Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Stanislaw Gruszka | 4200 | 77.11% | 4 | 23.53% |
Jacek Lawrynowicz | 1145 | 21.02% | 7 | 41.18% |
Karol Wachowski | 43 | 0.79% | 4 | 23.53% |
Andrzej Kacprowski | 33 | 0.61% | 1 | 5.88% |
Krystian Pradzynski | 26 | 0.48% | 1 | 5.88% |
Total | 5447 | 17 |
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2020-2023 Intel Corporation */ #include "ivpu_drv.h" #include "ivpu_fw.h" #include "ivpu_hw.h" #include "ivpu_hw_40xx_reg.h" #include "ivpu_hw_reg_io.h" #include "ivpu_ipc.h" #include "ivpu_mmu.h" #include "ivpu_pm.h" #include <linux/dmi.h> #define TILE_MAX_NUM 6 #define TILE_MAX_MASK 0x3f #define LNL_HW_ID 0x4040 #define SKU_TILE_SHIFT 0u #define SKU_TILE_MASK 0x0000ffffu #define SKU_HW_ID_SHIFT 16u #define SKU_HW_ID_MASK 0xffff0000u #define PLL_CONFIG_DEFAULT 0x1 #define PLL_CDYN_DEFAULT 0x80 #define PLL_EPP_DEFAULT 0x80 #define PLL_REF_CLK_FREQ (50 * 1000000) #define PLL_RATIO_TO_FREQ(x) ((x) * PLL_REF_CLK_FREQ) #define PLL_PROFILING_FREQ_DEFAULT 38400000 #define PLL_PROFILING_FREQ_HIGH 400000000 #define TIM_SAFE_ENABLE 0xf1d0dead #define TIM_WATCHDOG_RESET_VALUE 0xffffffff #define TIMEOUT_US (150 * USEC_PER_MSEC) #define PWR_ISLAND_STATUS_TIMEOUT_US (5 * USEC_PER_MSEC) #define PLL_TIMEOUT_US (1500 * USEC_PER_MSEC) #define WEIGHTS_DEFAULT 0xf711f711u #define WEIGHTS_ATS_DEFAULT 0x0000f711u #define ICB_0_IRQ_MASK ((REG_FLD(VPU_40XX_HOST_SS_ICB_STATUS_0, HOST_IPC_FIFO_INT)) | \ (REG_FLD(VPU_40XX_HOST_SS_ICB_STATUS_0, MMU_IRQ_0_INT)) | \ (REG_FLD(VPU_40XX_HOST_SS_ICB_STATUS_0, MMU_IRQ_1_INT)) | \ (REG_FLD(VPU_40XX_HOST_SS_ICB_STATUS_0, MMU_IRQ_2_INT)) | \ (REG_FLD(VPU_40XX_HOST_SS_ICB_STATUS_0, NOC_FIREWALL_INT)) | \ (REG_FLD(VPU_40XX_HOST_SS_ICB_STATUS_0, CPU_INT_REDIRECT_0_INT)) | \ (REG_FLD(VPU_40XX_HOST_SS_ICB_STATUS_0, CPU_INT_REDIRECT_1_INT))) #define ICB_1_IRQ_MASK ((REG_FLD(VPU_40XX_HOST_SS_ICB_STATUS_1, CPU_INT_REDIRECT_2_INT)) | \ (REG_FLD(VPU_40XX_HOST_SS_ICB_STATUS_1, CPU_INT_REDIRECT_3_INT)) | \ (REG_FLD(VPU_40XX_HOST_SS_ICB_STATUS_1, CPU_INT_REDIRECT_4_INT))) #define ICB_0_1_IRQ_MASK ((((u64)ICB_1_IRQ_MASK) << 32) | ICB_0_IRQ_MASK) #define BUTTRESS_IRQ_MASK ((REG_FLD(VPU_40XX_BUTTRESS_INTERRUPT_STAT, ATS_ERR)) | \ (REG_FLD(VPU_40XX_BUTTRESS_INTERRUPT_STAT, CFI0_ERR)) | \ (REG_FLD(VPU_40XX_BUTTRESS_INTERRUPT_STAT, CFI1_ERR)) | \ (REG_FLD(VPU_40XX_BUTTRESS_INTERRUPT_STAT, IMR0_ERR)) | \ (REG_FLD(VPU_40XX_BUTTRESS_INTERRUPT_STAT, IMR1_ERR)) | \ (REG_FLD(VPU_40XX_BUTTRESS_INTERRUPT_STAT, SURV_ERR))) #define BUTTRESS_IRQ_ENABLE_MASK ((u32)~BUTTRESS_IRQ_MASK) #define BUTTRESS_IRQ_DISABLE_MASK ((u32)-1) #define ITF_FIREWALL_VIOLATION_MASK ((REG_FLD(VPU_40XX_HOST_SS_FW_SOC_IRQ_EN, CSS_ROM_CMX)) | \ (REG_FLD(VPU_40XX_HOST_SS_FW_SOC_IRQ_EN, CSS_DBG)) | \ (REG_FLD(VPU_40XX_HOST_SS_FW_SOC_IRQ_EN, CSS_CTRL)) | \ (REG_FLD(VPU_40XX_HOST_SS_FW_SOC_IRQ_EN, DEC400)) | \ (REG_FLD(VPU_40XX_HOST_SS_FW_SOC_IRQ_EN, MSS_NCE)) | \ (REG_FLD(VPU_40XX_HOST_SS_FW_SOC_IRQ_EN, MSS_MBI)) | \ (REG_FLD(VPU_40XX_HOST_SS_FW_SOC_IRQ_EN, MSS_MBI_CMX))) static char *ivpu_platform_to_str(u32 platform) { switch (platform) { case IVPU_PLATFORM_SILICON: return "IVPU_PLATFORM_SILICON"; case IVPU_PLATFORM_SIMICS: return "IVPU_PLATFORM_SIMICS"; case IVPU_PLATFORM_FPGA: return "IVPU_PLATFORM_FPGA"; default: return "Invalid platform"; } } static const struct dmi_system_id ivpu_dmi_platform_simulation[] = { { .ident = "Intel Simics", .matches = { DMI_MATCH(DMI_BOARD_NAME, "lnlrvp"), DMI_MATCH(DMI_BOARD_VERSION, "1.0"), DMI_MATCH(DMI_BOARD_SERIAL, "123456789"), }, }, { .ident = "Intel Simics", .matches = { DMI_MATCH(DMI_BOARD_NAME, "Simics"), }, }, { } }; static void ivpu_hw_read_platform(struct ivpu_device *vdev) { if (dmi_check_system(ivpu_dmi_platform_simulation)) vdev->platform = IVPU_PLATFORM_SIMICS; else vdev->platform = IVPU_PLATFORM_SILICON; ivpu_dbg(vdev, MISC, "Platform type: %s (%d)\n", ivpu_platform_to_str(vdev->platform), vdev->platform); } static void ivpu_hw_wa_init(struct ivpu_device *vdev) { vdev->wa.punit_disabled = ivpu_is_fpga(vdev); vdev->wa.clear_runtime_mem = false; if (ivpu_hw_gen(vdev) == IVPU_HW_40XX) vdev->wa.disable_clock_relinquish = true; IVPU_PRINT_WA(punit_disabled); IVPU_PRINT_WA(clear_runtime_mem); IVPU_PRINT_WA(disable_clock_relinquish); } static void