hybrid: for (i = 0; i < 4; i++) if ((mbr->partition_record[i].os_type != EFI_PMBR_OSTYPE_EFI_GPT) && (mbr->partition_record[i].os_type != 0x00)) ret = GPT_MBR_HYBRID; /* * Protective MBRs take up the lesser of the whole disk * or 2 TiB (32bit LBA), ignoring the rest of the disk. * Some partitioning programs, nonetheless, choose to set * the size to the maximum 32-bit limitation, disregarding * the disk size. * * Hybrid MBRs do not necessarily comply with this. * * Consider a bad value here to be a warning to support dd'ing * an image from a smaller disk to a larger disk. */ if (ret == GPT_MBR_PROTECTIVE) { sz = le32_to_cpu(mbr->partition_record[part].size_in_lba); if (sz != (uint32_t) total_sectors - 1 && sz != 0xFFFFFFFF) pr_debug("GPT: mbr size in lba (%u) different than whole disk (%u).\n", sz, min_t(uint32_t, total_sectors - 1, 0xFFFFFFFF)); } done: return ret; } /** * read_lba(): Read bytes from disk, starting at given LBA * @state: disk parsed partitions * @lba: the Logical Block Address of the partition table * @buffer: destination buffer * @count: bytes to read * * Description: Reads @count bytes from @state->disk into @buffer. * Returns number of bytes read on success, 0 on error. */ static size_t read_lba(struct parsed_partitions *state, u64 lba, u8 *buffer, size_t count) { size_t totalreadcount = 0; sector_t n = lba * (queue_logical_block_size(state->disk->queue) / 512); if (!buffer || lba > last_lba(state->disk)) return 0; while (count) { int copied = 512; Sector sect; unsigned char *data = read_part_sector(state, n++, §); if (!data) break; if (copied > count) copied = count; memcpy(buffer, data, copied); put_dev_sector(sect); buffer += copied; totalreadcount +=copied; count -= copied; } return totalreadcount; } /** * alloc_read_gpt_entries(): reads partition entries from disk * @state: disk parsed partitions * @gpt: GPT header * * Description: Returns ptes on success, NULL on error. * Allocates space for PTEs based on information found in @gpt. * Notes: remember to free pte when you're done! */ static gpt_entry *alloc_read_gpt_entries(struct parsed_partitions *state, gpt_header *gpt) { size_t count; gpt_entry *pte; if (!gpt) return NULL; count = (size_t)le32_to_cpu(gpt->num_partition_entries) * le32_to_cpu(gpt->sizeof_partition_entry); if (!count) return NULL; pte = kmalloc(count, GFP_KERNEL); if (!pte) return NULL; if (read_lba(state, le64_to_cpu(gpt->partition_entry_lba), (u8 *) pte, count) < count) { kfree(pte); pte=NULL; return NULL; } return pte; } /** * alloc_read_gpt_header(): Allocates GPT header, reads into it from disk * @state: disk parsed partitions * @lba: the Logical Block Address of the partition table * * Description: returns GPT header on success, NULL on error. Allocates * and fills a GPT header starting at @ from @state->disk. * Note: remember to free gpt when finished with it. */ static gpt_header *alloc_read_gpt_header(struct parsed_partitions *state, u64 lba) { gpt_header *gpt; unsigned ssz = queue_logical_block_size(state->disk->queue); gpt = kmalloc(ssz, GFP_KERNEL); if (!gpt) return NULL; if (read_lba(state, lba, (u8 *) gpt, ssz) < ssz) { kfree(gpt); gpt=NULL; return NULL; } return gpt; } /** * is_gpt_valid() - tests one GPT header and PTEs for validity * @state: disk parsed partitions * @lba: logical block address of the GPT header to test * @gpt: GPT header ptr, filled on return. * @ptes: PTEs ptr, filled on return. * * Description: returns 1 if valid, 0 on error. * If valid, returns pointers to newly allocated GPT header and PTEs. */ static int is_gpt_valid(struct parsed_partitions *state, u64 lba, gpt_header **gpt, gpt_entry **ptes) { u32 crc, origcrc; u64 lastlba, pt_size; if (!ptes) return 0; if (!