Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Rafael J. Wysocki | 2178 | 38.50% | 25 | 20.00% |
Heikki Krogerus | 992 | 17.54% | 13 | 10.40% |
Andy Shevchenko | 653 | 11.54% | 20 | 16.00% |
Hans de Goede | 596 | 10.54% | 19 | 15.20% |
Adrian Hunter | 565 | 9.99% | 1 | 0.80% |
Mika Westerberg | 428 | 7.57% | 13 | 10.40% |
Srinidhi Kasagar | 57 | 1.01% | 1 | 0.80% |
Alan Cox | 35 | 0.62% | 1 | 0.80% |
Chew, Chiau Ee | 14 | 0.25% | 1 | 0.80% |
Tomeu Vizoso | 14 | 0.25% | 1 | 0.80% |
Mathias Krause | 13 | 0.23% | 1 | 0.80% |
Ulf Hansson | 11 | 0.19% | 3 | 2.40% |
Thomas Gleixner | 10 | 0.18% | 2 | 1.60% |
Jie Yang | 10 | 0.18% | 1 | 0.80% |
Liu Shixin | 9 | 0.16% | 1 | 0.80% |
huhai | 8 | 0.14% | 1 | 0.80% |
Patrick Mochel | 7 | 0.12% | 1 | 0.80% |
Björn Helgaas | 7 | 0.12% | 2 | 1.60% |
Fu Zhonghui | 6 | 0.11% | 1 | 0.80% |
Jarkko Nikula | 6 | 0.11% | 1 | 0.80% |
Tomas Winkler | 6 | 0.11% | 1 | 0.80% |
Rui Zhang | 5 | 0.09% | 2 | 1.60% |
Thomas Renninger | 5 | 0.09% | 1 | 0.80% |
David Brownell | 4 | 0.07% | 1 | 0.80% |
Irina Tirdea | 3 | 0.05% | 1 | 0.80% |
Dave Hansen | 3 | 0.05% | 1 | 0.80% |
Suzuki K. Poulose | 2 | 0.04% | 1 | 0.80% |
Raag Jadav | 2 | 0.04% | 1 | 0.80% |
Len Brown | 2 | 0.04% | 2 | 1.60% |
Jiang Liu | 2 | 0.04% | 1 | 0.80% |
Jin Yao | 1 | 0.02% | 1 | 0.80% |
Arvind Yadav | 1 | 0.02% | 1 | 0.80% |
Toshi Kani | 1 | 0.02% | 1 | 0.80% |
Wang Qing | 1 | 0.02% | 1 | 0.80% |
Total | 5657 | 125 |
// SPDX-License-Identifier: GPL-2.0-only /* * ACPI support for Intel Lynxpoint LPSS. * * Copyright (C) 2013, Intel Corporation * Authors: Mika Westerberg <mika.westerberg@linux.intel.com> * Rafael J. Wysocki <rafael.j.wysocki@intel.com> */ #include <linux/acpi.h> #include <linux/clkdev.h> #include <linux/clk-provider.h> #include <linux/dmi.h> #include <linux/err.h> #include <linux/io.h> #include <linux/mutex.h> #include <linux/pci.h> #include <linux/platform_device.h> #include <linux/platform_data/x86/clk-lpss.h> #include <linux/platform_data/x86/pmc_atom.h> #include <linux/pm_domain.h> #include <linux/pm_runtime.h> #include <linux/pwm.h> #include <linux/pxa2xx_ssp.h> #include <linux/suspend.h> #include <linux/delay.h> #include "internal.h" #ifdef CONFIG_X86_INTEL_LPSS #include <asm/cpu_device_id.h> #include <asm/intel-family.h> #include <asm/iosf_mbi.h> #define LPSS_ADDR(desc) ((unsigned long)&desc) #define LPSS_CLK_SIZE 0x04 #define LPSS_LTR_SIZE 0x18 /* Offsets relative to LPSS_PRIVATE_OFFSET */ #define LPSS_CLK_DIVIDER_DEF_MASK (BIT(1) | BIT(16)) #define LPSS_RESETS 0x04 #define LPSS_RESETS_RESET_FUNC BIT(0) #define LPSS_RESETS_RESET_APB BIT(1) #define LPSS_GENERAL 0x08 #define LPSS_GENERAL_LTR_MODE_SW BIT(2) #define LPSS_GENERAL_UART_RTS_OVRD BIT(3) #define LPSS_SW_LTR 0x10 #define LPSS_AUTO_LTR 0x14 #define LPSS_LTR_SNOOP_REQ BIT(15) #define LPSS_LTR_SNOOP_MASK 0x0000FFFF #define LPSS_LTR_SNOOP_LAT_1US 0x800 #define LPSS_LTR_SNOOP_LAT_32US 0xC00 #define LPSS_LTR_SNOOP_LAT_SHIFT 5 #define LPSS_LTR_SNOOP_LAT_CUTOFF 3000 #define LPSS_LTR_MAX_VAL 0x3FF #define LPSS_TX_INT 0x20 #define LPSS_TX_INT_MASK BIT(1) #define LPSS_PRV_REG_COUNT 9 /* LPSS Flags */ #define LPSS_CLK BIT(0) #define LPSS_CLK_GATE BIT(1) #define LPSS_CLK_DIVIDER BIT(2) #define LPSS_LTR BIT(3) #define LPSS_SAVE_CTX BIT(4) /* * For some devices the DSDT AML code for another device turns off the device * before our suspend handler runs, causing us to read/save all 1-s (0xffffffff) * as ctx register values. * Luckily these devices always use the same ctx register values, so we can * work around this by saving the ctx registers once on activation. */ #define LPSS_SAVE_CTX_ONCE BIT(5) #define LPSS_NO_D3_DELAY BIT(6) struct lpss_private_data; struct lpss_device_desc { unsigned int flags; const char *clk_con_id; unsigned int prv_offset; size_t prv_size_override; const struct property_entry *properties; void (*setup)(struct lpss_private_data *pdata); bool resume_from_noirq; }; static const struct lpss_device_desc lpss_dma_desc = { .flags = LPSS_CLK, }; struct lpss_private_data { struct acpi_device *adev; void __iomem *mmio_base; resource_size_t mmio_size; unsigned int fixed_clk_rate; struct clk *clk; const struct lpss_device_desc *dev_desc; u32 prv_reg_ctx[LPSS_PRV_REG_COUNT]; }; /* Devices which need to be in D3 before lpss_iosf_enter_d3_state() proceeds */ static u32 pmc_atom_d3_mask = 0xfe000ffe; /* LPSS run time quirks */ static unsigned int lpss_quirks; /* * LPSS_QUIRK_ALWAYS_POWER_ON: override power state for LPSS DMA device. * * The LPSS DMA controller has neither _PS0 nor _PS3 method. Moreover * it can be powered off automatically whenever