ivpu_hw_timeouts_init(struct ivpu_device *vdev) { if (ivpu_is_fpga(vdev)) { vdev->timeout.boot = 100000; vdev->timeout.jsm = 50000; vdev->timeout.tdr = 2000000; vdev->timeout.reschedule_suspend = 1000; vdev->timeout.autosuspend = -1; } else if (ivpu_is_simics(vdev)) { vdev->timeout.boot = 50; vdev->timeout.jsm = 500; vdev->timeout.tdr = 10000; vdev->timeout.reschedule_suspend = 10; vdev->timeout.autosuspend = -1; } else { vdev->timeout.boot = 1000; vdev->timeout.jsm = 500; vdev->timeout.tdr = 2000; vdev->timeout.reschedule_suspend = 10; vdev->timeout.autosuspend = 10; } } static int ivpu_pll_wait_for_cmd_send(struct ivpu_device *vdev) { return REGB_POLL_FLD(VPU_40XX_BUTTRESS_WP_REQ_CMD, SEND, 0, PLL_TIMEOUT_US); } static int ivpu_pll_cmd_send(struct ivpu_device *vdev, u16 min_ratio, u16 max_ratio, u16 target_ratio, u16 epp, u16 config, u16 cdyn) { int ret; u32 val; ret = ivpu_pll_wait_for_cmd_send(vdev); if (ret) { ivpu_err(vdev, "Failed to sync before WP request: %d\n", ret); return ret; } val = REGB_RD32(VPU_40XX_BUTTRESS_WP_REQ_PAYLOAD0); val = REG_SET_FLD_NUM(VPU_40XX_BUTTRESS_WP_REQ_PAYLOAD0, MIN_RATIO, min_ratio, val); val = REG_SET_FLD_NUM(VPU_40XX_BUTTRESS_WP_REQ_PAYLOAD0, MAX_RATIO, max_ratio, val); REGB_WR32(VPU_40XX_BUTTRESS_WP_REQ_PAYLOAD0, val); val = REGB_RD32(VPU_40XX_BUTTRESS_WP_REQ_PAYLOAD1); val = REG_SET_FLD_NUM(VPU_40XX_BUTTRESS_WP_REQ_PAYLOAD1, TARGET_RATIO, target_ratio, val); val = REG_SET_FLD_NUM(VPU_40XX_BUTTRESS_WP_REQ_PAYLOAD1, EPP, epp, val); REGB_WR32(VPU_40XX_BUTTRESS_WP_REQ_PAYLOAD1, val); val = REGB_RD32(VPU_40XX_BUTTRESS_WP_REQ_PAYLOAD2); val = REG_SET_FLD_NUM(VPU_40XX_BUTTRESS_WP_REQ_PAYLOAD2, CONFIG, config, val); val = REG_SET_FLD_NUM(VPU_40XX_BUTTRESS_WP_REQ_PAYLOAD2, CDYN, cdyn, val); REGB_WR32(VPU_40XX_BUTTRESS_WP_REQ_PAYLOAD2, val); val = REGB_RD32(VPU_40XX_BUTTRESS_WP_REQ_CMD); val = REG_SET_FLD(VPU_40XX_BUTTRESS_WP_REQ_CMD, SEND, val); REGB_WR32(VPU_40XX_BUTTRESS_WP_REQ_CMD, val); ret = ivpu_pll_wait_for_cmd_send(vdev); if (ret) ivpu_err(vdev, "Failed to sync after WP request: %d\n", ret); return ret; } static int ivpu_pll_wait_for_status_ready(struct ivpu_device *vdev) { return REGB_POLL_FLD(VPU_40XX_BUTTRESS_VPU_STATUS, READY, 1, PLL_TIMEOUT_US); } static int ivpu_wait_for_clock_own_resource_ack(struct ivpu_device *vdev) { if (ivpu_is_simics(vdev)) return 0; return REGB_POLL_FLD(VPU_40XX_BUTTRESS_VPU_STATUS, CLOCK_RESOURCE_OWN_ACK, 1, TIMEOUT_US); } static void ivpu_pll_init_frequency_ratios(struct ivpu_device *vdev) { struct ivpu_hw_info *hw = vdev->hw; u8 fuse_min_ratio, fuse_pn_ratio, fuse_max_ratio; u32 fmin_fuse, fmax_fuse; fmin_fuse = REGB_RD32(VPU_40XX_BUTTRESS_FMIN_FUSE); fuse_min_ratio = REG_GET_FLD(VPU_40XX_BUTTRESS_FMIN_FUSE, MIN_RATIO, fmin_fuse); fuse_pn_ratio = REG_GET_FLD(VPU_40XX_BUTTRESS_FMIN_FUSE, PN_RATIO, fmin_fuse); fmax_fuse = REGB_RD32(VPU_40XX_BUTTRESS_FMAX_FUSE); fuse_max_ratio = REG_GET_FLD(VPU_40XX_BUTTRESS_FMAX_FUSE, MAX_RATIO, fmax_fuse); hw->pll.min_ratio = clamp_t(u8, ivpu_pll_min_ratio, fuse_min_ratio, fuse_max_ratio); hw->pll.max_ratio = clamp_t(u8, ivpu_pll_max_ratio, hw->pll.min_ratio, fuse_max_ratio); hw->pll.pn_ratio = clamp_t(u8, fuse_pn_ratio, hw->pll.min_ratio, hw->pll.max_ratio); } static int ivpu_pll_drive(struct ivpu_device *vdev, bool enable) { u16 config = enable ? PLL_CONFIG_DEFAULT : 0; u16 cdyn = enable ? PLL_CDYN_DEFAULT : 0; u16 epp = enable ? PLL_EPP_DEFAULT : 0; struct ivpu_hw_info *hw = vdev->hw; u16 target_ratio = hw->pll.pn_ratio; int ret; ivpu_dbg(vdev, PM, "PLL workpoint request: %u Hz, epp: 0x%x, config: 0x%x, cdyn: 0x%x\n", PLL_RATIO_TO_FREQ(target_ratio), epp, config, cdyn); ret = ivpu_pll_cmd_send(vdev, hw->pll.min_ratio, hw->pll.max_ratio, target_ratio, epp, config, cdyn); if (ret) { ivpu_err(vdev, "Failed to send PLL workpoint request: %d\n", ret); return ret; } if (enable) { ret = ivpu_pll_wait_for_status_ready(vdev); if (ret) { ivpu_err(vdev, "Timed out waiting for PLL ready status\n"); return ret; } } return 0; } static int ivpu_pll_enable(struct ivpu_device *vdev) { return ivpu_pll_drive(vdev, true); } static int ivpu_pll_disable(struct ivpu_device *vdev) { return ivpu_pll_drive(vdev, false); } static void ivpu_boot_host_ss_rst_drive(struct ivpu_device *vdev, bool enable) { u32 val = REGV_RD32(VPU_40XX_HOST_SS_CPR_RST_EN); if (enable) { val = REG_SET_FLD(VPU_40XX_HOST_SS_CPR_RST_EN, TOP_NOC, val); val = REG_SET_FLD(VPU_40XX_HOST_SS_CPR_RST_EN, DSS_MAS, val); val = REG_SET_FLD(VPU_40XX_HOST_SS_CPR_RST_EN, CSS_MAS, val); } else { val = REG_CLR_FLD(VPU_40XX_HOST_SS_CPR_RST_EN, TOP_NOC, val); val = REG_CLR_FLD(VPU_40XX_HOST_SS_CPR_RST_EN, DSS_MAS, val); val = REG_CLR_FLD(VPU_40XX_HOST_SS_CPR_RST_EN, CSS_MAS, val); } REGV_WR32(VPU_40XX_HOST_SS_CPR_RST_EN, val); } static void ivpu_boot_host_ss_clk_drive(struct ivpu_device *vdev, bool enable) { u32 val = REGV_RD32(VPU_40XX_HOST_SS_CPR_CLK_EN); if (enable) { val = REG_SET_FLD(VPU_40XX_HOST_SS_CPR_CLK_EN, TOP_NOC, val); val = REG_SET_FLD(VPU_40XX_HOST_SS_CPR_CLK_EN, DSS_MAS, val); val = REG_SET_FLD(VPU_40XX_HOST_SS_CPR_CLK_EN, CSS_MAS, val); } else { val = REG_CLR_FLD(VPU_40XX_HOST_SS_CPR_CLK_EN, TOP_NOC, val); val = REG_CLR_FLD(VPU_40XX_HOST_SS_CPR_CLK_EN, DSS_MAS, val); val = REG_CLR_FLD(VPU_40XX_HOST_SS_CPR_CLK_EN, CSS_MAS, val); } REGV_WR32(VPU_40XX_HOST_SS_CPR_CLK_EN, val); } static int ivpu_boot_noc_qreqn_check(struct ivpu_device *vdev, u32 exp_val) { u32 val = REGV_RD32(VPU_40XX_HOST_SS_NOC_QREQN); if (!REG_TEST_FLD_NUM(VPU_40XX_HOST_SS_NOC_QREQN, TOP_SOCMMIO, exp_val, val)) return -EIO; return 0; } static int ivpu_boot_noc_qacceptn_check(struct ivpu_device *vdev, u32 exp_val) { u32 val = REGV_RD32(VPU_40XX_HOST_SS_NOC_QACCEPTN); if (!REG_TEST_FLD_NUM(VPU_40XX_HOST_SS_NOC_QACCEPTN, TOP_SOCMMIO, exp_val, val)) return -EIO; return 0; } static int ivpu_boot_noc_qdeny_check(struct ivpu_device *vdev, u32 exp_val) { u32 val = REGV_RD32(VPU_40XX_HOST_SS_NOC_QDENY); if (!REG_TEST_FLD_NUM(VPU_40XX_HOST_SS_NOC_QDENY, TOP_SOCMMIO, exp_val, val)) return -EIO; return 0; } static int ivpu_boot_top_noc_qrenqn_check(struct ivpu_device *vdev, u32 exp_val) { u32 val = REGV_RD32(VPU_40XX_TOP_NOC_QREQN); if (!REG_TEST_FLD_NUM(VPU_40XX_TOP_NOC_QREQN, CPU_CTRL, exp_val, val) || !REG_TEST_FLD_NUM(VPU_40XX_TOP_NOC_QREQN, HOSTIF_L2CACHE, exp_val, val)) return -EIO; return 0; } static int ivpu_boot_top_noc_qacceptn_check(struct ivpu_device *vdev, u32 exp_val) { u32 val = REGV_RD32(VPU_40XX_TOP_NOC_QACCEPTN); if (!REG_TEST_FLD_NUM(VPU_40XX_TOP_NOC_QACCEPTN, CPU_CTRL, exp_val, val) || !REG_TEST_FLD_NUM(VPU_40XX_TOP_NOC_QACCEPTN, HOSTIF_L2CACHE, exp_val, val)) return -EIO; return 0; } static int ivpu_boot_top_noc_qdeny_check(struct ivpu_device *vdev, u32 exp_val) { u32 val = REGV_RD32(VPU_40XX_TOP_NOC_QDENY); if (!REG_TEST_FLD_NUM(VPU_40XX_TOP_NOC_QDENY, CPU_CTRL, exp_val, val) || !REG_TEST_FLD_NUM(VPU_40XX_TOP_NOC_QDENY, HOSTIF_L2CACHE, exp_val, val)) return -EIO; return 0; } static void ivpu_boot_idle_gen_drive(struct ivpu_device *vdev, bool enable) { u32 val = REGV_RD32(VPU_40XX_HOST_SS_AON_IDLE_GEN); if (enable) val = REG_SET_FLD(VPU_40XX_HOST_SS_AON_IDLE_GEN, EN, val); else val = REG_CLR_FLD(VPU_40XX_HOST_SS_AON_IDLE_GEN, EN, val); REGV_WR32(VPU_40XX_HOST_SS_AON_IDLE_GEN, val); } static int ivpu_boot_host_ss_check(struct ivpu_device *vdev) { int ret; ret = ivpu_boot_noc_qreqn_check(vdev, 0x0); if (ret) { ivpu_err(vdev, "Failed qreqn check: %d\n", ret); return ret; } ret = ivpu_boot_noc_qacceptn_check(vdev, 0x0); if (ret) { ivpu_err(vdev, "Failed qacceptn check: %d\n", ret); return ret; } ret = ivpu_boot_noc_qdeny_check(vdev, 0x0); if (ret) ivpu_err(vdev, "Failed qdeny check %d\n", ret); return ret; } static int ivpu_boot_host_ss_axi_drive(struct ivpu_device *vdev, bool enable) { int ret; u32 val; val = REGV_RD32(VPU_40XX_HOST_SS_NOC_QREQN); if (enable) val = REG_SET_FLD(VPU_40XX_HOST_SS_NOC_QREQN, TOP_SOCMMIO, val); else val = REG_CLR_FLD(VPU_40XX_HOST_SS_NOC_QREQN, TOP_SOCMMIO, val); REGV_WR32(VPU_40XX_HOST_SS_NOC_QREQN, val); ret = ivpu_boot_noc_qacceptn_check(vdev, enable ? 0x1 : 0x0); if (ret) { ivpu_err(vdev, "Failed qacceptn check: %d\n", ret); return ret; } ret = ivpu_boot_noc_qdeny_check(vdev, 0x0); if (ret) { ivpu_err(vdev, "Failed qdeny check: %d\n", ret); return ret; } if (enable) { REGB_WR32(VPU_40XX_BUTTRESS_PORT_ARBITRATION_WEIGHTS, WEIGHTS_DEFAULT); REGB_WR32(VPU_40XX_BUTTRESS_PORT_ARBITRATION_WEIGHTS_ATS, WEIGHTS_ATS_DEFAULT); } return ret; } static int ivpu_boot_host_ss_axi_enable(struct ivpu_device *vdev) { return ivpu_boot_host_ss_axi_drive(vdev, true); } static int ivpu_boot_host_ss_top_noc_drive(struct ivpu_device *vdev, bool enable) { int ret; u32 val; val = REGV_RD32(VPU_40XX_TOP_NOC_QREQN); if (enable) { val = REG_SET_FLD(VPU_40XX_TOP_NOC_QREQN, CPU_CTRL, val); val = REG_SET_FLD(VPU_40XX_TOP_NOC_QREQN, HOSTIF_L2CACHE, val); } else { val = REG_CLR_FLD(VPU_40XX_TOP_NOC_QREQN, CPU_CTRL, val); val = REG_CLR_FLD(VPU_40XX_TOP_NOC_QREQN, HOSTIF_L2CACHE, val); } REGV_WR32(VPU_40XX_TOP_NOC_QREQN, val); ret = ivpu_boot_top_noc_qacceptn_check(vdev, enable ? 