Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Andrew Jeffery | 1812 | 59.14% | 13 | 61.90% |
Haiyue Wang | 1195 | 39.00% | 3 | 14.29% |
Chia-Wei, Wang | 36 | 1.17% | 2 | 9.52% |
Joel Stanley | 11 | 0.36% | 2 | 9.52% |
Colin Ian King | 10 | 0.33% | 1 | 4.76% |
Total | 3064 | 21 |
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (c) 2015-2018, Intel Corporation. */ #define pr_fmt(fmt) "aspeed-kcs-bmc: " fmt #include <linux/atomic.h> #include <linux/errno.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/irq.h> #include <linux/mfd/syscon.h> #include <linux/module.h> #include <linux/of.h> #include <linux/of_address.h> #include <linux/platform_device.h> #include <linux/poll.h> #include <linux/regmap.h> #include <linux/sched.h> #include <linux/slab.h> #include <linux/timer.h> #include "kcs_bmc_device.h" #define DEVICE_NAME "ast-kcs-bmc" #define KCS_CHANNEL_MAX 4 /* * Field class descriptions * * LPCyE Enable LPC channel y * IBFIEy Input Buffer Full IRQ Enable for LPC channel y * IRQxEy Assert SerIRQ x for LPC channel y (Deprecated, use IDyIRQX, IRQXEy) * IDyIRQX Use the specified 4-bit SerIRQ for LPC channel y * SELyIRQX SerIRQ polarity for LPC channel y (low: 0, high: 1) * IRQXEy Assert the SerIRQ specified in IDyIRQX for LPC channel y */ #define LPC_TYIRQX_LOW 0b00 #define LPC_TYIRQX_HIGH 0b01 #define LPC_TYIRQX_RSVD 0b10 #define LPC_TYIRQX_RISING 0b11 #define LPC_HICR0 0x000 #define LPC_HICR0_LPC3E BIT(7) #define LPC_HICR0_LPC2E BIT(6) #define LPC_HICR0_LPC1E BIT(5) #define LPC_HICR2 0x008 #define LPC_HICR2_IBFIE3 BIT(3) #define LPC_HICR2_IBFIE2 BIT(2) #define LPC_HICR2_IBFIE1 BIT(1) #define LPC_HICR4 0x010 #define LPC_HICR4_LADR12AS BIT(7) #define LPC_HICR4_KCSENBL BIT(2) #define LPC_SIRQCR0 0x070 /* IRQ{12,1}E1 are deprecated as of AST2600 A3 but necessary for prior chips */ #define LPC_SIRQCR0_IRQ12E1 BIT(1) #define LPC_SIRQCR0_IRQ1E1 BIT(0) #define LPC_HICR5 0x080 #define LPC_HICR5_ID3IRQX_MASK GENMASK(23, 20) #define LPC_HICR5_ID3IRQX_SHIFT 20 #define LPC_HICR5_ID2IRQX_MASK GENMASK(19, 16) #define LPC_HICR5_ID2IRQX_SHIFT 16 #define LPC_HICR5_SEL3IRQX BIT(15) #define LPC_HICR5_IRQXE3 BIT(14) #define LPC_HICR5_SEL2IRQX BIT(13) #define LPC_HICR5_IRQXE2 BIT(12) #define LPC_LADR3H 0x014 #define LPC_LADR3L 0x018 #define LPC_LADR12H 0x01C #define LPC_LADR12L 0x020 #define LPC_IDR1 0x024 #define LPC_IDR2 0x028 #define LPC_IDR3 0x02C #define LPC_ODR1 0x030 #define LPC_ODR2 0x034 #define LPC_ODR3 0x038 #define LPC_STR1 0x03C #define LPC_STR2 0x040 #define LPC_STR3 0x044 #define LPC_HICRB 0x100 #define LPC_HICRB_EN16LADR2 BIT(5) #define LPC_HICRB_EN16LADR1 BIT(4) #define LPC_HICRB_IBFIE4 BIT(1) #define LPC_HICRB_LPC4E BIT(0) #define LPC_HICRC 0x104 #define LPC_HICRC_ID4IRQX_MASK GENMASK(7, 4) #define LPC_HICRC_ID4IRQX_SHIFT 4 #define LPC_HICRC_TY4IRQX_MASK