Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Linus Walleij | 1584 | 98.45% | 2 | 20.00% |
Hannes Reinecke | 6 | 0.37% | 1 | 10.00% |
Damien Le Moal | 5 | 0.31% | 1 | 10.00% |
Geert Uytterhoeven | 5 | 0.31% | 1 | 10.00% |
Lv Ruyi | 3 | 0.19% | 1 | 10.00% |
Uwe Kleine-König | 2 | 0.12% | 1 | 10.00% |
Philipp Zabel | 2 | 0.12% | 1 | 10.00% |
Thomas Gleixner | 1 | 0.06% | 1 | 10.00% |
Rob Herring | 1 | 0.06% | 1 | 10.00% |
Total | 1609 | 10 |
// SPDX-License-Identifier: GPL-2.0-only /* * Cortina Systems Gemini SATA bridge add-on to Faraday FTIDE010 * Copyright (C) 2017 Linus Walleij <linus.walleij@linaro.org> */ #include <linux/init.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/bitops.h> #include <linux/mfd/syscon.h> #include <linux/regmap.h> #include <linux/delay.h> #include <linux/reset.h> #include <linux/of.h> #include <linux/clk.h> #include <linux/io.h> #include <linux/pinctrl/consumer.h> #include "sata_gemini.h" #define DRV_NAME "gemini_sata_bridge" /** * struct sata_gemini - a state container for a Gemini SATA bridge * @dev: the containing device * @base: remapped I/O memory base * @muxmode: the current muxing mode * @ide_pins: if the device is using the plain IDE interface pins * @sata_bridge: if the device enables the SATA bridge * @sata0_reset: SATA0 reset handler * @sata1_reset: SATA1 reset handler * @sata0_pclk: SATA0 PCLK handler * @sata1_pclk: SATA1 PCLK handler */ struct sata_gemini { struct device *dev; void __iomem *base; enum gemini_muxmode muxmode; bool ide_pins; bool sata_bridge; struct reset_control *sata0_reset; struct reset_control *sata1_reset; struct clk *sata0_pclk; struct clk *sata1_pclk; }; /* Miscellaneous Control Register */ #define GEMINI_GLOBAL_MISC_CTRL 0x30 /* * Values of IDE IOMUX bits in the misc control register * * Bits 26:24 are "IDE IO Select", which decides what SATA * adapters are connected to which of the two IDE/ATA * controllers in the Gemini. We can connect the two IDE blocks * to one SATA adapter each, both acting as master, or one IDE * blocks to two SATA adapters so the IDE block can act in a * master/slave configuration. * * We also bring out different blocks on the actual IDE * pins (not SATA pins) if (and only if) these are muxed in. * * 111-100 - Reserved * Mode 0: 000 - ata0 master <-> sata0 * ata1 master <-> sata1 * ata0 slave interface brought out on IDE pads * Mode 1: 001 - ata0 master <-> sata0 * ata1 master <-> sata1 * ata1 slave interface brought out on IDE pads * Mode 2: 010 - ata1 master <-> sata1 * ata1 slave <-> sata0 * ata0 master and slave interfaces brought out * on IDE pads * Mode 3: 011 - ata0 master <-> sata0 * ata1 slave <-> sata1 * ata1 master and slave interfaces brought out * on IDE pads */ #define GEMINI_IDE_IOMUX_MASK (7 << 24) #define GEMINI_IDE_IOMUX_MODE0 (0 << 24) #define GEMINI_IDE_IOMUX_MODE1 (1 << 24) #define GEMINI_IDE_IOMUX_MODE2 (2 << 24) #define GEMINI_IDE_IOMUX_MODE3 (3 << 24) #define GEMINI_IDE_IOMUX_SHIFT (24) /* * Registers directly controlling the PATA<->SATA adapters */ #define GEMINI_SATA_ID 0x00 #define GEMINI_SATA_PHY_ID 0x04 #define GEMINI_SATA0_STATUS 0x08 #define GEMINI_SATA1_STATUS 0x0c #define GEMINI_SATA0_CTRL 0x18 #define GEMINI_SATA1_CTRL 0x1c #define GEMINI_SATA_STATUS_BIST_DONE BIT(5) #define GEMINI_SATA_STATUS_BIST_OK BIT(4) #define GEMINI_SATA_STATUS_PHY_READY BIT(0) #define GEMINI_SATA_CTRL_PHY_BIST_EN BIT(14) #define GEMINI_SATA_CTRL_PHY_FORCE_IDLE BIT(13) #define GEMINI_SATA_CTRL_PHY_FORCE_READY BIT(12) #define GEMINI_SATA_CTRL_PHY_AFE_LOOP_EN BIT(10) #define GEMINI_SATA_CTRL_PHY_DIG_LOOP_EN BIT(9) #define GEMINI_SATA_CTRL_HOTPLUG_DETECT_EN BIT(4) #define GEMINI_SATA_CTRL_ATAPI_EN BIT(3) #define GEMINI_SATA_CTRL_BUS_WITH_20 BIT(2) #define GEMINI_SATA_CTRL_SLAVE_EN