0x1 : 0x0); if (ret) { ivpu_err(vdev, "Failed qacceptn check: %d\n", ret); return ret; } ret = ivpu_boot_top_noc_qdeny_check(vdev, 0x0); if (ret) ivpu_err(vdev, "Failed qdeny check: %d\n", ret); return ret; } static int ivpu_boot_host_ss_top_noc_enable(struct ivpu_device *vdev) { return ivpu_boot_host_ss_top_noc_drive(vdev, true); } static void ivpu_boot_pwr_island_trickle_drive(struct ivpu_device *vdev, bool enable) { u32 val = REGV_RD32(VPU_40XX_HOST_SS_AON_PWR_ISLAND_TRICKLE_EN0); if (enable) val = REG_SET_FLD(VPU_40XX_HOST_SS_AON_PWR_ISLAND_TRICKLE_EN0, CSS_CPU, val); else val = REG_CLR_FLD(VPU_40XX_HOST_SS_AON_PWR_ISLAND_TRICKLE_EN0, CSS_CPU, val); REGV_WR32(VPU_40XX_HOST_SS_AON_PWR_ISLAND_TRICKLE_EN0, val); if (enable) ndelay(500); } static void ivpu_boot_pwr_island_drive(struct ivpu_device *vdev, bool enable) { u32 val = REGV_RD32(VPU_40XX_HOST_SS_AON_PWR_ISLAND_EN0); if (enable) val = REG_SET_FLD(VPU_40XX_HOST_SS_AON_PWR_ISLAND_EN0, CSS_CPU, val); else val = REG_CLR_FLD(VPU_40XX_HOST_SS_AON_PWR_ISLAND_EN0, CSS_CPU, val); REGV_WR32(VPU_40XX_HOST_SS_AON_PWR_ISLAND_EN0, val); if (!enable) ndelay(500); } static int ivpu_boot_wait_for_pwr_island_status(struct ivpu_device *vdev, u32 exp_val) { if (ivpu_is_fpga(vdev)) return 0; return REGV_POLL_FLD(VPU_40XX_HOST_SS_AON_PWR_ISLAND_STATUS0, CSS_CPU, exp_val, PWR_ISLAND_STATUS_TIMEOUT_US); } static void ivpu_boot_pwr_island_isolation_drive(struct ivpu_device *vdev, bool enable) { u32 val = REGV_RD32(VPU_40XX_HOST_SS_AON_PWR_ISO_EN0); if (enable) val = REG_SET_FLD(VPU_40XX_HOST_SS_AON_PWR_ISO_EN0, CSS_CPU, val); else val = REG_CLR_FLD(VPU_40XX_HOST_SS_AON_PWR_ISO_EN0, CSS_CPU, val); REGV_WR32(VPU_40XX_HOST_SS_AON_PWR_ISO_EN0, val); } static void ivpu_boot_no_snoop_enable(struct ivpu_device *vdev) { u32 val = REGV_RD32(VPU_40XX_HOST_IF_TCU_PTW_OVERRIDES); val = REG_SET_FLD(VPU_40XX_HOST_IF_TCU_PTW_OVERRIDES, SNOOP_OVERRIDE_EN, val); val = REG_CLR_FLD(VPU_40XX_HOST_IF_TCU_PTW_OVERRIDES, AW_SNOOP_OVERRIDE, val); val = REG_CLR_FLD(VPU_40XX_HOST_IF_TCU_PTW_OVERRIDES, AR_SNOOP_OVERRIDE, val); REGV_WR32(VPU_40XX_HOST_IF_TCU_PTW_OVERRIDES, val); } static void ivpu_boot_tbu_mmu_enable(struct ivpu_device *vdev) { u32 val = REGV_RD32(VPU_40XX_HOST_IF_TBU_MMUSSIDV); val = REG_SET_FLD(VPU_40XX_HOST_IF_TBU_MMUSSIDV, TBU0_AWMMUSSIDV, val); val = REG_SET_FLD(VPU_40XX_HOST_IF_TBU_MMUSSIDV, TBU0_ARMMUSSIDV, val); val = REG_SET_FLD(VPU_40XX_HOST_IF_TBU_MMUSSIDV, TBU1_AWMMUSSIDV, val); val = REG_SET_FLD(VPU_40XX_HOST_IF_TBU_MMUSSIDV, TBU1_ARMMUSSIDV, val); val = REG_SET_FLD(VPU_40XX_HOST_IF_TBU_MMUSSIDV, TBU2_AWMMUSSIDV, val); val = REG_SET_FLD(VPU_40XX_HOST_IF_TBU_MMUSSIDV, TBU2_ARMMUSSIDV, val); REGV_WR32(VPU_40XX_HOST_IF_TBU_MMUSSIDV, val); } static int ivpu_boot_cpu_noc_qacceptn_check(struct ivpu_device *vdev, u32 exp_val) { u32 val = REGV_RD32(VPU_40XX_CPU_SS_CPR_NOC_QACCEPTN); if (!REG_TEST_FLD_NUM(VPU_40XX_CPU_SS_CPR_NOC_QACCEPTN, TOP_MMIO, exp_val, val)) return -EIO; return 0; } static int ivpu_boot_cpu_noc_qdeny_check(struct ivpu_device *vdev, u32 exp_val) { u32 val = REGV_RD32(VPU_40XX_CPU_SS_CPR_NOC_QDENY); if (!REG_TEST_FLD_NUM(VPU_40XX_CPU_SS_CPR_NOC_QDENY, TOP_MMIO, exp_val, val)) return -EIO; return 0; } static int ivpu_boot_pwr_domain_enable(struct ivpu_device *vdev) { int ret; ret = ivpu_wait_for_clock_own_resource_ack(vdev); if (ret) { ivpu_err(vdev, "Timed out waiting for clock own resource ACK\n"); return ret; } ivpu_boot_pwr_island_trickle_drive(vdev, true); ivpu_boot_pwr_island_drive(vdev, true); ret = ivpu_boot_wait_for_pwr_island_status(vdev, 0x1); if (ret) { ivpu_err(vdev, "Timed out waiting for power island status\n"); return ret; } ret = ivpu_boot_top_noc_qrenqn_check(vdev, 0x0); if (ret) { ivpu_err(vdev, "Failed qrenqn check %d\n", ret); return ret; } ivpu_boot_host_ss_clk_drive(vdev, true); ivpu_boot_host_ss_rst_drive(vdev, true); ivpu_boot_pwr_island_isolation_drive(vdev, false); return ret; } static int ivpu_boot_soc_cpu_drive(struct ivpu_device *vdev, bool enable) { int ret; u32 val; val = REGV_RD32(VPU_40XX_CPU_SS_CPR_NOC_QREQN); if (enable) val = REG_SET_FLD(VPU_40XX_CPU_SS_CPR_NOC_QREQN, TOP_MMIO, val); else val = REG_CLR_FLD(VPU_40XX_CPU_SS_CPR_NOC_QREQN, TOP_MMIO, val); REGV_WR32(VPU_40XX_CPU_SS_CPR_NOC_QREQN, val); ret = ivpu_boot_cpu_noc_qacceptn_check(vdev, enable ? 