Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Richard Russon | 4038 | 63.89% | 1 | 2.00% |
Linus Torvalds | 1331 | 21.06% | 7 | 14.00% |
Anton Altaparmakov | 507 | 8.02% | 4 | 8.00% |
Richard Knutsson | 120 | 1.90% | 1 | 2.00% |
Timo Warns | 79 | 1.25% | 3 | 6.00% |
Harvey Harrison | 39 | 0.62% | 2 | 4.00% |
Linus Torvalds (pre-git) | 37 | 0.59% | 8 | 16.00% |
Tejun Heo | 37 | 0.59% | 1 | 2.00% |
Joe Perches | 29 | 0.46% | 2 | 4.00% |
Christoph Hellwig | 25 | 0.40% | 4 | 8.00% |
Andy Shevchenko | 17 | 0.27% | 3 | 6.00% |
Al Viro | 15 | 0.24% | 2 | 4.00% |
Alexey Dobriyan | 14 | 0.22% | 1 | 2.00% |
Jeff Garzik | 8 | 0.13% | 1 | 2.00% |
Andrew Morton | 7 | 0.11% | 1 | 2.00% |
Clemens Ladisch | 5 | 0.08% | 1 | 2.00% |
Kees Cook | 3 | 0.05% | 1 | 2.00% |
Bart Van Assche | 2 | 0.03% | 2 | 4.00% |
Andries E. Brouwer | 2 | 0.03% | 1 | 2.00% |
Arnd Bergmann | 2 | 0.03% | 1 | 2.00% |
Colin Ian King | 1 | 0.02% | 1 | 2.00% |
Steven Cole | 1 | 0.02% | 1 | 2.00% |
Nikanth Karthikesan | 1 | 0.02% | 1 | 2.00% |
Total | 6320 | 50 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * ldm - Support for Windows Logical Disk Manager (Dynamic Disks) * * Copyright (C) 2001,2002 Richard Russon <ldm@flatcap.org> * Copyright (c) 2001-2012 Anton Altaparmakov * Copyright (C) 2001,2002 Jakob Kemi <jakob.kemi@telia.com> * * Documentation is available at http://www.linux-ntfs.org/doku.php?id=downloads */ #include <linux/slab.h> #include <linux/pagemap.h> #include <linux/stringify.h> #include <linux/kernel.h> #include <linux/uuid.h> #include <linux/msdos_partition.h> #include "ldm.h" #include "check.h" /* * ldm_debug/info/error/crit - Output an error message * @f: A printf format string containing the message * @...: Variables to substitute into @f * * ldm_debug() writes a DEBUG level message to the syslog but only if the * driver was compiled with debug enabled. Otherwise, the call turns into a NOP. */ #ifndef CONFIG_LDM_DEBUG #define ldm_debug(...) do {} while (0) #else #define ldm_debug(f, a...) _ldm_printk (KERN_DEBUG, __func__, f, ##a) #endif #define ldm_crit(f, a...) _ldm_printk (KERN_CRIT, __func__, f, ##a) #define ldm_error(f, a...) _ldm_printk (KERN_ERR, __func__, f, ##a) #define ldm_info(f, a...) _ldm_printk (KERN_INFO, __func__, f, ##a) static __printf(3, 4) void _ldm_printk(const char *level, const char *function, const char *fmt, ...) { struct va_format vaf; va_list args; va_start (args, fmt); vaf.fmt = fmt; vaf.va = &args; printk("%s%s(): %pV\n", level, function, &vaf); va_end(args); } /** * ldm_parse_privhead - Read the LDM Database PRIVHEAD structure * @data: Raw database PRIVHEAD structure loaded from the device * @ph: In-memory privhead structure in which to return parsed information * * This parses the LDM database PRIVHEAD structure supplied in @data and * sets up the in-memory privhead structure @ph with the obtained information. * * Return: 'true' @ph contains the PRIVHEAD data * 'false' @ph contents are undefined */ static bool ldm_parse_privhead(const u8 *data, struct privhead *ph) { bool is_vista = false; BUG_ON(!data || !ph); if (MAGIC_PRIVHEAD != get_unaligned_be64(data)) { ldm_error("Cannot find PRIVHEAD structure. LDM database is" " corrupt. Aborting."); return false; } ph->ver_major = get_unaligned_be16(data + 0x000C); ph->ver_minor = get_unaligned_be16(data + 0x000E); ph->logical_disk_start = get_unaligned_be64(data + 0x011B); ph->logical_disk_size = get_unaligned_be64(data + 0x0123); ph->config_start = get_unaligned_be64(data + 0x012B); ph->config_size = get_unaligned_be64(data + 0x0133); /* Version 2.11 is Win2k/XP and version 2.12 is Vista. */ if (ph->ver_major == 2 && ph->ver_minor == 12) is_vista = true; if (!is_vista && (ph->ver_major != 2 || ph->ver_minor != 11)) { ldm_error("Expected PRIVHEAD version 2.11 or 2.12, got %d.%d." " Aborting.", ph->ver_major, ph->ver_minor); return false; } ldm_debug("PRIVHEAD version %d.%d (Windows %s).", ph->ver_major, ph->ver_minor, is_vista ? "Vista" : "2000/XP"); if (ph->config_size != LDM_DB_SIZE) { /* 1 MiB in sectors. */ /* Warn the user and continue, carefully. */ ldm_info("Database is normally %u bytes, it claims to " "be %llu bytes.", LDM_DB_SIZE, (unsigned long long)ph->config_size); } if ((ph->logical_disk_size == 0) || (ph->logical_disk_start + ph->logical_disk_size > ph->config_start)) { ldm_error("PRIVHEAD disk size doesn't match real disk size"); return false; } if (uuid_parse(data + 0x0030, &ph->disk_id)) { ldm_error("PRIVHEAD contains an invalid GUID."); return false; } ldm_debug("Parsed PRIVHEAD successfully."); return true; } /** * ldm_parse_tocblock - Read the LDM Database TOCBLOCK structure * @data: Raw database TOCBLOCK structure loaded from the device * @toc: In-memory toc structure in which to return parsed information * * This parses the LDM Database TOCBLOCK (table of contents) structure supplied * in @data and sets up the in-memory tocblock structure @toc with the obtained * information. * * N.B. The *_start and *_size values returned in @toc are not range-checked. * * Return: 'true' @toc contains the TOCBLOCK data * 'false' @toc contents are undefined */ static bool ldm_parse_tocblock (const u8 *data, struct tocblock *toc) { BUG_ON (!data || !toc); if (MAGIC_TOCBLOCK != get_unaligned_be64(data)) { ldm_crit ("Cannot find TOCBLOCK, database may be corrupt."); return false; } strncpy (toc->bitmap1_name, data + 0x24, sizeof (toc->bitmap1_name)); toc->bitmap1_name[sizeof (toc->bitmap1_name) - 1] = 0; toc->bitmap1_start = get_unaligned_be64(data + 0x2E); toc->bitmap1_size = get_unaligned_be64(data + 0x36); if (strncmp (toc->bitmap1_name, TOC_BITMAP1, sizeof (toc->bitmap1_name)) != 0) { ldm_crit ("TOCBLOCK's first bitmap is '%s', should be '%s'.", TOC_BITMAP1, toc->bitmap1_name); return false; } strncpy (toc->bitmap2_name, data + 0x46, sizeof (toc->bitmap2_name)); toc->bitmap2_name[sizeof (toc->bitmap2_name) - 1] = 0; toc->bitmap2_start = get_unaligned_be64(data + 0x50); toc->bitmap2_size = get_unaligned_be64(data + 0x58); if (strncmp (toc->bitmap2_name, TOC_BITMAP2, sizeof (toc->bitmap2_name)) != 0) { ldm_crit ("TOCBLOCK's second bitmap is '%s', should be '%s'.", TOC_BITMAP2, toc->bitmap2_name); return false; } ldm_debug ("Parsed TOCBLOCK successfully."); return true; } /** * ldm_parse_vmdb - Read the LDM Database VMDB structure * @data: Raw database VMDB structure loaded from the device * @vm: In-memory vmdb structure in which to return parsed information * * This parses the LDM Database VMDB structure supplied in @data and sets up * the in-memory vmdb structure @vm with the obtained information. * * N.B. The *_start, *_size and *_seq values will be range-checked later. * * Return: 'true' @vm contains VMDB info * 'false' @vm contents are undefined */ static bool ldm_parse_vmdb (const u8 *data, struct vmdb *vm) { BUG_ON (!data || !vm); if (MAGIC_VMDB != get_unaligned_be32(data)) { ldm_crit ("Cannot find the VMDB, database may be corrupt."); return false; } vm->ver_major = get_unaligned_be16(data + 0x12); vm->ver_minor = get_unaligned_be16(data + 0x14); if ((vm->ver_major != 4) || (vm->ver_minor != 10)) { ldm_error ("Expected VMDB version %d.%d, got %d.%d. " "Aborting.", 4, 10, vm->ver_major, vm->ver_minor); return false; } vm->vblk_size = get_unaligned_be32(data + 0x08); if (vm->vblk_size == 0) { ldm_error ("Illegal VBLK size"); return false; } vm->vblk_offset = get_unaligned_be32(data + 0x0C); vm->last_vblk_seq = get_unaligned_be32(data + 0x04); ldm_debug ("Parsed VMDB successfully."); return true; } /** * ldm_compare_privheads - Compare two privhead objects * @ph1: First privhead * @ph2: Second privhead * * This compares the two privhead structures @ph1 and @ph2. * * Return: 'true' Identical * 'false' Different */ static bool ldm_compare_privheads (const struct privhead *ph1, const struct privhead *ph2) { BUG_ON (!ph1 || !ph2); return ((ph1->ver_major == ph2->ver_major) && (ph1->ver_minor == ph2->ver_minor) && (ph1->logical_disk_start == ph2->logical_disk_start) && (ph1->logical_disk_size == ph2->logical_disk_size) && (ph1->config_start == ph2->config_start) && (ph1->config_size == ph2->config_size) && uuid_equal(&ph1->disk_id, &ph2->disk_id)); } /** * ldm_compare_tocblocks - Compare two tocblock objects * @toc1: First toc * @toc2: Second toc * * This compares the two tocblock structures @toc1 and @toc2. * * Return: 'true' Identical * 'false' Different */ static bool ldm_compare_tocblocks (const struct tocblock *toc1, const struct tocblock *toc2) { BUG_ON (!toc1 || !toc2); return ((toc1->bitmap1_start == toc2->bitmap1_start) && (toc1->bitmap1_size == toc2->bitmap1_size) && (toc1->bitmap2_start == toc2->bitmap2_start) && (toc1->bitmap2_size == toc2->bitmap2_size) && !strncmp (toc1->bitmap1_name, toc2->bitmap1_name, sizeof (toc1->bitmap1_name)) && !strncmp (toc1->bitmap2_name, toc2->bitmap2_name, sizeof (toc1->bitmap2_name))); } /** * ldm_validate_privheads - Compare the primary privhead with its backups * @state: Partition check state including device holding the LDM Database * @ph1: Memory struct to fill with ph contents * * Read and compare all three privheads from disk. * * The privheads on disk show the size and location of the main disk area and * the configuration area (the database). The values are range-checked against * @hd, which contains the real size of the disk. * * Return: 'true' Success * 'false' Error */ static bool ldm_validate_privheads(struct parsed_partitions *state, struct privhead *ph1) { static const int off[3] = { OFF_PRIV1, OFF_PRIV2, OFF_PRIV3 }; struct privhead *ph[3] = { ph1 }; Sector sect; u8 *data; bool result = false; long num_sects; int i; BUG_ON (!state || !ph1); ph[1] = kmalloc (sizeof (*ph[1]), GFP_KERNEL); ph[2] = kmalloc (sizeof (*ph[2]), GFP_KERNEL); if (!ph[1] || !ph[2]) { ldm_crit ("Out of memory."); goto out; } /* off[1 & 2] are relative to ph[0]->config_start */ ph[0]->config_start = 0; /* Read and parse privheads */ for (i = 0; i < 3; i++) { data = read_part_sector(state, ph[0]->config_start + off[i], §); if (!data) { ldm_crit ("Disk read failed."); goto out; } result = ldm_parse_privhead (data, ph[i]); put_dev_sector (sect); if (!result) { ldm_error ("Cannot find PRIVHEAD %d.", i+1); /* Log again */ if (i < 2) goto out; /* Already logged */ else break; /* FIXME ignore for now, 3rd PH can fail on odd-sized disks */ } } num_sects = get_capacity(state->disk); if ((ph[0]->config_start > num_sects) || ((ph[0]->config_start + ph[0]->config_size) > num_sects)) { ldm_crit ("Database extends beyond the end of the disk."); goto out; } if ((ph[0]->logical_disk_start > ph[0]->config_start) || ((ph[0]->logical_disk_start + ph[0]->logical_disk_size) > ph[0]->config_start)) { ldm_crit ("Disk and database overlap."); goto out; } if (!ldm_compare_privheads (ph[0], ph[1])) { ldm_crit ("Primary and backup PRIVHEADs don't match."); goto out; } /* FIXME ignore this for now if (!ldm_compare_privheads (ph[0], ph[2])) { ldm_crit ("Primary and backup PRIVHEADs don't match."); goto out; }*/ ldm_debug ("Validated PRIVHEADs successfully."); result = true; out: kfree (ph[1]); kfree (ph[2]); return result; } /** * ldm_validate_tocblocks - Validate the table of contents and its backups * @state: Partition check state including device holding the LDM Database * @base: Offset, into @state->disk, of the database * @ldb: Cache of the database structures * * Find and compare the four tables of contents of the LDM Database stored on * @state->disk and return the parsed information into @toc1. * * The offsets and sizes of the configs are range-checked against a privhead. * * Return: 'true' @toc1 contains validated TOCBLOCK info * 'false' @toc1 contents are undefined */ static bool ldm_validate_tocblocks(struct parsed_partitions *state, unsigned long base, struct ldmdb *ldb) { static const int off[4] = { OFF_TOCB1, OFF_TOCB2, OFF_TOCB3, OFF_TOCB4}; struct tocblock *tb[4]; struct privhead *ph; Sector sect; u8 *data; int i, nr_tbs; bool result = false; BUG_ON(!state || !ldb); ph = &ldb->ph; tb[0] = &ldb->toc; tb[1] = kmalloc_array(3, sizeof(*tb[1]), GFP_KERNEL); if (!tb[1]) { ldm_crit("Out of memory."); goto err; } tb[2] = (struct tocblock*)((u8*)tb[1] + sizeof(*tb[1])); tb[3] = (struct tocblock*)((u8*)tb[2] + sizeof(*tb[2])); /* * Try to read and parse all four TOCBLOCKs. * * Windows Vista LDM v2.12 does not always have all four TOCBLOCKs so * skip any that fail as long as we get at least one valid TOCBLOCK. */ for (nr_tbs = i = 0; i < 4; i++) { data = read_part_sector(state, base + off[i], §); if (!data) { ldm_error("Disk read failed for TOCBLOCK %d.", i); continue; } if (ldm_parse_tocblock(data, tb[nr_tbs])) nr_tbs++; put_dev_sector(sect); } if (!nr_tbs) { ldm_crit("Failed to find a valid TOCBLOCK."); goto err; } /* Range check the TOCBLOCK against a privhead. */ if (((tb[0]->bitmap1_start + tb[0]->bitmap1_size) > ph->config_size) || ((tb[0]->bitmap2_start + tb[0]->bitmap2_size) > ph->config_size)) { ldm_crit("The bitmaps are out of range. Giving up."); goto err; } /* Compare all loaded TOCBLOCKs. */ for (i = 1; i < nr_tbs; i++) { if (!ldm_compare_tocblocks(tb[0], tb[i])) { ldm_crit("TOCBLOCKs 0 and %d do not match.", i); goto err; } } ldm_debug("Validated %d TOCBLOCKs successfully.", nr_tbs); result = true; err: kfree(tb[1]); return result; } /** * ldm_validate_vmdb - Read the VMDB and validate it * @state: Partition check state including device holding the LDM Database * @base: Offset, into @bdev, of the database * @ldb: Cache of the database structures * * Find the vmdb of the LDM Database stored on @bdev and return the parsed * information in @ldb. * * Return: 'true' @ldb contains validated VBDB info * 'false' @ldb contents are undefined */ static bool ldm_validate_vmdb(struct parsed_partitions *state, unsigned long base, struct ldmdb *ldb) { Sector sect; u8 *data; bool result = false; struct vmdb *vm; struct tocblock *toc; BUG_ON (!state || !ldb); vm = &ldb->vm; toc = &ldb->toc; data = read_part_sector(state, base + OFF_VMDB, §); if (!data) { ldm_crit ("Disk read failed."); return false; } if (!ldm_parse_vmdb (data, vm)) goto out; /* Already logged */ /* Are there uncommitted transactions? */ if (get_unaligned_be16(data + 0x10) != 0x01) { ldm_crit ("Database is not in a consistent state. Aborting."); goto out; } if (vm->vblk_offset != 512) ldm_info ("VBLKs start at offset 0x%04x.", vm->vblk_offset); /* * The last_vblkd_seq can be before the end of the vmdb, just make sure * it is not out of bounds. */ if ((vm->vblk_size * vm->last_vblk_seq) > (toc->bitmap1_size << 9)) { ldm_crit ("VMDB exceeds allowed size specified by TOCBLOCK. " "Database is corrupt. Aborting."); goto out; } result = true; out: put_dev_sector (sect); return result; } /** * ldm_validate_partition_table - Determine whether bdev might be a dynamic disk * @state: Partition check state including device holding the LDM Database * * This function provides a weak test to decide whether the device is a dynamic * disk or not. It looks for an MS-DOS-style partition table containing at * least one partition of type 0x42 (formerly SFS, now used by Windows for * dynamic disks). * * N.B. The only possible error can come from the read_part_sector and that is * only likely to happen if the underlying device is strange. If that IS * the case we should return zero to let someone else try. * * Return: 'true' @state->disk is a dynamic disk * 'false' @state->disk is not a dynamic disk, or an error occurred */ static bool ldm_validate_partition_table(struct parsed_partitions *state) { Sector sect; u8 *data; struct msdos_partition *p; int i; bool result = false; BUG_ON(!state); data = read_part_sector(state, 0, §); if (!data) { ldm_info ("Disk read failed."); return false; } if (*(__le16*) (data + 0x01FE) != cpu_to_le16 (MSDOS_LABEL_MAGIC)) goto out; p = (struct msdos_partition *)(data + 0x01BE); for (i = 0; i < 4; i++, p++) if (p->sys_ind == LDM_PARTITION) { result = true; break; } if (result) ldm_debug ("Found W2K dynamic disk partition type."); out: put_dev_sector (sect); return result; } /** * ldm_get_disk_objid - Search a linked list of vblk's for a given Disk Id * @ldb: Cache of the database structures * * The LDM Database contains a list of all partitions on all dynamic disks. * The primary PRIVHEAD, at the beginning of the physical disk, tells us * the GUID of this disk. This function searches for the GUID in a linked * list of vblk's. * * Return: Pointer, A matching vblk was found * NULL, No match, or an error */ static struct vblk * ldm_get_disk_objid (const struct ldmdb *ldb) { struct list_head *item; BUG_ON (!ldb); list_for_each (item, &ldb->v_disk) { struct vblk *v = list_entry (item, struct vblk, list); if (uuid_equal(&v->vblk.disk.disk_id, &ldb->ph.disk_id)) return v; } return NULL; } /** * ldm_create_data_partitions - Create data partitions for this device * @pp: List of the partitions parsed so far * @ldb: Cache of the database structures * * The database contains ALL the partitions for ALL disk groups, so we need to * filter out this specific disk. Using the disk's object id, we can find all * the partitions in the database that belong to this disk. * * Add each partition in our database, to the parsed_partitions structure. * * N.B. This function creates the partitions in the order it finds partition * objects in the linked list. * * Return: 'true' Partition created * 'false' Error, probably a range checking problem */ static bool ldm_create_data_partitions (struct parsed_partitions *pp, const struct ldmdb *ldb) { struct list_head *item; struct vblk *vb; struct vblk *disk; struct vblk_part *part; int part_num = 1; BUG_ON (!pp || !ldb); disk = ldm_get_disk_objid (ldb); if (!disk) { ldm_crit ("Can't find the ID of this disk in the database."); return false; } strlcat(pp->pp_buf, " [LDM]", PAGE_SIZE); /* Create the data partitions */ list_for_each (item, &ldb->v_part) { vb = list_entry (item, struct vblk, list); part = &vb->vblk.part; if (part->disk_id != disk->obj_id) continue; put_partition (pp, part_num, ldb->ph.logical_disk_start + part->start, part->size); part_num++; } strlcat(pp->pp_buf, "\n", PAGE_SIZE); return true; } /** * ldm_relative - Calculate the next relative offset * @buffer: Block of data being worked on * @buflen: Size of the block of data * @base: Size of the previous fixed width fields * @offset: Cumulative size of the previous variable-width fields * * Because many of the VBLK fields are variable-width, it's necessary * to calculate each offset based on the previous one and the length * of the field it pointed to. * * Return: -1 Error, the calculated offset exceeded the size of the buffer * n OK, a range-checked offset into buffer */ static int ldm_relative(const u8 *buffer, int buflen, int base, int offset) { base += offset; if (!buffer || offset < 0 || base > buflen) { if (!buffer) ldm_error("!buffer"); if (offset < 0) ldm_error("offset (%d) < 0", offset); if (base > buflen) ldm_error("base (%d) > buflen (%d)", base, buflen); return -1; } if (base + buffer[base] >= buflen) { ldm_error("base (%d) + buffer[base] (%d) >= buflen (%d)", base, buffer[base], buflen); return -1; } return buffer[base] + offset + 1; } /** * ldm_get_vnum - Convert a variable-width, big endian number, into cpu order * @block: Pointer to the variable-width number to convert * * Large numbers in the LDM Database are often stored in a packed format. Each * number is prefixed by a one byte width marker. All numbers in the database * are stored in big-endian byte order. This function reads one of these * numbers and returns the result * * N.B. This function DOES NOT perform any range checking, though the most * it will read is eight bytes. * * Return: n A number * 0 Zero, or an error occurred */ static u64 ldm_get_vnum (const u8 *block) { u64 tmp = 0; u8 length; BUG_ON (!block); length = *block++; if (length && length <= 8) while (length--) tmp = (tmp << 8) | *block++; else ldm_error ("Illegal length %d.", length); return tmp; } /** * ldm_get_vstr - Read a length-prefixed string into a buffer * @block: Pointer to the length marker * @buffer: Location to copy string to * @buflen: Size of the output buffer * * Many of the strings in the LDM Database are not NULL terminated. Instead * they are prefixed by a one byte length marker. This function copies one of * these strings into a buffer. * * N.B. This function DOES NOT perform any range checking on the input. * If the buffer is too small, the output will be truncated. * * Return: 0, Error and @buffer contents are undefined * n, String length in characters (excluding NULL) * buflen-1, String was truncated. */ static int ldm_get_vstr (const u8 *block, u8 *buffer, int buflen) { int length; BUG_ON (!block || !buffer); length = block[0]; if (length >= buflen) { ldm_error ("Truncating string %d -> %d.", length, buflen); length = buflen - 1; } memcpy (buffer, block + 1, length); buffer[length] = 0; return length; } /** * ldm_parse_cmp3 - Read a raw VBLK Component object into a vblk structure * @buffer: Block of data being worked on * @buflen: Size of the block of data * @vb: In-memory vblk in which to return information * * Read a raw VBLK Component object (version 3) into a vblk structure. * * Return: 'true' @vb contains a Component VBLK * 'false' @vb contents are not defined */ static bool ldm_parse_cmp3 (const u8 *buffer, int buflen, struct vblk *vb) { int r_objid, r_name, r_vstate, r_child, r_parent, r_stripe, r_cols, len; struct vblk_comp *comp; BUG_ON (!buffer || !vb); r_objid = ldm_relative (buffer, buflen, 0x18, 0); r_name = ldm_relative (buffer, buflen, 0x18, r_objid); r_vstate = ldm_relative (buffer, buflen, 0x18, r_name); r_child = ldm_relative (buffer, buflen, 0x1D, r_vstate); r_parent = ldm_relative (buffer, buflen, 0x2D, r_child); if (buffer[0x12] & VBLK_FLAG_COMP_STRIPE) { r_stripe = ldm_relative (buffer, buflen, 0x2E, r_parent); r_cols = ldm_relative (buffer, buflen, 0x2E, r_stripe); len = r_cols; } else { r_stripe = 0; len = r_parent; } if (len < 0) return false; len += VBLK_SIZE_CMP3; if (len != get_unaligned_be32(buffer + 0x14)) return false; comp = &vb->vblk.comp; ldm_get_vstr (buffer + 0x18 + r_name, comp->state, sizeof (comp->state)); comp->type = buffer[0x18 + r_vstate]; comp->children = ldm_get_vnum (buffer + 0x1D + r_vstate); comp->parent_id = ldm_get_vnum (buffer + 0x2D + r_child); comp->chunksize = r_stripe ? ldm_get_vnum (buffer+r_parent+0x2E) : 0; return true; } /** * ldm_parse_dgr3 - Read a raw VBLK Disk Group object into a vblk structure * @buffer: Block of data being worked on * @buflen: Size of the block of data * @vb: In-memory vblk in which to return information * * Read a raw VBLK Disk Group object (version 3) into a vblk structure. * * Return: 'true' @vb contains a Disk Group VBLK * 'false' @vb contents are not defined */ static int ldm_parse_dgr3 (const u8 *buffer, int buflen, struct vblk *vb) { int r_objid, r_name, r_diskid, r_id1, r_id2, len; struct vblk_dgrp *dgrp; BUG_ON (!buffer || !vb); r_objid = ldm_relative (buffer, buflen, 0x18, 0); r_name = ldm_relative (buffer, buflen, 0x18, r_objid); r_diskid = ldm_relative (buffer, buflen, 0x18, r_name); if (buffer[0x12] & VBLK_FLAG_DGR3_IDS) { r_id1 = ldm_relative (buffer, buflen, 0x24, r_diskid); r_id2 = ldm_relative (buffer, buflen, 0x24, r_id1); len = r_id2; } else len = r_diskid; if (len < 0) return false; len += VBLK_SIZE_DGR3; if (len != get_unaligned_be32(buffer + 0x14)) return false; dgrp = &vb->vblk.dgrp; ldm_get_vstr (buffer + 0x18 + r_name, dgrp->disk_id, sizeof (dgrp->disk_id)); return true; } /** * ldm_parse_dgr4 - Read a raw VBLK Disk Group object into a vblk structure * @buffer: Block of data being worked on * @buflen: Size of the block of data * @vb: In-memory vblk in which to return information * * Read a raw VBLK Disk Group object (version 4) into a vblk structure. * * Return: 'true' @vb contains a Disk Group VBLK * 'false' @vb contents are not defined */ static bool ldm_parse_dgr4 (const u8 *buffer, int buflen, struct vblk *vb) { char buf[64]; int r_objid, r_name, r_id1, r_id2, len; BUG_ON (!buffer || !vb); r_objid = ldm_relative (buffer, buflen, 0x18, 0); r_name = ldm_relative (buffer, buflen, 0x18, r_objid); if (buffer[0x12] & VBLK_FLAG_DGR4_IDS) { r_id1 = ldm_relative (buffer, buflen, 0x44, r_name); r_id2 = ldm_relative (buffer, buflen, 0x44, r_id1); len = r_id2; } else len = r_name; if (len < 0) return false; len += VBLK_SIZE_DGR4; if (len != get_unaligned_be32(buffer + 0x14)) return false; ldm_get_vstr (buffer + 0x18 + r_objid, buf, sizeof (buf)); return true; } /** * ldm_parse_dsk3 - Read a raw VBLK Disk object into a vblk structure * @buffer: Block of data being worked on * @buflen: Size of the block of data * @vb: In-memory vblk in which to return information * * Read a raw VBLK Disk object (version 3) into a vblk structure. * * Return: 'true' @vb contains a Disk VBLK * 'false' @vb contents are not defined */ static bool ldm_parse_dsk3 (const u8 *buffer, int buflen, struct vblk *vb) { int r_objid, r_name, r_diskid, r_altname, len; struct vblk_disk *disk; BUG_ON (!buffer || !vb); r_objid = ldm_relative (buffer, buflen, 0x18, 0); r_name = ldm_relative (buffer, buflen, 0x18, r_objid); r_diskid = ldm_relative (buffer, buflen, 0x18, r_name); r_altname = ldm_relative (buffer, buflen, 0x18, r_diskid); len = r_altname; if (len < 0) return false; len += VBLK_SIZE_DSK3; if (len != get_unaligned_be32(buffer + 0x14)) return false; disk = &vb->vblk.disk; ldm_get_vstr (buffer + 0x18 + r_diskid, disk->alt_name, sizeof (disk->alt_name)); if (uuid_parse(buffer + 0x19 + r_name, &disk->disk_id)) return false; return true; } /** * ldm_parse_dsk4 - Read a raw VBLK Disk object into a vblk structure * @buffer: Block of data being worked on * @buflen: Size of the block of data * @vb: In-memory vblk in which to return information * * Read a raw VBLK Disk object (version 4) into a vblk structure. * * Return: 'true' @vb contains a Disk VBLK * 'false' @vb contents are not defined */ static bool ldm_parse_dsk4 (const u8 *buffer, int buflen, struct vblk *vb) { int r_objid, r_name, len; struct vblk_disk *disk; BUG_ON (!buffer || !vb); r_objid = ldm_relative (buffer, buflen, 0x18, 0); r_name = ldm_relative (buffer, buflen, 0x18, r_objid); len = r_name; if (len < 0) return false; len += VBLK_SIZE_DSK4; if (len != get_unaligned_be32(buffer + 0x14)) return false; disk = &vb->vblk.disk; import_uuid(&disk->disk_id, buffer + 0x18 + r_name); return true; } /** * ldm_parse_prt3 - Read a raw VBLK Partition object into a vblk structure * @buffer: Block of data being worked on * @buflen: Size of the block of data * @vb: In-memory vblk in which to return information * * Read a raw VBLK Partition object (version 3) into a vblk structure. * * Return: 'true' @vb contains a Partition VBLK * 'false' @vb contents are not defined */ static bool ldm_parse_prt3(const u8 *buffer, int buflen, struct vblk *vb) { int r_objid, r_name, r_size, r_parent, r_diskid, r_index, len; struct vblk_part *part; BUG_ON(!buffer || !vb); r_objid = ldm_relative(buffer, buflen, 0x18, 0); if (r_objid < 0) { ldm_error("r_objid %d < 0", r_objid); return false; } r_name = ldm_relative(buffer, buflen, 0x18, r_objid); if (r_name < 0) { ldm_error("r_name %d < 0", r_name); return false; } r_size = ldm_relative(buffer, buflen, 0x34, r_name); if (r_size < 0) { ldm_error("r_size %d < 0", r_size); return false; } r_parent = ldm_relative(buffer, buflen, 0x34, r_size); if (r_parent < 0) { ldm_error("r_parent %d < 0", r_parent); return false; } r_diskid = ldm_relative(buffer, buflen, 0x34, r_parent); if (r_diskid < 0) { ldm_error("r_diskid %d < 0", r_diskid); return false; } if (buffer[0x12] & VBLK_FLAG_PART_INDEX) { r_index = ldm_relative(buffer, buflen, 0x34, r_diskid); if (r_index < 0) { ldm_error("r_index %d < 0", r_index); return false; } len = r_index; } else len = r_diskid; if (len < 0) { ldm_error("len %d < 0", len); return false; } len += VBLK_SIZE_PRT3; if (len > get_unaligned_be32(buffer + 0x14)) { ldm_error("len %d > BE32(buffer + 0x14) %d", len, get_unaligned_be32(buffer + 0x14)); return false; } part = &vb->vblk.part; part->start = get_unaligned_be64(buffer + 0x24 + r_name); part->volume_offset = get_unaligned_be64(buffer + 0x2C + r_name); part->size = ldm_get_vnum(buffer + 0x34 + r_name); part->parent_id = ldm_get_vnum(buffer + 0x34 + r_size); part->disk_id = ldm_get_vnum(buffer + 0x34 + r_parent); if (vb->flags & VBLK_FLAG_PART_INDEX) part->partnum = buffer[0x35 + r_diskid]; else part->partnum = 0; return true; } /** * ldm_parse_vol5 - Read a raw VBLK Volume object into a vblk structure * @buffer: Block of data being worked on * @buflen: Size of the block of data * @vb: In-memory vblk in which to return information * * Read a raw VBLK Volume object (version 5) into a vblk structure. * * Return: 'true' @vb contains a Volume VBLK * 'false' @vb contents are not defined */ static bool ldm_parse_vol5(const u8 *buffer, int buflen, struct vblk *vb) { int r_objid, r_name, r_vtype, r_disable_drive_letter, r_child, r_size; int r_id1, r_id2, r_size2, r_drive, len; struct vblk_volu *volu; BUG_ON(!buffer || !vb); r_objid = ldm_relative(buffer, buflen, 0x18, 0); if (r_objid < 0) { ldm_error("r_objid %d < 0", r_objid); return false; } r_name = ldm_relative(buffer, buflen, 0x18, r_objid); if (r_name < 0) { ldm_error("r_name %d < 0", r_name); return false; } r_vtype = ldm_relative(buffer, buflen, 0x18, r_name); if (r_vtype < 0) { ldm_error("r_vtype %d < 0", r_vtype); return false; } r_disable_drive_letter = ldm_relative(buffer, buflen, 0x18, r_vtype); if (r_disable_drive_letter < 0) { ldm_error("r_disable_drive_letter %d < 0", r_disable_drive_letter); return false; } r_child = ldm_relative(buffer, buflen, 0x2D, r_disable_drive_letter); if (r_child < 0) { ldm_error("r_child %d < 0", r_child); return false; } r_size = ldm_relative(buffer, buflen, 0x3D, r_child); if (r_size < 0) { ldm_error("r_size %d < 0", r_size); return false; } if (buffer[0x12] & VBLK_FLAG_VOLU_ID1) { r_id1 = ldm_relative(buffer, buflen, 0x52, r_size); if (r_id1 < 0) { ldm_error("r_id1 %d < 0", r_id1); return false; } } else r_id1 = r_size; if (buffer[0x12] & VBLK_FLAG_VOLU_ID2) { r_id2 = ldm_relative(buffer, buflen, 0x52, r_id1); if (r_id2 < 0) { ldm_error("r_id2 %d < 0", r_id2); return false; } } else r_id2 = r_id1; if (buffer[0x12] & VBLK_FLAG_VOLU_SIZE) { r_size2 = ldm_relative(buffer, buflen, 0x52, r_id2); if (r_size2 < 0) { ldm_error("r_size2 %d < 0", r_size2); return false; } } else r_size2 = r_id2; if (buffer[0x12] & VBLK_FLAG_VOLU_DRIVE) { r_drive = ldm_relative(buffer, buflen, 0x52, r_size2); if (r_drive < 0) { ldm_error("r_drive %d < 0", r_drive); return false; } } else r_drive = r_size2; len = r_drive; if (len < 0) { ldm_error("len %d < 0", len); return false; } len += VBLK_SIZE_VOL5; if (len > get_unaligned_be32(buffer + 0x14)) { ldm_error("len %d > BE32(buffer + 0x14) %d", len, get_unaligned_be32(buffer + 0x14)); return false; } volu = &vb->vblk.volu; ldm_get_vstr(buffer + 0x18 + r_name, volu->volume_type, sizeof(volu->volume_type)); memcpy(volu->volume_state, buffer + 0x18 + r_disable_drive_letter, sizeof(volu->volume_state)); volu->size = ldm_get_vnum(buffer + 0x3D + r_child); volu->partition_type = buffer[0x41 + r_size]; memcpy(volu->guid, buffer + 0x42 + r_size, sizeof(volu->guid)); if (buffer[0x12] & VBLK_FLAG_VOLU_DRIVE) { ldm_get_vstr(buffer + 0x52 + r_size, volu->drive_hint, sizeof(volu->drive_hint)); } return true; } /** * ldm_parse_vblk - Read a raw VBLK object into a vblk structure * @buf: Block of data being worked on * @len: Size of the block of data * @vb: In-memory vblk in which to return information * * Read a raw VBLK object into a vblk structure. This function just reads the * information common to all VBLK types, then delegates the rest of the work to * helper functions: ldm_parse_*. * * Return: 'true' @vb contains a VBLK * 'false' @vb contents are not defined */ static bool ldm_parse_vblk (const u8 *buf, int len, struct vblk *vb) { bool result = false; int r_objid; BUG_ON (!buf || !vb); r_objid = ldm_relative (buf, len, 0x18, 0); if (r_objid < 0) { ldm_error ("VBLK header is corrupt."); return false; } vb->flags = buf[0x12]; vb->type = buf[0x13]; vb->obj_id = ldm_get_vnum (buf + 0x18); ldm_get_vstr (buf+0x18+r_objid, vb->name, sizeof (vb->name)); switch (vb->type) { case VBLK_CMP3: result = ldm_parse_cmp3 (buf, len, vb); break; case VBLK_DSK3: result = ldm_parse_dsk3 (buf, len, vb); break; case VBLK_DSK4: result = ldm_parse_dsk4 (buf, len, vb); break; case VBLK_DGR3: result = ldm_parse_dgr3 (buf, len, vb); break; case VBLK_DGR4: result = ldm_parse_dgr4 (buf, len, vb); break; case VBLK_PRT3: result = ldm_parse_prt3 (buf, len, vb); break; case VBLK_VOL5: result = ldm_parse_vol5 (buf, len, vb); break; } if (result) ldm_debug ("Parsed VBLK 0x%llx (type: 0x%02x) ok.", (unsigned long long) vb->obj_id, vb->type); else ldm_error ("Failed to parse VBLK 0x%llx (type: 0x%02x).", (unsigned long long) vb->obj_id, vb->type); return result; } /** * ldm_ldmdb_add - Adds a raw VBLK entry to the ldmdb database * @data: Raw VBLK to add to the database * @len: Size of the raw VBLK * @ldb: Cache of the database structures * * The VBLKs are sorted into categories. Partitions are also sorted by offset. * * N.B. This function does not check the validity of the VBLKs. * * Return: 'true' The VBLK was added * 'false' An error occurred */ static bool ldm_ldmdb_add (u8 *data, int len, struct ldmdb *ldb) { struct vblk *vb; struct list_head *item; BUG_ON (!data || !ldb); vb = kmalloc (sizeof (*vb), GFP_KERNEL); if (!vb) { ldm_crit ("Out of memory."); return false; } if (!ldm_parse_vblk (data, len, vb)) { kfree(vb); return false; /* Already logged */ } /* Put vblk into the correct list. */ switch (vb->type) { case VBLK_DGR3: case VBLK_DGR4: list_add (&vb->list, &ldb->v_dgrp); break; case VBLK_DSK3: case VBLK_DSK4: list_add (&vb->list, &ldb->v_disk); break; case VBLK_VOL5: list_add (&vb->list, &ldb->v_volu); break; case VBLK_CMP3: list_add (&vb->list, &ldb->v_comp); break; case VBLK_PRT3: /* Sort by the partition's start sector. */ list_for_each (item, &ldb->v_part) { struct vblk *v = list_entry (item, struct vblk, list); if ((v->vblk.part.disk_id == vb->vblk.part.disk_id) && (v->vblk.part.start > vb->vblk.part.start)) { list_add_tail (&vb->list, &v->list); return true; } } list_add_tail (&vb->list, &ldb->v_part); break; } return true; } /** * ldm_frag_add - Add a VBLK fragment to a list * @data: Raw fragment to be added to the list * @size: Size of the raw fragment * @frags: Linked list of VBLK fragments * * Fragmented VBLKs may not be consecutive in the database, so they are placed * in a list so they can be pieced together later. * * Return: 'true' Success, the VBLK was added to the list * 'false' Error, a problem occurred */ static bool ldm_frag_add (const u8 *data, int size, struct list_head *frags) { struct frag *f; struct list_head *item; int rec, num, group; BUG_ON (!data || !frags); if (size < 2 * VBLK_SIZE_HEAD) { ldm_error("Value of size is too small."); return false; } group = get_unaligned_be32(data + 0x08); rec = get_unaligned_be16(data + 0x0C); num = get_unaligned_be16(data + 0x0E); if ((num < 1) || (num > 4)) { ldm_error ("A VBLK claims to have %d parts.", num); return false; } if (rec >= num) { ldm_error("REC value (%d) exceeds NUM value (%d)", rec, num); return false; } list_for_each (item, frags) { f = list_entry (item, struct frag, list); if (f->group == group) goto found; } f = kmalloc (sizeof (*f) + size*num, GFP_KERNEL); if (!f) { ldm_crit ("Out of memory."); return false; } f->group = group; f->num = num; f->rec = rec; f->map = 0xFF << num; list_add_tail (&f->list, frags); found: if (rec >= f->num) { ldm_error("REC value (%d) exceeds NUM value (%d)", rec, f->num); return false; } if (f->map & (1 << rec)) { ldm_error ("Duplicate VBLK, part %d.", rec); f->map &= 0x7F; /* Mark the group as broken */ return false; } f->map |= (1 << rec); if (!rec) memcpy(f->data, data, VBLK_SIZE_HEAD); data += VBLK_SIZE_HEAD; size -= VBLK_SIZE_HEAD; memcpy(f->data + VBLK_SIZE_HEAD + rec * size, data, size); return true; } /** * ldm_frag_free - Free a linked list of VBLK fragments * @list: Linked list of fragments * * Free a linked list of VBLK fragments * * Return: none */ static void ldm_frag_free (struct list_head *list) { struct list_head *item, *tmp; BUG_ON (!list); list_for_each_safe (item, tmp, list) kfree (list_entry (item, struct frag, list)); } /** * ldm_frag_commit - Validate fragmented VBLKs and add them to the database * @frags: Linked list of VBLK fragments * @ldb: Cache of the database structures * * Now that all the fragmented VBLKs have been collected, they must be added to * the database for later use. * * Return: 'true' All the fragments we added successfully * 'false' One or more of the fragments we invalid */ static bool ldm_frag_commit (struct list_head *frags, struct ldmdb *ldb) { struct frag *f; struct list_head *item; BUG_ON (!frags || !ldb); list_for_each (item, frags) { f = list_entry (item, struct frag, list); if (f->map != 0xFF) { ldm_error ("VBLK group %d is incomplete (0x%02x).", f->group, f->map); return false; } if (!ldm_ldmdb_add (f->data, f->num*ldb->vm.vblk_size, ldb)) return false; /* Already logged */ } return true; } /** * ldm_get_vblks - Read the on-disk database of VBLKs into memory * @state: Partition check state including device holding the LDM Database * @base: Offset, into @state->disk, of the database * @ldb: Cache of the database structures * * To use the information from the VBLKs, they need to be read from the disk, * unpacked and validated. We cache them in @ldb according to their type. * * Return: 'true' All the VBLKs were read successfully * 'false' An error occurred */ static bool ldm_get_vblks(struct parsed_partitions *state, unsigned long base, struct ldmdb *ldb) { int size, perbuf, skip, finish, s, v, recs; u8 *data = NULL; Sector sect; bool result = false; LIST_HEAD (frags); BUG_ON(!state || !ldb); size = ldb->vm.vblk_size; perbuf = 512 / size; skip = ldb->vm.vblk_offset >> 9; /* Bytes to sectors */ finish = (size * ldb->vm.last_vblk_seq) >> 9; for (s = skip; s < finish; s++) { /* For each sector */ data = read_part_sector(state, base + OFF_VMDB + s, §); if (!data) { ldm_crit ("Disk read failed."); goto out; } for (v = 0; v < perbuf; v++, data+=size) { /* For each vblk */ if (MAGIC_VBLK != get_unaligned_be32(data)) { ldm_error ("Expected to find a VBLK."); goto out; } recs = get_unaligned_be16(data + 0x0E); /* Number of records */ if (recs == 1) { if (!ldm_ldmdb_add (data, size, ldb)) goto out; /* Already logged */ } else if (recs > 1) { if (!ldm_frag_add (data, size, &frags)) goto out; /* Already logged */ } /* else Record is not in use, ignore it. */ } put_dev_sector (sect); data = NULL; } result = ldm_frag_commit (&frags, ldb); /* Failures, already logged */ out: if (data) put_dev_sector (sect); ldm_frag_free (&frags); return result; } /** * ldm_free_vblks - Free a linked list of vblk's * @lh: Head of a linked list of struct vblk * * Free a list of vblk's and free the memory used to maintain the list. * * Return: none */ static void ldm_free_vblks (struct list_head *lh) { struct list_head *item, *tmp; BUG_ON (!lh); list_for_each_safe (item, tmp, lh) kfree (list_entry (item, struct vblk, list)); } /** * ldm_partition - Find out whether a device is a dynamic disk and handle it * @state: Partition check state including device holding the LDM Database * * This determines whether the device @bdev is a dynamic disk and if so creates * the partitions necessary in the gendisk structure pointed to by @hd. * * We create a dummy device 1, which contains the LDM database, and then create * each partition described by the LDM database in sequence as devices 2+. For * example, if the device is hda, we would have: hda1: LDM database, hda2, hda3, * and so on: the actual data containing partitions. * * Return: 1 Success, @state->disk is a dynamic disk and we handled it * 0 Success, @state->disk is not a dynamic disk * -1 An error occurred before enough information had been read * Or @state->disk is a dynamic disk, but it may be corrupted */ int ldm_partition(struct parsed_partitions *state) { struct ldmdb *ldb; unsigned long base; int result = -1; BUG_ON(!state); /* Look for signs of a Dynamic Disk */ if (!ldm_validate_partition_table(state)) return 0; ldb = kmalloc (sizeof (*ldb), GFP_KERNEL); if (!ldb) { ldm_crit ("Out of memory."); goto out; } /* Parse and check privheads. */ if (!ldm_validate_privheads(state, &ldb->ph)) goto out; /* Already logged */ /* All further references are relative to base (database start). */ base = ldb->ph.config_start; /* Parse and check tocs and vmdb. */ if (!ldm_validate_tocblocks(state, base, ldb) || !ldm_validate_vmdb(state, base, ldb)) goto out; /* Already logged */ /* Initialize vblk lists in ldmdb struct */ INIT_LIST_HEAD (&ldb->v_dgrp); INIT_LIST_HEAD (&ldb->v_disk); INIT_LIST_HEAD (&ldb->v_volu); INIT_LIST_HEAD (&ldb->v_comp); INIT_LIST_HEAD (&ldb->v_part); if (!ldm_get_vblks(state, base, ldb)) { ldm_crit ("Failed to read the VBLKs from the database."); goto cleanup; } /* Finally, create the data partition devices. */ if (ldm_create_data_partitions(state, ldb)) { ldm_debug ("Parsed LDM database successfully."); result = 1; } /* else Already logged */ cleanup: ldm_free_vblks (&ldb->v_dgrp); ldm_free_vblks (&ldb->v_disk); ldm_free_vblks (&ldb->v_volu); ldm_free_vblks (&ldb->v_comp); ldm_free_vblks (&ldb->v_part); out: kfree (ldb); return result; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1