BIT(1) #define GEMINI_SATA_CTRL_EN BIT(0) /* * There is only ever one instance of this bridge on a system, * so create a singleton so that the FTIDE010 instances can grab * a reference to it. */ static struct sata_gemini *sg_singleton; struct sata_gemini *gemini_sata_bridge_get(void) { if (sg_singleton) return sg_singleton; return ERR_PTR(-EPROBE_DEFER); } EXPORT_SYMBOL(gemini_sata_bridge_get); bool gemini_sata_bridge_enabled(struct sata_gemini *sg, bool is_ata1) { if (!sg->sata_bridge) return false; /* * In muxmode 2 and 3 one of the ATA controllers is * actually not connected to any SATA bridge. */ if ((sg->muxmode == GEMINI_MUXMODE_2) && !is_ata1) return false; if ((sg->muxmode == GEMINI_MUXMODE_3) && is_ata1) return false; return true; } EXPORT_SYMBOL(gemini_sata_bridge_enabled); enum gemini_muxmode gemini_sata_get_muxmode(struct sata_gemini *sg) { return sg->muxmode; } EXPORT_SYMBOL(gemini_sata_get_muxmode); static int gemini_sata_setup_bridge(struct sata_gemini *sg, unsigned int bridge) { unsigned long timeout = jiffies + (HZ * 1); bool bridge_online; u32 val; if (bridge == 0) { val = GEMINI_SATA_CTRL_HOTPLUG_DETECT_EN | GEMINI_SATA_CTRL_EN; /* SATA0 slave mode is only used in muxmode 2 */ if (sg->muxmode == GEMINI_MUXMODE_2) val |= GEMINI_SATA_CTRL_SLAVE_EN; writel(val, sg->base + GEMINI_SATA0_CTRL); } else { val = GEMINI_SATA_CTRL_HOTPLUG_DETECT_EN | GEMINI_SATA_CTRL_EN; /* SATA1 slave mode is only used in muxmode 3 */ if (sg->muxmode == GEMINI_MUXMODE_3) val |= GEMINI_SATA_CTRL_SLAVE_EN; writel(val, sg->base + GEMINI_SATA1_CTRL); } /* Vendor code waits 10 ms here */ msleep(10); /* Wait for PHY to become ready */ do { msleep(100); if (bridge == 0) val = readl(sg->base + GEMINI_SATA0_STATUS); else val = readl(sg->base + GEMINI_SATA1_STATUS); if (val & GEMINI_SATA_STATUS_PHY_READY) break; } while (time_before(jiffies, timeout)); bridge_online = !!(val & GEMINI_SATA_STATUS_PHY_READY); dev_info(sg->dev, "SATA%d PHY %s\n", bridge, bridge_online ? "ready" : "not ready"); return bridge_online ? 0: -ENODEV; } int gemini_sata_start_bridge(struct sata_gemini *sg, unsigned int bridge) { struct clk *pclk; int ret; if (bridge == 0) pclk = sg->sata0_pclk; else pclk = sg->sata1_pclk; clk_enable(pclk); msleep(10); /* Do not keep clocking a bridge that is not online */ ret = gemini_sata_setup_bridge(sg, bridge); if (ret) clk_disable(pclk); return ret; } EXPORT_SYMBOL(gemini_sata_start_bridge); void gemini_sata_stop_bridge(struct sata_gemini *sg, unsigned int bridge) { if (bridge == 0) clk_disable(sg->sata0_pclk); else if (bridge == 1) clk_disable(sg->sata1_pclk); } EXPORT_SYMBOL(gemini_sata_stop_bridge); int gemini_sata_reset_bridge(struct sata_gemini *sg, unsigned int bridge) { if (bridge == 0) reset_control_reset(sg->sata0_reset); else reset_control_reset(sg->sata1_reset); msleep(10); return gemini_sata_setup_bridge(sg, bridge); } EXPORT_SYMBOL(gemini_sata_reset_bridge); static int gemini_sata_bridge_init(struct sata_gemini *sg) { struct device *dev = sg->dev; u32 sata_id, sata_phy_id; int ret; sg->sata0_pclk = devm_clk_get(dev, "SATA0_PCLK"); if (IS_ERR(sg->sata0_pclk)) { dev_err(dev, "no SATA0 PCLK"); return -ENODEV; } sg->sata1_pclk = devm_clk_get(dev, "SATA1_PCLK"); if (IS_ERR(sg->sata1_pclk)) { dev_err(dev, "no SATA1 PCLK"); return -ENODEV; } ret = clk_prepare_enable(sg->sata0_pclk); if (ret) { dev_err(dev, "failed to enable SATA0 PCLK\n"); return ret; } ret = clk_prepare_enable(sg->sata1_pclk); if (ret) { dev_err(dev, "failed to enable SATA1 PCLK\n"); clk_disable_unprepare(sg->sata0_pclk); return ret; } sg->sata0_reset = devm_reset_control_get_exclusive(dev, "sata0"); if (IS_ERR(sg->sata0_reset)) { dev_err(dev, "no SATA0 reset controller\n"); clk_disable_unprepare(sg->sata1_pclk); clk_disable_unprepare(sg->sata0_pclk); return