0x1 : 0x0); if (ret) { ivpu_err(vdev, "Failed qacceptn check: %d\n", ret); return ret; } ret = ivpu_boot_cpu_noc_qdeny_check(vdev, 0x0); if (ret) ivpu_err(vdev, "Failed qdeny check: %d\n", ret); return ret; } static int ivpu_boot_soc_cpu_enable(struct ivpu_device *vdev) { return ivpu_boot_soc_cpu_drive(vdev, true); } static int ivpu_boot_soc_cpu_boot(struct ivpu_device *vdev) { int ret; u32 val; u64 val64; ret = ivpu_boot_soc_cpu_enable(vdev); if (ret) { ivpu_err(vdev, "Failed to enable SOC CPU: %d\n", ret); return ret; } val64 = vdev->fw->entry_point; val64 <<= ffs(VPU_40XX_HOST_SS_VERIFICATION_ADDRESS_LO_IMAGE_LOCATION_MASK) - 1; REGV_WR64(VPU_40XX_HOST_SS_VERIFICATION_ADDRESS_LO, val64); val = REGV_RD32(VPU_40XX_HOST_SS_VERIFICATION_ADDRESS_LO); val = REG_SET_FLD(VPU_40XX_HOST_SS_VERIFICATION_ADDRESS_LO, DONE, val); REGV_WR32(VPU_40XX_HOST_SS_VERIFICATION_ADDRESS_LO, val); ivpu_dbg(vdev, PM, "Booting firmware, mode: %s\n", ivpu_fw_is_cold_boot(vdev) ? "cold boot" : "resume"); return 0; } static int ivpu_boot_d0i3_drive(struct ivpu_device *vdev, bool enable) { int ret; u32 val; ret = REGB_POLL_FLD(VPU_40XX_BUTTRESS_D0I3_CONTROL, INPROGRESS, 0, TIMEOUT_US); if (ret) { ivpu_err(vdev, "Failed to sync before D0i3 transition: %d\n", ret); return ret; } val = REGB_RD32(VPU_40XX_BUTTRESS_D0I3_CONTROL); if (enable) val = REG_SET_FLD(VPU_40XX_BUTTRESS_D0I3_CONTROL, I3, val); else val = REG_CLR_FLD(VPU_40XX_BUTTRESS_D0I3_CONTROL, I3, val); REGB_WR32(VPU_40XX_BUTTRESS_D0I3_CONTROL, val); ret = REGB_POLL_FLD(VPU_40XX_BUTTRESS_D0I3_CONTROL, INPROGRESS, 0, TIMEOUT_US); if (ret) { ivpu_err(vdev, "Failed to sync after D0i3 transition: %d\n", ret); return ret; } return 0; } static bool ivpu_tile_disable_check(u32 config) { /* Allowed values: 0 or one bit from range 0-5 (6 tiles) */ if (config == 0) return true; if (config > BIT(TILE_MAX_NUM - 1)) return false; if ((config & (config - 1)) == 0) return true; return false; } static int ivpu_hw_40xx_info_init(struct ivpu_device *vdev) { struct ivpu_hw_info *hw = vdev->hw; u32 tile_disable; u32 tile_enable; u32 fuse; fuse = REGB_RD32(VPU_40XX_BUTTRESS_TILE_FUSE); if (!REG_TEST_FLD(VPU_40XX_BUTTRESS_TILE_FUSE, VALID, fuse)) { ivpu_err(vdev, "Fuse: invalid (0x%x)\n", fuse); return -EIO; } tile_disable = REG_GET_FLD(VPU_40XX_BUTTRESS_TILE_FUSE, CONFIG, fuse); if (!ivpu_tile_disable_check(tile_disable)) { ivpu_err(vdev, "Fuse: Invalid tile disable config (0x%x)\n", tile_disable); return -EIO; } if (tile_disable) ivpu_dbg(vdev, MISC, "Fuse: %d tiles enabled. Tile number %d disabled\n", TILE_MAX_NUM - 1, ffs(tile_disable) - 1); else ivpu_dbg(vdev, MISC, "Fuse: All %d tiles enabled\n", TILE_MAX_NUM); tile_enable = (~tile_disable) & TILE_MAX_MASK; hw->sku = REG_SET_FLD_NUM(SKU, HW_ID, LNL_HW_ID, hw->sku); hw->sku = REG_SET_FLD_NUM(SKU, TILE, tile_enable, hw->sku); hw->tile_fuse = tile_disable; hw->pll.profiling_freq = PLL_PROFILING_FREQ_DEFAULT; ivpu_pll_init_frequency_ratios(vdev); ivpu_hw_init_range(&vdev->hw->ranges.global, 0x80000000, SZ_512M); ivpu_hw_init_range(&vdev->hw->ranges.user, 0x80000000, SZ_256M); ivpu_hw_init_range(&vdev->hw->ranges.shave, 0x80000000 + SZ_256M, SZ_2G - SZ_256M); ivpu_hw_init_range(&vdev->hw->ranges.dma, 0x200000000, SZ_8G); ivpu_hw_read_platform(vdev); ivpu_hw_wa_init(vdev); ivpu_hw_timeouts_init(vdev); return 0; } static int ivpu_hw_40xx_reset(struct ivpu_device *vdev) { int ret; u32 val; ret = REGB_POLL_FLD(VPU_40XX_BUTTRESS_IP_RESET, TRIGGER, 0, TIMEOUT_US); if (ret) { ivpu_err(vdev, "Wait for *_TRIGGER timed out\n"); return ret; } val = REGB_RD32(VPU_40XX_BUTTRESS_IP_RESET); val = REG_SET_FLD(VPU_40XX_BUTTRESS_IP_RESET, TRIGGER, val); REGB_WR32(VPU_40XX_BUTTRESS_IP_RESET, val); ret = REGB_POLL_FLD(VPU_40XX_BUTTRESS_IP_RESET, TRIGGER, 0, TIMEOUT_US); if (ret) ivpu_err(vdev, "Timed out waiting for RESET completion\n"); return ret; } static int ivpu_hw_40xx_d0i3_enable(struct ivpu_device *vdev) { int ret; if (IVPU_WA(punit_disabled)) return 0; ret = ivpu_boot_d0i3_drive(vdev, true); if (ret) ivpu_err(vdev, "Failed to enable D0i3: %d\n", ret); udelay(5); /* VPU requires 5 us to complete the transition */ return ret; } static int ivpu_hw_40xx_d0i3_disable(struct ivpu_device *vdev) { int ret; if (IVPU_WA(punit_disabled)) return 0; ret = ivpu_boot_d0i3_drive(vdev, false); if (ret) ivpu_err(vdev, "Failed to disable D0i3: %d\n", ret); return ret; } static void ivpu_hw_40xx_profiling_freq_reg_set(struct ivpu_device *vdev) { u32 val = REGB_RD32(VPU_40XX_BUTTRESS_VPU_STATUS); if (vdev->hw->pll.profiling_freq == PLL_PROFILING_FREQ_DEFAULT) val = REG_CLR_FLD(VPU_40XX_BUTTRESS_VPU_STATUS, PERF_CLK, val); else val = REG_SET_FLD(VPU_40XX_BUTTRESS_VPU_STATUS, PERF_CLK, val); REGB_WR32(VPU_40XX_BUTTRESS_VPU_STATUS, val); } static void ivpu_hw_40xx_ats_print(struct ivpu_device *vdev) { ivpu_dbg(vdev, MISC, "Buttress ATS: %s\n", REGB_RD32(VPU_40XX_BUTTRESS_HM_ATS) ? "Enable" : "Disable"); } static void ivpu_hw_40xx_clock_relinquish_disable(struct ivpu_device *vdev) { u32 val = REGB_RD32(VPU_40XX_BUTTRESS_VPU_STATUS); val = REG_SET_FLD(VPU_40XX_BUTTRESS_VPU_STATUS, DISABLE_CLK_RELINQUISH, val); REGB_WR32(VPU_40XX_BUTTRESS_VPU_STATUS, val); } static int ivpu_hw_40xx_power_up(struct ivpu_device *vdev) { int ret; ret = ivpu_hw_40xx_reset(vdev); if (ret) { ivpu_err(vdev, "Failed to reset HW: %d\n", ret); return ret; } ret = ivpu_hw_40xx_d0i3_disable(vdev); if (ret) ivpu_warn(vdev, "Failed to disable D0I3: %d\n", ret); ret = ivpu_pll_enable(vdev); if (ret) { ivpu_err(vdev, "Failed to enable PLL: %d\n", ret); return ret; } if (IVPU_WA(disable_clock_relinquish)) ivpu_hw_40xx_clock_relinquish_disable(vdev); ivpu_hw_40xx_profiling_freq_reg_set(vdev); ivpu_hw_40xx_ats_print(vdev); ret = ivpu_boot_host_ss_check(vdev); if (ret) { ivpu_err(vdev, "Failed to configure host SS: %d\n", ret); return ret; } ivpu_boot_idle_gen_drive(vdev, false); ret = ivpu_boot_pwr_domain_enable(vdev); if (ret) { ivpu_err(vdev, "Failed to enable power domain: %d\n", ret); return ret; } ret = ivpu_boot_host_ss_axi_enable(vdev); if (ret) { ivpu_err(vdev, "Failed to enable AXI: %d\n", ret); return ret; } ret = ivpu_boot_host_ss_top_noc_enable(vdev); if (ret) ivpu_err(vdev, "Failed to enable TOP NOC: %d\n", ret); return ret; } static int ivpu_hw_40xx_boot_fw(struct ivpu_device *vdev) { int ret; ivpu_boot_no_snoop_enable(vdev); ivpu_boot_tbu_mmu_enable(vdev); ret = ivpu_boot_soc_cpu_boot(vdev); if (ret) ivpu_err(vdev, "Failed to boot SOC CPU: %d\n", ret); return ret; } static bool ivpu_hw_40xx_is_idle(struct ivpu_device *vdev) { u32 val; if (IVPU_WA(punit_disabled)) return true; val = REGB_RD32(VPU_40XX_BUTTRESS_VPU_STATUS); return REG_TEST_FLD(VPU_40XX_BUTTRESS_VPU_STATUS, READY, val) && REG_TEST_FLD(VPU_40XX_BUTTRESS_VPU_STATUS, IDLE, val); } static int ivpu_hw_40xx_power_down(struct ivpu_device *vdev) { int ret = 0; if (!ivpu_hw_40xx_is_idle(vdev) && ivpu_hw_40xx_reset(vdev)) ivpu_warn(vdev, "Failed to reset the VPU\n"); if (ivpu_pll_disable(vdev)) { ivpu_err(vdev, "Failed to disable PLL\n"); ret = -EIO; } if (ivpu_hw_40xx_d0i3_enable(vdev)) { ivpu_err(vdev, "Failed to enter D0I3\n"); ret = -EIO; } return ret; } static void ivpu_hw_40xx_wdt_disable(struct ivpu_device *vdev) { u32 val; REGV_WR32(VPU_40XX_CPU_SS_TIM_SAFE, TIM_SAFE_ENABLE); REGV_WR32(VPU_40XX_CPU_SS_TIM_WATCHDOG, TIM_WATCHDOG_RESET_VALUE); REGV_WR32(VPU_40XX_CPU_SS_TIM_SAFE, TIM_SAFE_ENABLE); REGV_WR32(VPU_40XX_CPU_SS_TIM_WDOG_EN, 0); val = REGV_RD32(VPU_40XX_CPU_SS_TIM_GEN_CONFIG); val = REG_CLR_FLD(VPU_40XX_CPU_SS_TIM_GEN_CONFIG, WDOG_TO_INT_CLR, val); REGV_WR32(VPU_40XX_CPU_SS_TIM_GEN_CONFIG, val); } /* Register indirect accesses */ static u32 ivpu_hw_40xx_reg_pll_freq_get(struct ivpu_device *vdev) { u32 pll_curr_ratio; pll_curr_ratio = REGB_RD32(VPU_40XX_BUTTRESS_PLL_FREQ); pll_curr_ratio &= VPU_40XX_BUTTRESS_PLL_FREQ_RATIO_MASK; return PLL_RATIO_TO_FREQ(pll_curr_ratio); } static u32 ivpu_hw_40xx_reg_telemetry_offset_get(struct ivpu_device *vdev) { return REGB_RD32(VPU_40XX_BUTTRESS_VPU_TELEMETRY_OFFSET); } static u32 ivpu_hw_40xx_reg_telemetry_size_get(struct