GENMASK(3, 2) #define LPC_HICRC_TY4IRQX_SHIFT 2 #define LPC_HICRC_OBF4_AUTO_CLR BIT(1) #define LPC_HICRC_IRQXE4 BIT(0) #define LPC_LADR4 0x110 #define LPC_IDR4 0x114 #define LPC_ODR4 0x118 #define LPC_STR4 0x11C #define LPC_LSADR12 0x120 #define LPC_LSADR12_LSADR2_MASK GENMASK(31, 16) #define LPC_LSADR12_LSADR2_SHIFT 16 #define LPC_LSADR12_LSADR1_MASK GENMASK(15, 0) #define LPC_LSADR12_LSADR1_SHIFT 0 #define OBE_POLL_PERIOD (HZ / 2) enum aspeed_kcs_irq_mode { aspeed_kcs_irq_none, aspeed_kcs_irq_serirq, }; struct aspeed_kcs_bmc { struct kcs_bmc_device kcs_bmc; struct regmap *map; struct { enum aspeed_kcs_irq_mode mode; int id; } upstream_irq; struct { spinlock_t lock; bool remove; struct timer_list timer; } obe; }; static inline struct aspeed_kcs_bmc *to_aspeed_kcs_bmc(struct kcs_bmc_device *kcs_bmc) { return container_of(kcs_bmc, struct aspeed_kcs_bmc, kcs_bmc); } static u8 aspeed_kcs_inb(struct kcs_bmc_device *kcs_bmc, u32 reg) { struct aspeed_kcs_bmc *priv = to_aspeed_kcs_bmc(kcs_bmc); u32 val = 0; int rc; rc = regmap_read(priv->map, reg, &val); WARN(rc != 0, "regmap_read() failed: %d\n", rc); return rc == 0 ? (u8) val : 0; } static void aspeed_kcs_outb(struct kcs_bmc_device *kcs_bmc, u32 reg, u8 data) { struct aspeed_kcs_bmc *priv = to_aspeed_kcs_bmc(kcs_bmc); int rc; rc = regmap_write(priv->map, reg, data); WARN(rc != 0, "regmap_write() failed: %d\n", rc); /* Trigger the upstream IRQ on ODR writes, if enabled */ switch (reg) { case LPC_ODR1: case LPC_ODR2: case LPC_ODR3: case LPC_ODR4: break; default: return; } if (priv->upstream_irq.mode != aspeed_kcs_irq_serirq) return; switch (kcs_bmc->channel) { case 1: switch (priv->upstream_irq.id) { case 12: regmap_update_bits(priv->map, LPC_SIRQCR0, LPC_SIRQCR0_IRQ12E1, LPC_SIRQCR0_IRQ12E1); break; case 1: regmap_update_bits(priv->map, LPC_SIRQCR0, LPC_SIRQCR0_IRQ1E1, LPC_SIRQCR0_IRQ1E1); break; default: break; } break; case 2: regmap_update_bits(priv->map, LPC_HICR5, LPC_HICR5_IRQXE2, LPC_HICR5_IRQXE2); break; case 3: regmap_update_bits(priv->map, LPC_HICR5, LPC_HICR5_IRQXE3, LPC_HICR5_IRQXE3); break; case 4: regmap_update_bits(priv->map, LPC_HICRC, LPC_HICRC_IRQXE4, LPC_HICRC_IRQXE4); break; default: break; } } static void aspeed_kcs_updateb(struct kcs_bmc_device *kcs_bmc, u32 reg, u8 mask, u8 val) { struct aspeed_kcs_bmc *priv = to_aspeed_kcs_bmc(kcs_bmc); int rc; rc = regmap_update_bits(priv->map, reg, mask, val); WARN(rc != 0, "regmap_update_bits() failed: %d\n", rc); } /* * We note D for Data, and C for Cmd/Status, default rules are * * 1. Only the D address is given: * A. KCS1/KCS2 (D/C: X/X+4) * D/C: CA0h/CA4h * D/C: CA8h/CACh * B. KCS3 (D/C: XX2/XX3h) * D/C: CA2h/CA3h * C. KCS4 (D/C: X/X+1) * D/C: CA4h/CA5h * * 2. Both the D/C addresses are given: * A. KCS1/KCS2/KCS4 (D/C: X/Y) * D/C: CA0h/CA1h * D/C: CA8h/CA9h * D/C: CA4h/CA5h * B. KCS3 (D/C: XX2/XX3h) * D/C: CA2h/CA3h */ static int aspeed_kcs_set_address(struct kcs_bmc_device *kcs_bmc, u32 addrs[2], int nr_addrs) { struct aspeed_kcs_bmc *priv = to_aspeed_kcs_bmc(kcs_bmc); if (WARN_ON(nr_addrs < 1 || nr_addrs > 2)) return -EINVAL; switch (priv->kcs_bmc.channel) { case 1: regmap_update_bits(priv->map, LPC_HICR4, LPC_HICR4_LADR12AS, 0); regmap_write(priv->map, LPC_LADR12H, addrs[0] >> 8); regmap_write(priv->map, LPC_LADR12L, addrs[0] & 0xFF); if (nr_addrs == 2) { regmap_update_bits(priv->map, LPC_LSADR12, LPC_LSADR12_LSADR1_MASK, addrs[1] << LPC_LSADR12_LSADR1_SHIFT); regmap_update_bits(priv->map, LPC_HICRB, LPC_HICRB_EN16LADR1, LPC_HICRB_EN16LADR1); } break; case 2: regmap_update_bits(priv->map, LPC_HICR4, LPC_HICR4_LADR12AS, LPC_HICR4_LADR12AS); regmap_write(priv->map, LPC_LADR12H, addrs[0] >> 8); regmap_write(priv->map, LPC_LADR12L, addrs[0] & 0xFF); if (nr_addrs == 2) { regmap_update_bits(priv->map, LPC_LSADR12, LPC_LSADR12_LSADR2_MASK, addrs[1] << LPC_LSADR12_LSADR2_SHIFT); regmap_update_bits(priv->map, LPC_HICRB, LPC_HICRB_EN16LADR2, LPC_HICRB_EN16LADR2); } break; case 3: if (nr_addrs == 2) { dev_err(priv->kcs_bmc.dev, "Channel 3 only supports inferred status IO address\n"); return -EINVAL; } regmap_write(priv->map, LPC_LADR3H, addrs[0] >> 8); regmap_write(priv->map, LPC_LADR3L, addrs[0] & 0xFF); break; case 4: if (nr_addrs == 1) regmap_write(priv->map, LPC_LADR4, ((addrs[0] + 1) << 16) | addrs[0]); else regmap_write(priv->map, LPC_LADR4, (addrs[1] << 16) | addrs[0]); break; default: return -EINVAL; } return 0; } static inline int aspeed_kcs_map_serirq_type(u32 dt_type) { switch (dt_type) { case IRQ_TYPE_EDGE_RISING: return LPC_TYIRQX_RISING; case IRQ_TYPE_LEVEL_HIGH: return LPC_TYIRQX_HIGH; case IRQ_TYPE_LEVEL_LOW: return LPC_TYIRQX_LOW; default: return -EINVAL; } } static int aspeed_kcs_config_upstream_irq(struct aspeed_kcs_bmc *priv, u32 id, u32 dt_type) { unsigned int mask, val, hw_type; int ret; if (id > 15) return -EINVAL; ret = aspeed_kcs_map_serirq_type(dt_type); if (ret < 0) return ret; hw_type = ret; priv->upstream_irq.mode = aspeed_kcs_irq_serirq; priv->upstream_irq.id = id; switch (priv->kcs_bmc.channel) { case 1: /* Needs IRQxE1 rather than (ID1IRQX, SEL1IRQX, IRQXE1) before AST2600 A3 */ break; case 2: if (!(hw_type == LPC_TYIRQX_LOW || hw_type == LPC_TYIRQX_HIGH)) return -EINVAL; mask = LPC_HICR5_SEL2IRQX | LPC_HICR5_ID2IRQX_MASK; val = (id << LPC_HICR5_ID2IRQX_SHIFT); val |= (hw_type == LPC_TYIRQX_HIGH) ? LPC_HICR5_SEL2IRQX : 0; regmap_update_bits(priv->map, LPC_HICR5, mask, val); break; case 3: if (!