the last LPSS device goes down. * In case of no power any access to the DMA controller will hang the system. * The behaviour is reproduced on some HP laptops based on Intel BayTrail as * well as on ASuS T100TA transformer. * * This quirk overrides power state of entire LPSS island to keep DMA powered * on whenever we have at least one other device in use. */ #define LPSS_QUIRK_ALWAYS_POWER_ON BIT(0) /* UART Component Parameter Register */ #define LPSS_UART_CPR 0xF4 #define LPSS_UART_CPR_AFCE BIT(4) static void lpss_uart_setup(struct lpss_private_data *pdata) { unsigned int offset; u32 val; offset = pdata->dev_desc->prv_offset + LPSS_TX_INT; val = readl(pdata->mmio_base + offset); writel(val | LPSS_TX_INT_MASK, pdata->mmio_base + offset); val = readl(pdata->mmio_base + LPSS_UART_CPR); if (!(val & LPSS_UART_CPR_AFCE)) { offset = pdata->dev_desc->prv_offset + LPSS_GENERAL; val = readl(pdata->mmio_base + offset); val |= LPSS_GENERAL_UART_RTS_OVRD; writel(val, pdata->mmio_base + offset); } } static void lpss_deassert_reset(struct lpss_private_data *pdata) { unsigned int offset; u32 val; offset = pdata->dev_desc->prv_offset + LPSS_RESETS; val = readl(pdata->mmio_base + offset); val |= LPSS_RESETS_RESET_APB | LPSS_RESETS_RESET_FUNC; writel(val, pdata->mmio_base + offset); } /* * BYT PWM used for backlight control by the i915 driver on systems without * the Crystal Cove PMIC. */ static struct pwm_lookup byt_pwm_lookup[] = { PWM_LOOKUP_WITH_MODULE("80860F09:00", 0, "0000:00:02.0", "pwm_soc_backlight", 0, PWM_POLARITY_NORMAL, "pwm-lpss-platform"), }; static void byt_pwm_setup(struct lpss_private_data *pdata) { u64 uid; /* Only call pwm_add_table for the first PWM controller */ if (acpi_dev_uid_to_integer(pdata->adev, &uid) || uid != 1) return; pwm_add_table(byt_pwm_lookup, ARRAY_SIZE(byt_pwm_lookup)); } #define LPSS_I2C_ENABLE 0x6c static void byt_i2c_setup(struct lpss_private_data *pdata) { acpi_handle handle = pdata->adev->handle; unsigned long long shared_host = 0; acpi_status status; u64 uid; /* Expected to always be successfull, but better safe then sorry */ if (!acpi_dev_uid_to_integer(pdata->adev, &uid) && uid) { /* Detect I2C bus shared with PUNIT and ignore its d3 status */ status = acpi_evaluate_integer(handle, "_SEM", NULL, &shared_host); if (ACPI_SUCCESS(status) && shared_host) pmc_atom_d3_mask &= ~(BIT_LPSS2_F1_I2C1 << (uid - 1)); } lpss_deassert_reset(pdata); if (readl(pdata->mmio_base + pdata->dev_desc->prv_offset)) pdata->fixed_clk_rate = 133000000; writel(0, pdata->mmio_base + LPSS_I2C_ENABLE); } /* * BSW PWM1 is used for backlight control by the i915 driver * BSW PWM2 is used for backlight control for fixed (etched into the glass) * touch controls on some models. These touch-controls have specialized * drivers which know they need the "pwm_soc_lpss_2" con-id. */ static struct pwm_lookup bsw_pwm_lookup[] = { PWM_LOOKUP_WITH_MODULE("80862288:00", 0, "0000:00:02.0", "pwm_soc_backlight", 0, PWM_POLARITY_NORMAL, "pwm-lpss-platform"), PWM_LOOKUP_WITH_MODULE("80862289:00", 0, NULL, "pwm_soc_lpss_2", 0, PWM_POLARITY_NORMAL, "pwm-lpss-platform"), }; static void bsw_pwm_setup(struct lpss_private_data *pdata) { u64 uid; /* Only call pwm_add_table for the first PWM controller */ if (acpi_dev_uid_to_integer(pdata->adev, &uid) || uid != 1) return; pwm_add_table(bsw_pwm_lookup, ARRAY_SIZE(bsw_pwm_lookup)); } static const struct property_entry lpt_spi_properties[] = { PROPERTY_ENTRY_U32("intel,spi-pxa2xx-type", LPSS_LPT_SSP), { } }; static const struct lpss_device_desc lpt_spi_dev_desc = { .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_LTR | LPSS_SAVE_CTX, .prv_offset = 0x800, .properties = lpt_spi_properties, }; static const struct lpss_device_desc lpt_i2c_dev_desc = { .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_LTR | LPSS_SAVE_CTX, .prv_offset = 0x800, }; static struct property_entry uart_properties[] = { PROPERTY_ENTRY_U32("reg-io-width", 4), PROPERTY_ENTRY_U32("reg-shift", 2), PROPERTY_ENTRY_BOOL("snps,uart-16550-compatible"), { }, }; static const struct lpss_device_desc lpt_uart_dev_desc = { .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_LTR | LPSS_SAVE_CTX, .clk_con_id = "baudclk", .prv_offset = 0x800, .setup = lpss_uart_setup, .properties = uart_properties, }; static const struct lpss_device_desc lpt_sdio_dev_desc = { .flags = LPSS_LTR, .prv_offset = 0x1000, .prv_size_override = 0x1018, }; static const struct lpss_device_desc byt_pwm_dev_desc = { .flags = LPSS_SAVE_CTX, .prv_offset = 0x800, .setup = byt_pwm_setup, }; static const struct lpss_device_desc bsw_pwm_dev_desc = { .flags = LPSS_SAVE_CTX_ONCE | LPSS_NO_D3_DELAY, .prv_offset = 0x800, .setup = bsw_pwm_setup, .resume_from_noirq = true, }; static const struct lpss_device_desc bsw_pwm2_dev_desc = { .flags = LPSS_SAVE_CTX_ONCE | LPSS_NO_D3_DELAY, .prv_offset = 0x800, .resume_from_noirq = true, }; static const struct lpss_device_desc byt_uart_dev_desc = { .