ivpu_device *vdev) { return REGB_RD32(VPU_40XX_BUTTRESS_VPU_TELEMETRY_SIZE); } static u32 ivpu_hw_40xx_reg_telemetry_enable_get(struct ivpu_device *vdev) { return REGB_RD32(VPU_40XX_BUTTRESS_VPU_TELEMETRY_ENABLE); } static void ivpu_hw_40xx_reg_db_set(struct ivpu_device *vdev, u32 db_id) { u32 reg_stride = VPU_40XX_CPU_SS_DOORBELL_1 - VPU_40XX_CPU_SS_DOORBELL_0; u32 val = REG_FLD(VPU_40XX_CPU_SS_DOORBELL_0, SET); REGV_WR32I(VPU_40XX_CPU_SS_DOORBELL_0, reg_stride, db_id, val); } static u32 ivpu_hw_40xx_reg_ipc_rx_addr_get(struct ivpu_device *vdev) { return REGV_RD32(VPU_40XX_HOST_SS_TIM_IPC_FIFO_ATM); } static u32 ivpu_hw_40xx_reg_ipc_rx_count_get(struct ivpu_device *vdev) { u32 count = REGV_RD32_SILENT(VPU_40XX_HOST_SS_TIM_IPC_FIFO_STAT); return REG_GET_FLD(VPU_40XX_HOST_SS_TIM_IPC_FIFO_STAT, FILL_LEVEL, count); } static void ivpu_hw_40xx_reg_ipc_tx_set(struct ivpu_device *vdev, u32 vpu_addr) { REGV_WR32(VPU_40XX_CPU_SS_TIM_IPC_FIFO, vpu_addr); } static void ivpu_hw_40xx_irq_clear(struct ivpu_device *vdev) { REGV_WR64(VPU_40XX_HOST_SS_ICB_CLEAR_0, ICB_0_1_IRQ_MASK); } static void ivpu_hw_40xx_irq_enable(struct ivpu_device *vdev) { REGV_WR32(VPU_40XX_HOST_SS_FW_SOC_IRQ_EN, ITF_FIREWALL_VIOLATION_MASK); REGV_WR64(VPU_40XX_HOST_SS_ICB_ENABLE_0, ICB_0_1_IRQ_MASK); REGB_WR32(VPU_40XX_BUTTRESS_LOCAL_INT_MASK, BUTTRESS_IRQ_ENABLE_MASK); REGB_WR32(VPU_40XX_BUTTRESS_GLOBAL_INT_MASK, 0x0); } static void ivpu_hw_40xx_irq_disable(struct ivpu_device *vdev) { REGB_WR32(VPU_40XX_BUTTRESS_GLOBAL_INT_MASK, 0x1); REGB_WR32(VPU_40XX_BUTTRESS_LOCAL_INT_MASK, BUTTRESS_IRQ_DISABLE_MASK); REGV_WR64(VPU_40XX_HOST_SS_ICB_ENABLE_0, 0x0ull); REGV_WR32(VPU_40XX_HOST_SS_FW_SOC_IRQ_EN, 0x0ul); } static void ivpu_hw_40xx_irq_wdt_nce_handler(struct ivpu_device *vdev) { /* TODO: For LNN hang consider engine reset instead of full recovery */ ivpu_pm_schedule_recovery(vdev); } static void ivpu_hw_40xx_irq_wdt_mss_handler(struct ivpu_device *vdev) { ivpu_hw_wdt_disable(vdev); ivpu_pm_schedule_recovery(vdev); } static void ivpu_hw_40xx_irq_noc_firewall_handler(struct ivpu_device *vdev) { ivpu_pm_schedule_recovery(vdev); } /* Handler for IRQs from VPU core (irqV) */ static irqreturn_t ivpu_hw_40xx_irqv_handler(struct ivpu_device *vdev, int irq) { u32 status = REGV_RD32(VPU_40XX_HOST_SS_ICB_STATUS_0) & ICB_0_IRQ_MASK; irqreturn_t ret = IRQ_NONE; if (!status) return IRQ_NONE; REGV_WR32(VPU_40XX_HOST_SS_ICB_CLEAR_0, status); if (REG_TEST_FLD(VPU_40XX_HOST_SS_ICB_STATUS_0, MMU_IRQ_0_INT, status)) ivpu_mmu_irq_evtq_handler(vdev); if (REG_TEST_FLD(VPU_40XX_HOST_SS_ICB_STATUS_0, HOST_IPC_FIFO_INT, status)) ret |= ivpu_ipc_irq_handler(vdev); if (REG_TEST_FLD(VPU_40XX_HOST_SS_ICB_STATUS_0, MMU_IRQ_1_INT, status)) ivpu_dbg(vdev, IRQ, "MMU sync complete\n"); if (REG_TEST_FLD(VPU_40XX_HOST_SS_ICB_STATUS_0, MMU_IRQ_2_INT, status)) ivpu_mmu_irq_gerr_handler(vdev); if (REG_TEST_FLD(VPU_40XX_HOST_SS_ICB_STATUS_0, CPU_INT_REDIRECT_0_INT, status)) ivpu_hw_40xx_irq_wdt_mss_handler(vdev); if (REG_TEST_FLD(VPU_40XX_HOST_SS_ICB_STATUS_0, CPU_INT_REDIRECT_1_INT, status)) ivpu_hw_40xx_irq_wdt_nce_handler(vdev); if (REG_TEST_FLD(VPU_40XX_HOST_SS_ICB_STATUS_0, NOC_FIREWALL_INT, status)) ivpu_hw_40xx_irq_noc_firewall_handler(vdev); return ret; } /* Handler for IRQs from Buttress core (irqB) */ static irqreturn_t ivpu_hw_40xx_irqb_handler(struct ivpu_device *vdev, int irq) { bool schedule_recovery = false; u32 status = REGB_RD32(VPU_40XX_BUTTRESS_INTERRUPT_STAT) & BUTTRESS_IRQ_MASK; if (status == 0) return IRQ_NONE; if (REG_TEST_FLD(VPU_40XX_BUTTRESS_INTERRUPT_STAT, FREQ_CHANGE, status)) ivpu_dbg(vdev, IRQ, "FREQ_CHANGE"); if (REG_TEST_FLD(VPU_40XX_BUTTRESS_INTERRUPT_STAT, ATS_ERR, status)) { ivpu_err(vdev, "ATS_ERR LOG1 0x%08x ATS_ERR_LOG2 0x%08x\n", REGB_RD32(VPU_40XX_BUTTRESS_ATS_ERR_LOG1), REGB_RD32(VPU_40XX_BUTTRESS_ATS_ERR_LOG2)); REGB_WR32(VPU_40XX_BUTTRESS_ATS_ERR_CLEAR, 0x1); schedule_recovery = true; } if (REG_TEST_FLD(VPU_40XX_BUTTRESS_INTERRUPT_STAT, CFI0_ERR, status)) { ivpu_err(vdev, "CFI0_ERR 0x%08x", REGB_RD32(VPU_40XX_BUTTRESS_CFI0_ERR_LOG)); REGB_WR32(VPU_40XX_BUTTRESS_CFI0_ERR_CLEAR, 0x1); schedule_recovery = true; } if (REG_TEST_FLD(VPU_40XX_BUTTRESS_INTERRUPT_STAT, CFI1_ERR, status)) { ivpu_err(vdev, "CFI1_ERR 