(hw_type == LPC_TYIRQX_LOW || hw_type == LPC_TYIRQX_HIGH)) return -EINVAL; mask = LPC_HICR5_SEL3IRQX | LPC_HICR5_ID3IRQX_MASK; val = (id << LPC_HICR5_ID3IRQX_SHIFT); val |= (hw_type == LPC_TYIRQX_HIGH) ? LPC_HICR5_SEL3IRQX : 0; regmap_update_bits(priv->map, LPC_HICR5, mask, val); break; case 4: mask = LPC_HICRC_ID4IRQX_MASK | LPC_HICRC_TY4IRQX_MASK | LPC_HICRC_OBF4_AUTO_CLR; val = (id << LPC_HICRC_ID4IRQX_SHIFT) | (hw_type << LPC_HICRC_TY4IRQX_SHIFT); regmap_update_bits(priv->map, LPC_HICRC, mask, val); break; default: dev_warn(priv->kcs_bmc.dev, "SerIRQ configuration not supported on KCS channel %d\n", priv->kcs_bmc.channel); return -EINVAL; } return 0; } static void aspeed_kcs_enable_channel(struct kcs_bmc_device *kcs_bmc, bool enable) { struct aspeed_kcs_bmc *priv = to_aspeed_kcs_bmc(kcs_bmc); switch (kcs_bmc->channel) { case 1: regmap_update_bits(priv->map, LPC_HICR0, LPC_HICR0_LPC1E, enable * LPC_HICR0_LPC1E); return; case 2: regmap_update_bits(priv->map, LPC_HICR0, LPC_HICR0_LPC2E, enable * LPC_HICR0_LPC2E); return; case 3: regmap_update_bits(priv->map, LPC_HICR0, LPC_HICR0_LPC3E, enable * LPC_HICR0_LPC3E); regmap_update_bits(priv->map, LPC_HICR4, LPC_HICR4_KCSENBL, enable * LPC_HICR4_KCSENBL); return; case 4: regmap_update_bits(priv->map, LPC_HICRB, LPC_HICRB_LPC4E, enable * LPC_HICRB_LPC4E); return; default: pr_warn("%s: Unsupported channel: %d", __func__, kcs_bmc->channel); return; } } static void aspeed_kcs_check_obe(struct timer_list *timer) { struct aspeed_kcs_bmc *priv = container_of(timer, struct aspeed_kcs_bmc, obe.timer); unsigned long flags; u8 str; spin_lock_irqsave(&priv->obe.lock, flags); if (priv->obe.remove) { spin_unlock_irqrestore(&priv->obe.lock, flags); return; } str = aspeed_kcs_inb(&priv->kcs_bmc, priv->kcs_bmc.ioreg.str); if (str & KCS_BMC_STR_OBF) { mod_timer(timer, jiffies + OBE_POLL_PERIOD); spin_unlock_irqrestore(&priv->obe.lock, flags); return; } spin_unlock_irqrestore(&priv->obe.lock, flags); kcs_bmc_handle_event(&priv->kcs_bmc); } static void aspeed_kcs_irq_mask_update(struct kcs_bmc_device *kcs_bmc, u8 mask, u8 state) { struct aspeed_kcs_bmc *priv = to_aspeed_kcs_bmc(kcs_bmc); int rc; u8 str; /* We don't have an OBE IRQ, emulate it */ if (mask & KCS_BMC_EVENT_TYPE_OBE) { if (KCS_BMC_EVENT_TYPE_OBE & state) { /* * Given we don't have an OBE IRQ, delay by polling briefly to see if we can * observe such an event before returning to the caller. This is not * incorrect because OBF may have already become clear before enabling the * IRQ if we had one, under which circumstance no event will be propagated * anyway. * * The onus is on the client to perform a race-free check that it hasn't * missed the event. */ rc = read_poll_timeout_atomic(aspeed_kcs_inb, str, !(str & KCS_BMC_STR_OBF), 1, 100, false, &priv->kcs_bmc, priv->kcs_bmc.ioreg.str); /* Time for the slow path? */ if (rc == -ETIMEDOUT) mod_timer(&priv->obe.timer, jiffies + OBE_POLL_PERIOD); } else { del_timer(&priv->obe.timer); } } if (mask & KCS_BMC_EVENT_TYPE_IBF) { const bool enable = !!