(*gpt = alloc_read_gpt_header(state, lba))) return 0; /* Check the GUID Partition Table signature */ if (le64_to_cpu((*gpt)->signature) != GPT_HEADER_SIGNATURE) { pr_debug("GUID Partition Table Header signature is wrong:" "%lld != %lld\n", (unsigned long long)le64_to_cpu((*gpt)->signature), (unsigned long long)GPT_HEADER_SIGNATURE); goto fail; } /* Check the GUID Partition Table header size is too big */ if (le32_to_cpu((*gpt)->header_size) > queue_logical_block_size(state->disk->queue)) { pr_debug("GUID Partition Table Header size is too large: %u > %u\n", le32_to_cpu((*gpt)->header_size), queue_logical_block_size(state->disk->queue)); goto fail; } /* Check the GUID Partition Table header size is too small */ if (le32_to_cpu((*gpt)->header_size) < sizeof(gpt_header)) { pr_debug("GUID Partition Table Header size is too small: %u < %zu\n", le32_to_cpu((*gpt)->header_size), sizeof(gpt_header)); goto fail; } /* Check the GUID Partition Table CRC */ origcrc = le32_to_cpu((*gpt)->header_crc32); (*gpt)->header_crc32 = 0; crc = efi_crc32((const unsigned char *) (*gpt), le32_to_cpu((*gpt)->header_size)); if (crc != origcrc) { pr_debug("GUID Partition Table Header CRC is wrong: %x != %x\n", crc, origcrc); goto fail; } (*gpt)->header_crc32 = cpu_to_le32(origcrc); /* Check that the my_lba entry points to the LBA that contains * the GUID Partition Table */ if (le64_to_cpu((*gpt)->my_lba) != lba) { pr_debug("GPT my_lba incorrect: %lld != %lld\n", (unsigned long long)le64_to_cpu((*gpt)->my_lba), (unsigned long long)lba); goto fail; } /* Check the first_usable_lba and last_usable_lba are * within the disk. */ lastlba = last_lba(state->disk); if (le64_to_cpu((*gpt)->first_usable_lba) > lastlba) { pr_debug("GPT: first_usable_lba incorrect: %lld > %lld\n", (unsigned long long)le64_to_cpu((*gpt)->first_usable_lba), (unsigned long long)lastlba); goto fail; } if (le64_to_cpu((*gpt)->last_usable_lba) > lastlba) { pr_debug("GPT: last_usable_lba incorrect: %lld > %lld\n", (unsigned long long)le64_to_cpu((*gpt)->last_usable_lba), (unsigned long long)lastlba); goto fail; } if (le64_to_cpu((*gpt)->last_usable_lba) < le64_to_cpu((*gpt)->first_usable_lba)) { pr_debug("GPT: last_usable_lba incorrect: %lld > %lld\n", (unsigned long long)le64_to_cpu((*gpt)->last_usable_lba), (unsigned long long)le64_to_cpu((*gpt)->first_usable_lba)); goto fail; } /* Check that sizeof_partition_entry has the correct value */ if (le32_to_cpu((*gpt)->sizeof_partition_entry) != sizeof(gpt_entry)) { pr_debug("GUID Partition Entry Size check failed.\n"); goto fail; } /* Sanity check partition table size */ pt_size = (u64)le32_to_cpu((*gpt)->num_partition_entries) * le32_to_cpu((*gpt)->sizeof_partition_entry); if (pt_size > KMALLOC_MAX_SIZE) { pr_debug("GUID Partition Table is too large: %llu > %lu bytes\n", (unsigned long long)pt_size, KMALLOC_MAX_SIZE); goto fail; } if (!(*ptes = alloc_read_gpt_entries(state, *gpt))) goto fail; /* Check the GUID Partition Entry Array CRC */ crc = efi_crc32((const unsigned char *) (*ptes), pt_size); if (crc != le32_to_cpu((*gpt)->partition_entry_array_crc32)) { pr_debug("GUID Partition Entry Array CRC check failed.\n"); goto fail_ptes; } /* We're done, all's well */ return 1; fail_ptes: kfree(*ptes); *ptes = NULL; fail: kfree(*gpt); *gpt = NULL; return 0; } /** * is_pte_valid() - tests one PTE for validity * @pte:pte to check * @lastlba: last lba of the disk * * Description: returns 1 if valid, 0 on error. */ static inline int is_pte_valid(const gpt_entry *pte, const u64 lastlba) { if ((!efi_guidcmp(pte->partition_type_guid, NULL_GUID)) || le64_to_cpu(pte->starting_lba) > lastlba || le64_to_cpu(pte->ending_lba) > lastlba) return 0; return 1; } /** * compare_gpts() - Search disk for valid GPT headers and PTEs * @pgpt: primary GPT header * @agpt: alternate GPT header * @lastlba: last LBA number * * Description: Returns nothing. Sanity checks pgpt and agpt fields * and prints warnings on discrepancies. * */ static void compare_gpts(gpt_header *pgpt, gpt_header *agpt, u64 lastlba) { int error_found = 0; if (!pgpt || !agpt) return; if (le64_to_cpu(pgpt->my_lba) != le64_to_cpu(agpt->alternate_lba)) { pr_warn("GPT:Primary header LBA != Alt. header alternate_lba\n"); pr_warn("GPT:%lld != %lld\n", (unsigned long long)le64_to_cpu(pgpt->my_lba), (unsigned long long)le64_to_cpu(agpt->alternate_lba)); error_found++; } if (le64_to_cpu(pgpt->alternate_lba) != le64_to_cpu(agpt->my_lba)) { pr_warn("GPT:Primary header alternate_lba != Alt. header my_lba\n"); pr_warn("GPT:%lld != %lld\n", (unsigned long long)le64_to_cpu(pgpt->alternate_lba), (unsigned long long)le64_to_cpu(agpt->my_lba)); error_found++; } if (le64_to_cpu(pgpt->first_usable_lba) != le64_to_cpu(agpt->first_usable_lba)) { pr_warn("GPT:first_usable_lbas don't match.\n"); pr_warn("GPT:%lld != %lld\n", (unsigned long long)le64_to_cpu(pgpt->first_usable_lba), (unsigned long long)le64_to_cpu(agpt->first_usable_lba)); error_found++; } if (le64_to_cpu(pgpt->last_usable_lba) != le64_to_cpu(agpt->last_usable_lba)) { pr_warn("GPT:last_usable_lbas don't match.\n"); pr_warn("GPT:%lld != %lld\n", (unsigned long long)le64_to_cpu(pgpt->last_usable_lba), (unsigned long long)le64_to_cpu(agpt->last_usable_lba)); error_found++; } if (efi_guidcmp(pgpt->disk_guid, agpt->disk_guid)) { pr_warn("GPT:disk_guids don't match.\n"); error_found++; } if (le32_to_cpu(pgpt->num_partition_entries) != le32_to_cpu(agpt->num_partition_entries)) { pr_warn("GPT:num_partition_entries don't match: " "0x%x != 0x%x\n", le32_to_cpu(pgpt->num_partition_entries), le32_to_cpu(agpt->num_partition_entries)); error_found++; } if (le32_to_cpu(pgpt->sizeof_partition_entry) != le32_to_cpu(agpt->sizeof_partition_entry)) { pr_warn("GPT:sizeof_partition_entry values don't match: " "0x%x != 0x%x\n", le32_to_cpu(pgpt->sizeof_partition_entry), le32_to_cpu(agpt->sizeof_partition_entry)); error_found++; } if (le32_to_cpu(pgpt->partition_entry_array_crc32) != le32_to_cpu(agpt->partition_entry_array_crc32)) { pr_warn("GPT:partition_entry_array_crc32 values don't match: " "0x%x != 0x%x\n", le32_to_cpu(pgpt->partition_entry_array_crc32), le32_to_cpu(agpt->partition_entry_array_crc32)); error_found++; } if (le64_to_cpu(pgpt->alternate_lba) != lastlba) { pr_warn("GPT:Primary header thinks Alt. header is not at the end of the disk.\n"); pr_warn("GPT:%lld != %lld\n", (unsigned long long)le64_to_cpu(pgpt->alternate_lba), (unsigned long long)lastlba); error_found++; } if (le64_to_cpu(agpt->my_lba) != lastlba) { pr_warn("GPT:Alternate GPT header not at the end of the disk.\n"); pr_warn("GPT:%lld != %lld\n", (unsigned long long)le64_to_cpu(agpt->my_lba), (unsigned long long)lastlba); error_found++; } if (error_found) pr_warn("GPT: Use GNU Parted to correct GPT errors.\n"); return; } /** * find_valid_gpt() - Search disk for valid GPT headers and PTEs * @state: disk parsed partitions * @gpt: GPT header ptr, filled on return. * @ptes: PTEs ptr, filled on return. * * Description: Returns 1 if valid, 0 on error. * If valid, returns pointers to newly allocated GPT header and PTEs. * Validity depends on PMBR being valid (or being overridden by the * 'gpt' kernel command line option) and finding either the Primary * GPT header and PTEs valid, or the Alternate GPT header and PTEs * valid. If the Primary GPT header is not valid, the Alternate GPT header * is not checked unless the 'gpt' kernel command line option is passed. * This protects against devices which misreport their size, and forces * the user to decide to use the Alternate GPT. */ static int find_valid_gpt(struct parsed_partitions *state, gpt_header **gpt, gpt_entry **ptes) { int good_pgpt = 0, good_agpt = 0, good_pmbr = 0; gpt_header *pgpt = NULL, *agpt = NULL; gpt_entry *pptes = NULL, *aptes = NULL; legacy_mbr *legacymbr; struct gendisk *disk = state->disk; const struct block_device_operations *fops = disk->fops; sector_t total_sectors = get_capacity(state->disk); u64 lastlba; if (!ptes) return 0; lastlba = last_lba(state->disk); if (!force_gpt) { /* This will be added to the EFI Spec. per Intel after v1.02. */ legacymbr = kzalloc(sizeof(*legacymbr), GFP_KERNEL); if (!legacymbr) goto fail; read_lba(state, 0, (u8 *)legacymbr, sizeof(*legacymbr)); good_pmbr = is_pmbr_valid(legacymbr, total_sectors); kfree(legacymbr); if (!good_pmbr) goto fail; pr_debug("Device has a %s MBR\n", good_pmbr == GPT_MBR_PROTECTIVE ? "protective" : "hybrid"); } good_pgpt = is_gpt_valid(state, GPT_PRIMARY_PARTITION_TABLE_LBA, &pgpt, &pptes); if (good_pgpt) good_agpt = is_gpt_valid(state, le64_to_cpu(pgpt->alternate_lba), &agpt, &aptes); if (!good_agpt && force_gpt) good_agpt = is_gpt_valid(state, lastlba, &agpt, &aptes); if (!good_agpt && force_gpt && fops->alternative_gpt_sector) { sector_t agpt_sector; int err; err = fops->alternative_gpt_sector(disk, &agpt_sector); if (!err) good_agpt = is_gpt_valid(state, agpt_sector, &agpt, &aptes); } /* The obviously unsuccessful case */ if (!good_pgpt && !good_agpt) goto fail; compare_gpts(pgpt, agpt, lastlba); /* The good cases */ if (good_pgpt) { *gpt = pgpt; *ptes = pptes; kfree(agpt); kfree(aptes); if (!good_agpt) pr_warn("Alternate GPT is invalid, using primary GPT.\n"); return 1; } else if (good_agpt) { *gpt = agpt; *ptes = aptes; kfree(pgpt); kfree(pptes); pr_warn("Primary GPT is invalid, using alternate GPT.\n"); return 1; } fail: kfree(pgpt); kfree(agpt); kfree(pptes); kfree(aptes); *gpt = NULL; *ptes = NULL; return 0; } /** * utf16_le_to_7bit(): Naively converts a UTF-16LE string to 7-bit ASCII characters * @in: input UTF-16LE string * @size: size of the input string * @out: output string ptr, should be capable to store @size+1 characters * * Description: Converts @size UTF16-LE symbols from @in string to 7-bit * ASCII characters and stores them to @out. Adds trailing zero to @out array. */ static void utf16_le_to_7bit(const __le16 *in, unsigned int size, u8 *out) { unsigned int i = 0; out[size] = 0; while (i < size) { u8 c = le16_to_cpu(in[i]) & 0xff; if (c && !isprint(c)) c = '!'; out[i] = c; i++; } } /** * efi_partition - scan for GPT partitions * @state: disk parsed partitions * * Description: called from check.c, if the disk contains GPT * partitions, sets up partition entries in the kernel. * * If the first block on the disk is a legacy MBR, * it will get handled by msdos_partition(). * If it's a Protective MBR, we'll handle it here. * * We do not create a Linux partition for GPT, but * only for the actual data partitions. * Returns: * -1 if unable to read the partition table * 0 if this isn't our partition table * 1 if successful * */ int efi_partition(struct parsed_partitions *state) { gpt_header *gpt = NULL; gpt_entry *ptes = NULL; u32 i; unsigned ssz = queue_logical_block_size(state->disk->queue) / 512; if (!find_valid_gpt(state, &gpt, &ptes) || !gpt || !ptes) { kfree(gpt); kfree(ptes); return 0; } pr_debug("GUID Partition Table is valid! Yea!\n"); for (i = 0; i < le32_to_cpu(gpt->num_partition_entries) && i < state->limit-1; i++) { struct partition_meta_info *info; unsigned label_max; u64 start = le64_to_cpu(ptes[i].starting_lba); u64 size = le64_to_cpu(ptes[i].ending_lba) - le64_to_cpu(ptes[i].starting_lba) + 1ULL; if (!is_pte_valid(&ptes[i], last_lba(state->disk))) continue; put_partition(state, i+1, start * ssz, size * ssz); /* If this is a RAID volume, tell md */ if (!efi_guidcmp(ptes[i].partition_type_guid, PARTITION_LINUX_RAID_GUID)) state->parts[i + 1].flags = ADDPART_FLAG_RAID; info = &state->parts[i + 1].info; efi_guid_to_str(&ptes[i].unique_partition_guid, info->uuid); /* Naively convert UTF16-LE to 7 bits. */ label_max = min(ARRAY_SIZE(info->volname) - 1, ARRAY_SIZE(ptes[i].partition_name)); utf16_le_to_7bit(ptes[i].partition_name, label_max, info->volname); state->parts[i + 1].has_info = true; } kfree(ptes); kfree(gpt); strlcat(state->pp_buf, "\n", PAGE_SIZE); return 1; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1