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX, .clk_con_id = "baudclk", .prv_offset = 0x800, .setup = lpss_uart_setup, .properties = uart_properties, }; static const struct lpss_device_desc bsw_uart_dev_desc = { .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX | LPSS_NO_D3_DELAY, .clk_con_id = "baudclk", .prv_offset = 0x800, .setup = lpss_uart_setup, .properties = uart_properties, }; static const struct property_entry byt_spi_properties[] = { PROPERTY_ENTRY_U32("intel,spi-pxa2xx-type", LPSS_BYT_SSP), { } }; static const struct lpss_device_desc byt_spi_dev_desc = { .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX, .prv_offset = 0x400, .properties = byt_spi_properties, }; static const struct lpss_device_desc byt_sdio_dev_desc = { .flags = LPSS_CLK, }; static const struct lpss_device_desc byt_i2c_dev_desc = { .flags = LPSS_CLK | LPSS_SAVE_CTX, .prv_offset = 0x800, .setup = byt_i2c_setup, .resume_from_noirq = true, }; static const struct lpss_device_desc bsw_i2c_dev_desc = { .flags = LPSS_CLK | LPSS_SAVE_CTX | LPSS_NO_D3_DELAY, .prv_offset = 0x800, .setup = byt_i2c_setup, .resume_from_noirq = true, }; static const struct property_entry bsw_spi_properties[] = { PROPERTY_ENTRY_U32("intel,spi-pxa2xx-type", LPSS_BSW_SSP), { } }; static const struct lpss_device_desc bsw_spi_dev_desc = { .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX | LPSS_NO_D3_DELAY, .prv_offset = 0x400, .setup = lpss_deassert_reset, .properties = bsw_spi_properties, }; static const struct x86_cpu_id lpss_cpu_ids[] = { X86_MATCH_INTEL_FAM6_MODEL(ATOM_SILVERMONT, NULL), X86_MATCH_INTEL_FAM6_MODEL(ATOM_AIRMONT, NULL), {} }; #else #define LPSS_ADDR(desc) (0UL) #endif /* CONFIG_X86_INTEL_LPSS */ static const struct acpi_device_id acpi_lpss_device_ids[] = { /* Generic LPSS devices */ { "INTL9C60", LPSS_ADDR(lpss_dma_desc) }, /* Lynxpoint LPSS devices */ { "INT33C0", LPSS_ADDR(lpt_spi_dev_desc) }, { "INT33C1", LPSS_ADDR(lpt_spi_dev_desc) }, { "INT33C2", LPSS_ADDR(lpt_i2c_dev_desc) }, { "INT33C3", LPSS_ADDR(lpt_i2c_dev_desc) }, { "INT33C4", LPSS_ADDR(lpt_uart_dev_desc) }, { "INT33C5", LPSS_ADDR(lpt_uart_dev_desc) }, { "INT33C6", LPSS_ADDR(lpt_sdio_dev_desc) }, /* BayTrail LPSS devices */ { "80860F09", LPSS_ADDR(byt_pwm_dev_desc) }, { "80860F0A", LPSS_ADDR(byt_uart_dev_desc) }, { "80860F0E", LPSS_ADDR(byt_spi_dev_desc) }, { "80860F14", LPSS_ADDR(byt_sdio_dev_desc) }, { "80860F41", LPSS_ADDR(byt_i2c_dev_desc) }, /* Braswell LPSS devices */ { "80862286", LPSS_ADDR(lpss_dma_desc) }, { "80862288", LPSS_ADDR(bsw_pwm_dev_desc) }, { "80862289", LPSS_ADDR(bsw_pwm2_dev_desc) }, { "8086228A", LPSS_ADDR(bsw_uart_dev_desc) }, { "8086228E", LPSS_ADDR(bsw_spi_dev_desc) }, { "808622C0", LPSS_ADDR(lpss_dma_desc) }, { "808622C1", LPSS_ADDR(bsw_i2c_dev_desc) }, /* Broadwell LPSS devices */ { "INT3430", LPSS_ADDR(lpt_spi_dev_desc) }, { "INT3431", LPSS_ADDR(lpt_spi_dev_desc) }, { "INT3432", LPSS_ADDR(lpt_i2c_dev_desc) }, { "INT3433", LPSS_ADDR(lpt_i2c_dev_desc) }, { "INT3434", LPSS_ADDR(lpt_uart_dev_desc) }, { "INT3435", LPSS_ADDR(lpt_uart_dev_desc) }, { "INT3436", LPSS_ADDR(lpt_sdio_dev_desc) }, /* Wildcat Point LPSS devices */ { "INT3438", LPSS_ADDR(lpt_spi_dev_desc) }, { } }; #ifdef CONFIG_X86_INTEL_LPSS /* LPSS main clock device. */ static struct platform_device *lpss_clk_dev; static inline void lpt_register_clock_device(void) { lpss_clk_dev = platform_device_register_simple("clk-lpss-atom", PLATFORM_DEVID_NONE, NULL, 0); } static int register_device_clock(struct acpi_device *adev, struct lpss_private_data *pdata) { const struct lpss_device_desc *dev_desc = pdata->dev_desc; const char *devname = dev_name(&adev->dev); struct clk *clk; struct lpss_clk_data *clk_data; const char *parent, *clk_name; void __iomem *prv_base; if (!lpss_clk_dev) lpt_register_clock_device(); if (IS_ERR(lpss_clk_dev)) return PTR_ERR(lpss_clk_dev); clk_data = platform_get_drvdata(lpss_clk_dev); if (!clk_data) return -ENODEV; clk = clk_data->clk; if (!pdata->mmio_base || pdata->mmio_size < dev_desc->prv_offset + LPSS_CLK_SIZE) return -ENODATA; parent = clk_data->name; prv_base = pdata->mmio_base + dev_desc->prv_offset; if (pdata->fixed_clk_rate) { clk = clk_register_fixed_rate(NULL, devname, parent, 0, pdata->fixed_clk_rate); goto out; } if (dev_desc->flags & LPSS_CLK_GATE) { clk = clk_register_gate(NULL, devname, parent, 0, prv_base, 0, 0, NULL); parent = devname; } if (dev_desc->flags & LPSS_CLK_DIVIDER) { /* Prevent division by zero */ if (!readl(prv_base)) writel(LPSS_CLK_DIVIDER_DEF_MASK, prv_base); clk_name = kasprintf(GFP_KERNEL, "%s-div", devname); if (!clk_name) return -ENOMEM; clk = clk_register_fractional_divider(NULL, clk_name, parent, CLK_FRAC_DIVIDER_POWER_OF_TWO_PS, prv_base, 1, 15, 16, 15, 0, NULL); parent = clk_name; clk_name = kasprintf(GFP_KERNEL, "%s-update", devname); if (!clk_name) { kfree(parent); return -ENOMEM; } clk = clk_register_gate(NULL, clk_name, parent, CLK_SET_RATE_PARENT | CLK_SET_RATE_GATE, prv_base, 31, 0, NULL); kfree(parent); kfree(clk_name); } out: if (IS_ERR(clk)) return PTR_ERR(clk); pdata->clk = clk; clk_register_clkdev(clk, dev_desc->clk_con_id, devname); return 0; } struct lpss_device_links { const char *supplier_hid; const char *supplier_uid; const char *consumer_hid; const char *consumer_uid; u32 flags; const struct dmi_system_id *dep_missing_ids; }; /* Please keep this list sorted alphabetically by vendor and model */ static const struct dmi_system_id i2c1_dep_missing_dmi_ids[] = { { .matches = { DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."), DMI_MATCH(DMI_PRODUCT_NAME, "T200TA"), }, }, {} }; /* * The _DEP method is used to identify dependencies but instead of creating * device links for every handle in _DEP, only links in the following list are * created. That is necessary because, in the general case, _DEP can refer to * devices that might not have drivers, or that are on different buses, or where * the supplier is not enumerated until after the consumer is probed. */ static const struct lpss_device_links lpss_device_links[] = { /* CHT External sdcard slot controller depends on PMIC I2C ctrl */ {"808622C1", "7", "80860F14", "3", DL_FLAG_PM_RUNTIME}, /* CHT iGPU depends on PMIC I2C controller */ {"808622C1", "7", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME}, /* BYT iGPU depends on the Embedded Controller I2C controller (UID 1) */ {"80860F41", "1", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME, i2c1_dep_missing_dmi_ids}, /* BYT CR iGPU depends on PMIC I2C controller (UID 5 on CR) */ {"80860F41", "5", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME}, /* BYT iGPU depends on PMIC I2C controller (UID 7 on non CR) */ {"80860F41", "7", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME}, }; static bool acpi_lpss_is_supplier(struct acpi_device *adev, const struct lpss_device_links *link) { return acpi_dev_hid_uid_match(adev, link->supplier_hid, link->supplier_uid); } static bool acpi_lpss_is_consumer(struct acpi_device *adev, const struct lpss_device_links *link) { return acpi_dev_hid_uid_match(adev, link->consumer_hid, link->consumer_uid); } struct hid_uid { const char *hid; const char *uid; }; static int match_hid_uid(struct device *dev, const void *data) { struct acpi_device *adev = ACPI_COMPANION(dev); const struct hid_uid *id = data; if (!adev) return 0; return acpi_dev_hid_uid_match(adev, id->hid, id->uid); } static struct device *acpi_lpss_find_device(const char *hid, const char *uid) { struct device *dev; struct hid_uid data = { .hid = hid, .uid = uid, }; dev = bus_find_device(&platform_bus_type, NULL, &data, match_hid_uid); if (dev) return dev; return bus_find_device(&pci_bus_type, NULL, &data, match_hid_uid); } static bool acpi_lpss_dep(struct acpi_device *adev, acpi_handle handle) { struct acpi_handle_list dep_devices; acpi_status status; bool ret = false; int i; if (!acpi_has_method(adev->handle, "_DEP")) return false; status = acpi_evaluate_reference(adev->handle, "_DEP", NULL, &dep_devices); if (ACPI_FAILURE(status)) { dev_dbg(&adev->dev, "Failed to evaluate _DEP.\n"); return false; } for (i = 0; i < dep_devices.count; i++) { if (dep_devices.handles[i] == handle) { ret = true; break; } } acpi_handle_list_free(&dep_devices); return ret; } static void acpi_lpss_link_consumer(struct device *dev1, const struct lpss_device_links *link) { struct device *dev2; dev2 = acpi_lpss_find_device(link->consumer_hid, link->consumer_uid); if (!dev2) return; if ((link->dep_missing_ids && dmi_check_system(link->dep_missing_ids)) || acpi_lpss_dep(ACPI_COMPANION(dev2), ACPI_HANDLE(dev1))) device_link_add(dev2, dev1, link->flags); put_device(dev2); } static void acpi_lpss_link_supplier(struct device *dev1, const struct lpss_device_links *link) { struct device *dev2; dev2 = acpi_lpss_find_device(link->supplier_hid, link->supplier_uid); if (!dev2) return; if ((link->dep_missing_ids && dmi_check_system(link->dep_missing_ids)) || acpi_lpss_dep(ACPI_COMPANION(dev1), ACPI_HANDLE(dev2))) device_link_add(dev1, dev2, link->flags); put_device(dev2); } static void acpi_lpss_create_device_links(struct acpi_device *adev, struct platform_device *pdev) { int i; for (i = 0; i < ARRAY_SIZE(lpss_device_links); i++) { const struct lpss_device_links *link = &lpss_device_links[i]; if (acpi_lpss_is_supplier(adev, link)) acpi_lpss_link_consumer(&pdev->dev, link); if (acpi_lpss_is_consumer(adev, link)) acpi_lpss_link_supplier(&pdev->dev, link); } } static int acpi_lpss_create_device(struct acpi_device *adev, const struct acpi_device_id *id) { const struct lpss_device_desc *dev_desc; struct lpss_private_data *pdata; struct resource_entry *rentry; struct list_head resource_list; struct platform_device *pdev; int ret; dev_desc = (const struct lpss_device_desc *)id->driver_data; if (!dev_desc) return -EINVAL; pdata = kzalloc(sizeof(*pdata), GFP_KERNEL); if (!pdata) return -ENOMEM; INIT_LIST_HEAD(&resource_list); ret = acpi_dev_get_memory_resources(adev, &resource_list); if (ret < 0) goto err_out; rentry = list_first_entry_or_null(&resource_list, struct resource_entry, node); if (rentry) { if (dev_desc->prv_size_override) pdata->mmio_size = dev_desc->prv_size_override; else pdata->mmio_size = resource_size(rentry->res); pdata->mmio_base = ioremap(rentry->res->start, pdata->mmio_size); } acpi_dev_free_resource_list(&resource_list); if (!pdata->mmio_base) { /* Avoid acpi_bus_attach() instantiating a pdev for this dev. */ adev->pnp.type.platform_id = 0; goto out_free; } pdata->adev = adev; pdata->dev_desc = dev_desc; if (dev_desc->setup) dev_desc->setup(pdata); if (dev_desc->flags & LPSS_CLK) { ret = register_device_clock(adev, pdata); if (ret) goto out_free; } /* * This works around a known issue in ACPI tables where LPSS devices * have _PS0 and _PS3 without _PSC (and no power resources), so * acpi_bus_init_power() will assume that the BIOS has put them into D0. */ acpi_device_fix_up_power(adev); adev->driver_data = pdata; pdev = acpi_create_platform_device(adev, dev_desc->properties); if (IS_ERR_OR_NULL(pdev)) { adev->driver_data = NULL; ret = PTR_ERR(pdev); goto err_out; } acpi_lpss_create_device_links(adev, pdev); return 1; out_free: /* Skip the device, but continue the namespace scan */ ret = 0; err_out: kfree(pdata); return ret; } static u32 __lpss_reg_read(struct lpss_private_data *pdata, unsigned int reg) { return readl(pdata->mmio_base + pdata->dev_desc->prv_offset + reg); } static void __lpss_reg_write(u32 val, struct lpss_private_data *pdata, unsigned int reg) { writel(val, pdata->mmio_base + pdata->dev_desc->prv_offset + reg); } static int lpss_reg_read(struct device *dev, unsigned int reg, u32 *val) { struct acpi_device *adev = ACPI_COMPANION(dev); struct lpss_private_data *pdata; unsigned long flags; int ret; if (WARN_ON(!adev)) return -ENODEV; spin_lock_irqsave(&dev->power.lock, flags); if (pm_runtime_suspended(dev)) { ret = -EAGAIN; goto out; } pdata = acpi_driver_data(adev); if (WARN_ON(!pdata || !pdata->mmio_base)) { ret = -ENODEV; goto out; } *val = __lpss_reg_read(pdata, reg); ret = 0; out: spin_unlock_irqrestore(&dev->power.lock, flags); return ret; } static ssize_t lpss_ltr_show(struct device *dev, struct device_attribute *attr, char *buf) { u32 ltr_value = 0; unsigned int reg; int ret; reg = strcmp(attr->attr.name, "auto_ltr") ? LPSS_SW_LTR : LPSS_AUTO_LTR; ret = lpss_reg_read(dev, reg, <r_value); if (ret) return ret; return sysfs_emit(buf, "%08x\n", ltr_value); } static ssize_t lpss_ltr_mode_show(struct device *dev, struct device_attribute *attr, char *buf) { u32 ltr_mode = 0; char *outstr; int ret; ret = lpss_reg_read(dev, LPSS_GENERAL, <r_mode); if (ret) return ret; outstr = (ltr_mode & LPSS_GENERAL_LTR_MODE_SW) ? "sw" : "auto"; return sprintf(buf, "%s\n", outstr); } static DEVICE_ATTR(auto_ltr, S_IRUSR, lpss_ltr_show, NULL); static DEVICE_ATTR(sw_ltr, S_IRUSR, lpss_ltr_show, NULL); static DEVICE_ATTR(ltr_mode, S_IRUSR, lpss_ltr_mode_show, NULL); static struct attribute *lpss_attrs[] = { &dev_attr_auto_ltr.attr, &dev_attr_sw_ltr.attr, &dev_attr_ltr_mode.attr, NULL, }; static const struct attribute_group lpss_attr_group = { .attrs = lpss_attrs, .name = "lpss_ltr", }; static void acpi_lpss_set_ltr(struct device *dev, s32 val) { struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev)); u32 ltr_mode, ltr_val; ltr_mode = __lpss_reg_read(pdata, LPSS_GENERAL); if (val < 0) { if (ltr_mode & LPSS_GENERAL_LTR_MODE_SW) { ltr_mode &= ~LPSS_GENERAL_LTR_MODE_SW; __lpss_reg_write(ltr_mode, pdata, LPSS_GENERAL); } return; } ltr_val = __lpss_reg_read(pdata, LPSS_SW_LTR) & ~LPSS_LTR_SNOOP_MASK; if (val >= LPSS_LTR_SNOOP_LAT_CUTOFF) { ltr_val |= LPSS_LTR_SNOOP_LAT_32US; val = LPSS_LTR_MAX_VAL; } else if (val > LPSS_LTR_MAX_VAL) { ltr_val |= LPSS_LTR_SNOOP_LAT_32US | LPSS_LTR_SNOOP_REQ; val >>= LPSS_LTR_SNOOP_LAT_SHIFT; } else { ltr_val |= LPSS_LTR_SNOOP_LAT_1US | LPSS_LTR_SNOOP_REQ; } ltr_val |= val; __lpss_reg_write(ltr_val, pdata, LPSS_SW_LTR); if (!