PTR_ERR(sg->sata0_reset); } sg->sata1_reset = devm_reset_control_get_exclusive(dev, "sata1"); if (IS_ERR(sg->sata1_reset)) { dev_err(dev, "no SATA1 reset controller\n"); clk_disable_unprepare(sg->sata1_pclk); clk_disable_unprepare(sg->sata0_pclk); return PTR_ERR(sg->sata1_reset); } sata_id = readl(sg->base + GEMINI_SATA_ID); sata_phy_id = readl(sg->base + GEMINI_SATA_PHY_ID); sg->sata_bridge = true; clk_disable(sg->sata0_pclk); clk_disable(sg->sata1_pclk); dev_info(dev, "SATA ID %08x, PHY ID: %08x\n", sata_id, sata_phy_id); return 0; } static int gemini_setup_ide_pins(struct device *dev) { struct pinctrl *p; struct pinctrl_state *ide_state; int ret; p = devm_pinctrl_get(dev); if (IS_ERR(p)) return PTR_ERR(p); ide_state = pinctrl_lookup_state(p, "ide"); if (IS_ERR(ide_state)) return PTR_ERR(ide_state); ret = pinctrl_select_state(p, ide_state); if (ret) { dev_err(dev, "could not select IDE state\n"); return ret; } return 0; } static int gemini_sata_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct device_node *np = dev->of_node; struct sata_gemini *sg; struct regmap *map; enum gemini_muxmode muxmode; u32 gmode; u32 gmask; int ret; sg = devm_kzalloc(dev, sizeof(*sg), GFP_KERNEL); if (!sg) return -ENOMEM; sg->dev = dev; sg->base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(sg->base)) return PTR_ERR(sg->base); map = syscon_regmap_lookup_by_phandle(np, "syscon"); if (IS_ERR(map)) { dev_err(dev, "no global syscon\n"); return PTR_ERR(map); } /* Set up the SATA bridge if need be */ if (of_property_read_bool(np, "cortina,gemini-enable-sata-bridge")) { ret = gemini_sata_bridge_init(sg); if (ret) return ret; } if (of_property_read_bool(np, "cortina,gemini-enable-ide-pins")) sg->ide_pins = true; if (!sg->sata_bridge && !sg->ide_pins) { dev_err(dev, "neither SATA bridge or IDE output enabled\n"); ret = -EINVAL; goto out_unprep_clk; } ret = of_property_read_u32(np, "cortina,gemini-ata-muxmode", &muxmode); if (ret) { dev_err(dev, "could not parse ATA muxmode\n"); goto out_unprep_clk; } if (muxmode > GEMINI_MUXMODE_3) { dev_err(dev, "illegal muxmode %d\n", muxmode); ret = -EINVAL; goto out_unprep_clk; } sg->muxmode = muxmode; gmask = GEMINI_IDE_IOMUX_MASK; gmode = (muxmode << GEMINI_IDE_IOMUX_SHIFT); ret = regmap_update_bits(map, GEMINI_GLOBAL_MISC_CTRL, gmask, gmode); if (ret) { dev_err(dev, "unable to set up IDE muxing\n"); ret = -ENODEV; goto out_unprep_clk; } /* * Route out the IDE pins if desired. * This is done by looking up a special pin control state called * "ide" that will route out the IDE pins. */ if (sg->ide_pins) { ret = gemini_setup_ide_pins(dev); if (ret) return ret; } dev_info(dev, "set up the Gemini IDE/SATA nexus\n"); platform_set_drvdata(pdev, sg); sg_singleton = sg; return 0; out_unprep_clk: if (sg->sata_bridge) { clk_unprepare(sg->sata1_pclk); clk_unprepare(sg->sata0_pclk); } return ret; } static void gemini_sata_remove(struct platform_device *pdev) { struct sata_gemini *sg = platform_get_drvdata(pdev); if (sg->sata_bridge) { clk_unprepare(sg->sata1_pclk); clk_unprepare(sg->sata0_pclk); } sg_singleton = NULL; } static const struct of_device_id gemini_sata_of_match[] = { { .compatible = "cortina,gemini-sata-bridge", }, { /* sentinel */ } }; static struct platform_driver gemini_sata_driver = { .driver = { .name = DRV_NAME, .of_match_table = gemini_sata_of_match, }, .probe = gemini_sata_probe, .remove_new = gemini_sata_remove, }; module_platform_driver(gemini_sata_driver); MODULE_DESCRIPTION("low level driver for Cortina Systems Gemini SATA bridge"); MODULE_AUTHOR("Linus Walleij <linus.walleij@linaro.org>"); MODULE_LICENSE("GPL"); MODULE_ALIAS("platform:" DRV_NAME);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1