0x%08x", REGB_RD32(VPU_40XX_BUTTRESS_CFI1_ERR_LOG)); REGB_WR32(VPU_40XX_BUTTRESS_CFI1_ERR_CLEAR, 0x1); schedule_recovery = true; } if (REG_TEST_FLD(VPU_40XX_BUTTRESS_INTERRUPT_STAT, IMR0_ERR, status)) { ivpu_err(vdev, "IMR_ERR_CFI0 LOW: 0x%08x HIGH: 0x%08x", REGB_RD32(VPU_40XX_BUTTRESS_IMR_ERR_CFI0_LOW), REGB_RD32(VPU_40XX_BUTTRESS_IMR_ERR_CFI0_HIGH)); REGB_WR32(VPU_40XX_BUTTRESS_IMR_ERR_CFI0_CLEAR, 0x1); schedule_recovery = true; } if (REG_TEST_FLD(VPU_40XX_BUTTRESS_INTERRUPT_STAT, IMR1_ERR, status)) { ivpu_err(vdev, "IMR_ERR_CFI1 LOW: 0x%08x HIGH: 0x%08x", REGB_RD32(VPU_40XX_BUTTRESS_IMR_ERR_CFI1_LOW), REGB_RD32(VPU_40XX_BUTTRESS_IMR_ERR_CFI1_HIGH)); REGB_WR32(VPU_40XX_BUTTRESS_IMR_ERR_CFI1_CLEAR, 0x1); schedule_recovery = true; } if (REG_TEST_FLD(VPU_40XX_BUTTRESS_INTERRUPT_STAT, SURV_ERR, status)) { ivpu_err(vdev, "Survivability error detected\n"); schedule_recovery = true; } /* This must be done after interrupts are cleared at the source. */ REGB_WR32(VPU_40XX_BUTTRESS_INTERRUPT_STAT, status); if (schedule_recovery) ivpu_pm_schedule_recovery(vdev); return IRQ_HANDLED; } static irqreturn_t ivpu_hw_40xx_irq_handler(int irq, void *ptr) { struct ivpu_device *vdev = ptr; irqreturn_t ret = IRQ_NONE; REGB_WR32(VPU_40XX_BUTTRESS_GLOBAL_INT_MASK, 0x1); ret |= ivpu_hw_40xx_irqv_handler(vdev, irq); ret |= ivpu_hw_40xx_irqb_handler(vdev, irq); /* Re-enable global interrupts to re-trigger MSI for pending interrupts */ REGB_WR32(VPU_40XX_BUTTRESS_GLOBAL_INT_MASK, 0x0); if (ret & IRQ_WAKE_THREAD) return IRQ_WAKE_THREAD; return ret; } static void ivpu_hw_40xx_diagnose_failure(struct ivpu_device *vdev) { u32 irqv = REGV_RD32(VPU_40XX_HOST_SS_ICB_STATUS_0) & ICB_0_IRQ_MASK; u32 irqb = REGB_RD32(VPU_40XX_BUTTRESS_INTERRUPT_STAT) & BUTTRESS_IRQ_MASK; if (ivpu_hw_40xx_reg_ipc_rx_count_get(vdev)) ivpu_err(vdev, "IPC FIFO queue not empty, missed IPC IRQ"); if (REG_TEST_FLD(VPU_40XX_HOST_SS_ICB_STATUS_0, CPU_INT_REDIRECT_0_INT, irqv)) ivpu_err(vdev, "WDT MSS timeout detected\n"); if (REG_TEST_FLD(VPU_40XX_HOST_SS_ICB_STATUS_0, CPU_INT_REDIRECT_1_INT, irqv)) ivpu_err(vdev, "WDT NCE timeout detected\n"); if (REG_TEST_FLD(VPU_40XX_HOST_SS_ICB_STATUS_0, NOC_FIREWALL_INT, irqv)) ivpu_err(vdev, "NOC Firewall irq detected\n"); if (REG_TEST_FLD(VPU_40XX_BUTTRESS_INTERRUPT_STAT, ATS_ERR, irqb)) { ivpu_err(vdev, "ATS_ERR_LOG1 0x%08x ATS_ERR_LOG2 0x%08x\n", REGB_RD32(VPU_40XX_BUTTRESS_ATS_ERR_LOG1), REGB_RD32(VPU_40XX_BUTTRESS_ATS_ERR_LOG2)); } if (REG_TEST_FLD(VPU_40XX_BUTTRESS_INTERRUPT_STAT, CFI0_ERR, irqb)) ivpu_err(vdev, "CFI0_ERR_LOG 0x%08x\n", REGB_RD32(VPU_40XX_BUTTRESS_CFI0_ERR_LOG)); if (REG_TEST_FLD(VPU_40XX_BUTTRESS_INTERRUPT_STAT, CFI1_ERR, irqb)) ivpu_err(vdev, "CFI1_ERR_LOG 0x%08x\n", REGB_RD32(VPU_40XX_BUTTRESS_CFI1_ERR_LOG)); if (REG_TEST_FLD(VPU_40XX_BUTTRESS_INTERRUPT_STAT, IMR0_ERR, irqb)) ivpu_err(vdev, "IMR_ERR_CFI0 LOW: 0x%08x HIGH: 0x%08x\n", REGB_RD32(VPU_40XX_BUTTRESS_IMR_ERR_CFI0_LOW), REGB_RD32(VPU_40XX_BUTTRESS_IMR_ERR_CFI0_HIGH)); if (REG_TEST_FLD(VPU_40XX_BUTTRESS_INTERRUPT_STAT, IMR1_ERR, irqb)) ivpu_err(vdev, "IMR_ERR_CFI1 LOW: 0x%08x HIGH: 0x%08x\n", REGB_RD32(VPU_40XX_BUTTRESS_IMR_ERR_CFI1_LOW), REGB_RD32(VPU_40XX_BUTTRESS_IMR_ERR_CFI1_HIGH)); if (REG_TEST_FLD(VPU_40XX_BUTTRESS_INTERRUPT_STAT, SURV_ERR, irqb)) ivpu_err(vdev, "Survivability error detected\n"); } const struct ivpu_hw_ops ivpu_hw_40xx_ops = { .info_init = ivpu_hw_40xx_info_init, .power_up = ivpu_hw_40xx_power_up, .is_idle = ivpu_hw_40xx_is_idle, .power_down = ivpu_hw_40xx_power_down, .reset = ivpu_hw_40xx_reset, .boot_fw = ivpu_hw_40xx_boot_fw, .wdt_disable = ivpu_hw_40xx_wdt_disable, .diagnose_failure = ivpu_hw_40xx_diagnose_failure, .reg_pll_freq_get = ivpu_hw_40xx_reg_pll_freq_get, .reg_telemetry_offset_get = ivpu_hw_40xx_reg_telemetry_offset_get, .reg_telemetry_size_get = ivpu_hw_40xx_reg_telemetry_size_get, .reg_telemetry_enable_get = ivpu_hw_40xx_reg_telemetry_enable_get, .reg_db_set = ivpu_hw_40xx_reg_db_set, .reg_ipc_rx_addr_get = ivpu_hw_40xx_reg_ipc_rx_addr_get, .reg_ipc_rx_count_get = ivpu_hw_40xx_reg_ipc_rx_count_get, .reg_ipc_tx_set = ivpu_hw_40xx_reg_ipc_tx_set, .irq_clear = ivpu_hw_40xx_irq_clear, .irq_enable = ivpu_hw_40xx_irq_enable, .irq_disable = ivpu_hw_40xx_irq_disable, .irq_handler = ivpu_hw_40xx_irq_handler, };
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1