(ltr_mode & LPSS_GENERAL_LTR_MODE_SW)) { ltr_mode |= LPSS_GENERAL_LTR_MODE_SW; __lpss_reg_write(ltr_mode, pdata, LPSS_GENERAL); } } #ifdef CONFIG_PM /** * acpi_lpss_save_ctx() - Save the private registers of LPSS device * @dev: LPSS device * @pdata: pointer to the private data of the LPSS device * * Most LPSS devices have private registers which may loose their context when * the device is powered down. acpi_lpss_save_ctx() saves those registers into * prv_reg_ctx array. */ static void acpi_lpss_save_ctx(struct device *dev, struct lpss_private_data *pdata) { unsigned int i; for (i = 0; i < LPSS_PRV_REG_COUNT; i++) { unsigned long offset = i * sizeof(u32); pdata->prv_reg_ctx[i] = __lpss_reg_read(pdata, offset); dev_dbg(dev, "saving 0x%08x from LPSS reg at offset 0x%02lx\n", pdata->prv_reg_ctx[i], offset); } } /** * acpi_lpss_restore_ctx() - Restore the private registers of LPSS device * @dev: LPSS device * @pdata: pointer to the private data of the LPSS device * * Restores the registers that were previously stored with acpi_lpss_save_ctx(). */ static void acpi_lpss_restore_ctx(struct device *dev, struct lpss_private_data *pdata) { unsigned int i; for (i = 0; i < LPSS_PRV_REG_COUNT; i++) { unsigned long offset = i * sizeof(u32); __lpss_reg_write(pdata->prv_reg_ctx[i], pdata, offset); dev_dbg(dev, "restoring 0x%08x to LPSS reg at offset 0x%02lx\n", pdata->prv_reg_ctx[i], offset); } } static void acpi_lpss_d3_to_d0_delay(struct lpss_private_data *pdata) { /* * The following delay is needed or the subsequent write operations may * fail. The LPSS devices are actually PCI devices and the PCI spec * expects 10ms delay before the device can be accessed after D3 to D0 * transition. However some platforms like BSW does not need this delay. */ unsigned int delay = 10; /* default 10ms delay */ if (pdata->dev_desc->flags & LPSS_NO_D3_DELAY) delay = 0; msleep(delay); } static int acpi_lpss_activate(struct device *dev) { struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev)); int ret; ret = acpi_dev_resume(dev); if (ret) return ret; acpi_lpss_d3_to_d0_delay(pdata); /* * This is called only on ->probe() stage where a device is either in * known state defined by BIOS or most likely powered off. Due to this * we have to deassert reset line to be sure that ->probe() will * recognize the device. */ if (pdata->dev_desc->flags & (LPSS_SAVE_CTX | LPSS_SAVE_CTX_ONCE)) lpss_deassert_reset(pdata); #ifdef CONFIG_PM if (pdata->dev_desc->flags & LPSS_SAVE_CTX_ONCE) acpi_lpss_save_ctx(dev, pdata); #endif return 0; } static void acpi_lpss_dismiss(struct device *dev) { acpi_dev_suspend(dev, false); } /* IOSF SB for LPSS island */ #define LPSS_IOSF_UNIT_LPIOEP 0xA0 #define LPSS_IOSF_UNIT_LPIO1 0xAB #define LPSS_IOSF_UNIT_LPIO2 0xAC #define LPSS_IOSF_PMCSR 0x84 #define LPSS_PMCSR_D0 0 #define LPSS_PMCSR_D3hot 3 #define LPSS_PMCSR_Dx_MASK GENMASK(1, 0) #define LPSS_IOSF_GPIODEF0 0x154 #define LPSS_GPIODEF0_DMA1_D3 BIT(2) #define LPSS_GPIODEF0_DMA2_D3 BIT(3) #define LPSS_GPIODEF0_DMA_D3_MASK GENMASK(3, 2) #define LPSS_GPIODEF0_DMA_LLP BIT(13) static DEFINE_MUTEX(lpss_iosf_mutex); static bool lpss_iosf_d3_entered = true; static void lpss_iosf_enter_d3_state(void) { u32 value1 = 0; u32 mask1 = LPSS_GPIODEF0_DMA_D3_MASK | LPSS_GPIODEF0_DMA_LLP; u32 value2 = LPSS_PMCSR_D3hot; u32 mask2 = LPSS_PMCSR_Dx_MASK; /* * PMC provides an information about actual status of the LPSS devices. * Here we read the values related to LPSS power island, i.e. LPSS * devices, excluding both LPSS DMA controllers, along with SCC domain. */ u32 func_dis, d3_sts_0, pmc_status; int ret; ret = pmc_atom_read(PMC_FUNC_DIS, &func_dis); if (ret) return; mutex_lock(&lpss_iosf_mutex); ret = pmc_atom_read(PMC_D3_STS_0, &d3_sts_0); if (ret) goto exit; /* * Get the status of entire LPSS power island per device basis. * Shutdown both LPSS DMA controllers if and only if all other devices * are already in D3hot. */ pmc_status = (~(d3_sts_0 | func_dis)) & pmc_atom_d3_mask; if (pmc_status) goto exit; iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO1, MBI_CFG_WRITE, LPSS_IOSF_PMCSR, value2, mask2); iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO2, MBI_CFG_WRITE, LPSS_IOSF_PMCSR, value2, mask2); iosf_mbi_modify(LPSS_IOSF_UNIT_LPIOEP, MBI_CR_WRITE, LPSS_IOSF_GPIODEF0, value1, mask1); lpss_iosf_d3_entered = true; exit: mutex_unlock(&lpss_iosf_mutex); } static void lpss_iosf_exit_d3_state(void) { u32 value1 = LPSS_GPIODEF0_DMA1_D3 | LPSS_GPIODEF0_DMA2_D3 | LPSS_GPIODEF0_DMA_LLP; u32 mask1 = LPSS_GPIODEF0_DMA_D3_MASK | LPSS_GPIODEF0_DMA_LLP; u32 value2 = LPSS_PMCSR_D0; u32 mask2 = LPSS_PMCSR_Dx_MASK; mutex_lock(&lpss_iosf_mutex); if (!lpss_iosf_d3_entered) goto exit; lpss_iosf_d3_entered = false; iosf_mbi_modify(LPSS_IOSF_UNIT_LPIOEP, MBI_CR_WRITE, LPSS_IOSF_GPIODEF0, value1, mask1); iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO2, MBI_CFG_WRITE, LPSS_IOSF_PMCSR, value2, mask2); iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO1, MBI_CFG_WRITE, LPSS_IOSF_PMCSR, value2, mask2); exit: mutex_unlock(&lpss_iosf_mutex); } static int acpi_lpss_suspend(struct device *dev, bool wakeup) { struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev)); int ret; if (pdata->dev_desc->flags & LPSS_SAVE_CTX) acpi_lpss_save_ctx(dev, pdata); ret = acpi_dev_suspend(dev, wakeup); /* * This call must be last in the sequence, otherwise PMC will return * wrong status for devices being about to be powered off. See * lpss_iosf_enter_d3_state() for further information. */ if (acpi_target_system_state() == ACPI_STATE_S0 && lpss_quirks & LPSS_QUIRK_ALWAYS_POWER_ON && iosf_mbi_available()) lpss_iosf_enter_d3_state(); return ret; } static int acpi_lpss_resume(struct device *dev) { struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev)); int ret; /* * This call is kept first to be in symmetry with * acpi_lpss_runtime_suspend() one. */ if (lpss_quirks & LPSS_QUIRK_ALWAYS_POWER_ON && iosf_mbi_available()) lpss_iosf_exit_d3_state(); ret = acpi_dev_resume(dev); if (ret) return ret; acpi_lpss_d3_to_d0_delay(pdata); if (pdata->dev_desc->flags & (LPSS_SAVE_CTX | LPSS_SAVE_CTX_ONCE)) acpi_lpss_restore_ctx(dev, pdata); return 0; } #ifdef CONFIG_PM_SLEEP static int acpi_lpss_do_suspend_late(struct device *dev) { int ret; if (dev_pm_skip_suspend(dev)) return 0; ret = pm_generic_suspend_late(dev); return ret ? ret : acpi_lpss_suspend(dev, device_may_wakeup(dev)); } static int acpi_lpss_suspend_late(struct device *dev) { struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev)); if (pdata->dev_desc->resume_from_noirq) return 0; return acpi_lpss_do_suspend_late(dev); } static int acpi_lpss_suspend_noirq(struct device *dev) { struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev)); int ret; if (pdata->dev_desc->resume_from_noirq) { /* * The driver's ->suspend_late callback will be invoked by * acpi_lpss_do_suspend_late(), with the assumption that the * driver really wanted to run that code in ->suspend_noirq, but * it could not run after acpi_dev_suspend() and the driver * expected the latter to be called in the "late" phase. */ ret = acpi_lpss_do_suspend_late(dev); if (ret) return ret; } return acpi_subsys_suspend_noirq(dev); } static int acpi_lpss_do_resume_early(struct device *dev) { int ret = acpi_lpss_resume(dev); return ret ? ret : pm_generic_resume_early(dev); } static int acpi_lpss_resume_early(struct device *dev) { struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev)); if (pdata->dev_desc->resume_from_noirq) return 0; if (dev_pm_skip_resume(dev)) return 0; return acpi_lpss_do_resume_early(dev); } static int acpi_lpss_resume_noirq(struct device *dev) { struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev)); int ret; /* Follow acpi_subsys_resume_noirq(). */ if (dev_pm_skip_resume(dev)) return 0; ret = pm_generic_resume_noirq(dev); if (ret) return ret; if (!pdata->dev_desc->resume_from_noirq) return 0; /* * The driver's ->resume_early callback will be invoked by * acpi_lpss_do_resume_early(), with the assumption that the driver * really wanted to run that code in ->resume_noirq, but it could not * run before acpi_dev_resume() and the driver expected the latter to be * called in the "early" phase. */ return acpi_lpss_do_resume_early(dev); } static int acpi_lpss_do_restore_early(struct device *dev) { int ret = acpi_lpss_resume(dev); return ret ? ret : pm_generic_restore_early(dev); } static int acpi_lpss_restore_early(struct device *dev) { struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev)); if (pdata->dev_desc->resume_from_noirq) return 0; return acpi_lpss_do_restore_early(dev); } static int acpi_lpss_restore_noirq(struct device *dev) { struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev)); int ret; ret = pm_generic_restore_noirq(dev); if (ret) return ret; if (!pdata->dev_desc->resume_from_noirq) return 0; /* This is analogous to what happens in acpi_lpss_resume_noirq(). */ return acpi_lpss_do_restore_early(dev); } static int acpi_lpss_do_poweroff_late(struct device *dev) { int ret = pm_generic_poweroff_late(dev); return ret ? ret : acpi_lpss_suspend(dev, device_may_wakeup(dev)); } static int acpi_lpss_poweroff_late(struct device *dev) { struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev)); if (dev_pm_skip_suspend(dev)) return 0; if (pdata->dev_desc->resume_from_noirq) return 0; return acpi_lpss_do_poweroff_late(dev); } static int acpi_lpss_poweroff_noirq(struct device *dev) { struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev)); if (dev_pm_skip_suspend(dev)) return 0; if (pdata->dev_desc->resume_from_noirq) { /* This is analogous to the acpi_lpss_suspend_noirq() case. */ int ret = acpi_lpss_do_poweroff_late(dev); if (ret) return ret; } return pm_generic_poweroff_noirq(dev); } #endif /* CONFIG_PM_SLEEP */ static int acpi_lpss_runtime_suspend(struct device *dev) { int ret = pm_generic_runtime_suspend(dev); return ret ? ret : acpi_lpss_suspend(dev, true); } static int acpi_lpss_runtime_resume(struct device *dev) { int ret = acpi_lpss_resume(dev); return ret ? ret : pm_generic_runtime_resume(dev); } #endif /* CONFIG_PM */ static struct dev_pm_domain acpi_lpss_pm_domain = { #ifdef CONFIG_PM .activate = acpi_lpss_activate, .dismiss = acpi_lpss_dismiss, #endif .ops = { #ifdef CONFIG_PM #ifdef CONFIG_PM_SLEEP .prepare = acpi_subsys_prepare, .complete = acpi_subsys_complete, .suspend = acpi_subsys_suspend, .suspend_late = acpi_lpss_suspend_late, .suspend_noirq = acpi_lpss_suspend_noirq, .resume_noirq = acpi_lpss_resume_noirq, .resume_early = acpi_lpss_resume_early, .freeze = acpi_subsys_freeze, .poweroff = acpi_subsys_poweroff, .poweroff_late = acpi_lpss_poweroff_late, .poweroff_noirq = acpi_lpss_poweroff_noirq, .restore_noirq = acpi_lpss_restore_noirq, .restore_early = acpi_lpss_restore_early, #endif .runtime_suspend = acpi_lpss_runtime_suspend, .runtime_resume = acpi_lpss_runtime_resume, #endif }, }; static int acpi_lpss_platform_notify(struct notifier_block *nb, unsigned long action, void *data) { struct platform_device *pdev = to_platform_device(data); struct lpss_private_data *pdata; struct acpi_device *adev; const struct acpi_device_id *id; id = acpi_match_device(acpi_lpss_device_ids, &pdev->dev); if (!id || !id->driver_data) return 0; adev = ACPI_COMPANION(&pdev->dev); if (!adev) return 0; pdata = acpi_driver_data(adev); if (!pdata) return 0; if (pdata->mmio_base && pdata->mmio_size < pdata->dev_desc->prv_offset + LPSS_LTR_SIZE) { dev_err(&pdev->dev, "MMIO size insufficient to access LTR\n"); return 0; } switch (action) { case BUS_NOTIFY_BIND_DRIVER: dev_pm_domain_set(&pdev->dev, &acpi_lpss_pm_domain); break; case BUS_NOTIFY_DRIVER_NOT_BOUND: case BUS_NOTIFY_UNBOUND_DRIVER: dev_pm_domain_set(&pdev->dev, NULL); break; case BUS_NOTIFY_ADD_DEVICE: dev_pm_domain_set(&pdev->dev, &acpi_lpss_pm_domain); if (pdata->dev_desc->flags & LPSS_LTR) return sysfs_create_group(&pdev->dev.kobj, &lpss_attr_group); break; case BUS_NOTIFY_DEL_DEVICE: if (pdata->dev_desc->flags & LPSS_LTR) sysfs_remove_group(&pdev->dev.kobj, &lpss_attr_group); dev_pm_domain_set(&pdev->dev, NULL); break; default: break; } return 0; } static struct notifier_block acpi_lpss_nb = { .notifier_call = acpi_lpss_platform_notify, }; static void acpi_lpss_bind(struct device *dev) { struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev)); if (!pdata || !pdata->mmio_base || !(pdata->dev_desc->flags & LPSS_LTR)) return; if (pdata->mmio_size >= pdata->dev_desc->prv_offset + LPSS_LTR_SIZE) dev->power.set_latency_tolerance = acpi_lpss_set_ltr; else dev_err(dev, "MMIO size insufficient to access LTR\n"); } static void acpi_lpss_unbind(struct device *dev) { dev->power.set_latency_tolerance = NULL; } static struct acpi_scan_handler lpss_handler = { .ids = acpi_lpss_device_ids, .attach = acpi_lpss_create_device, .bind = acpi_lpss_bind, .unbind = acpi_lpss_unbind, }; void __init acpi_lpss_init(void) { const struct x86_cpu_id *id; int ret; ret = lpss_atom_clk_init(); if (ret) return; id = x86_match_cpu(lpss_cpu_ids); if (id) lpss_quirks |= LPSS_QUIRK_ALWAYS_POWER_ON; bus_register_notifier(&platform_bus_type, &acpi_lpss_nb); acpi_scan_add_handler(&lpss_handler); } #else static struct acpi_scan_handler lpss_handler = { .ids = acpi_lpss_device_ids, }; void __init acpi_lpss_init(void) { acpi_scan_add_handler(&lpss_handler); } #endif /* CONFIG_X86_INTEL_LPSS */
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1