(state & KCS_BMC_EVENT_TYPE_IBF); switch (kcs_bmc->channel) { case 1: regmap_update_bits(priv->map, LPC_HICR2, LPC_HICR2_IBFIE1, enable * LPC_HICR2_IBFIE1); return; case 2: regmap_update_bits(priv->map, LPC_HICR2, LPC_HICR2_IBFIE2, enable * LPC_HICR2_IBFIE2); return; case 3: regmap_update_bits(priv->map, LPC_HICR2, LPC_HICR2_IBFIE3, enable * LPC_HICR2_IBFIE3); return; case 4: regmap_update_bits(priv->map, LPC_HICRB, LPC_HICRB_IBFIE4, enable * LPC_HICRB_IBFIE4); return; default: pr_warn("%s: Unsupported channel: %d", __func__, kcs_bmc->channel); return; } } } static const struct kcs_bmc_device_ops aspeed_kcs_ops = { .irq_mask_update = aspeed_kcs_irq_mask_update, .io_inputb = aspeed_kcs_inb, .io_outputb = aspeed_kcs_outb, .io_updateb = aspeed_kcs_updateb, }; static irqreturn_t aspeed_kcs_irq(int irq, void *arg) { struct kcs_bmc_device *kcs_bmc = arg; return kcs_bmc_handle_event(kcs_bmc); } static int aspeed_kcs_config_downstream_irq(struct kcs_bmc_device *kcs_bmc, struct platform_device *pdev) { struct device *dev = &pdev->dev; int irq; irq = platform_get_irq(pdev, 0); if (irq < 0) return irq; return devm_request_irq(dev, irq, aspeed_kcs_irq, IRQF_SHARED, dev_name(dev), kcs_bmc); } static const struct kcs_ioreg ast_kcs_bmc_ioregs[KCS_CHANNEL_MAX] = { { .idr = LPC_IDR1, .odr = LPC_ODR1, .str = LPC_STR1 }, { .idr = LPC_IDR2, .odr = LPC_ODR2, .str = LPC_STR2 }, { .idr = LPC_IDR3, .odr = LPC_ODR3, .str = LPC_STR3 }, { .idr = LPC_IDR4, .odr = LPC_ODR4, .str = LPC_STR4 }, }; static int aspeed_kcs_of_get_channel(struct platform_device *pdev) { struct device_node *np; struct kcs_ioreg ioreg; const __be32 *reg; int i; np = pdev->dev.of_node; /* Don't translate addresses, we want offsets for the regmaps */ reg = of_get_address(np, 0, NULL, NULL); if (!reg) return -EINVAL; ioreg.idr = be32_to_cpup(reg); reg = of_get_address(np, 1, NULL, NULL); if (!reg) return -EINVAL; ioreg.odr = be32_to_cpup(reg); reg = of_get_address(np, 2, NULL, NULL); if (!reg) return -EINVAL; ioreg.str = be32_to_cpup(reg); for (i = 0; i < ARRAY_SIZE(ast_kcs_bmc_ioregs); i++) { if (!memcmp(&ast_kcs_bmc_ioregs[i], &ioreg, sizeof(ioreg))) return i + 1; } return -EINVAL; } static int aspeed_kcs_of_get_io_address(struct platform_device *pdev, u32 addrs[2]) { int rc; rc = of_property_read_variable_u32_array(pdev->dev.of_node, "aspeed,lpc-io-reg", addrs, 1, 2); if (rc < 0) { dev_err(&pdev->dev, "No valid 'aspeed,lpc-io-reg' configured\n"); return rc; } if (addrs[0] > 0xffff) { dev_err(&pdev->dev, "Invalid data address in 'aspeed,lpc-io-reg'\n"); return -EINVAL; } if (rc == 2 && addrs[1] > 0xffff) { dev_err(&pdev->dev, "Invalid status address in 'aspeed,lpc-io-reg'\n"); return -EINVAL; } return rc; } static int aspeed_kcs_probe(struct platform_device *pdev) { struct kcs_bmc_device *kcs_bmc; struct aspeed_kcs_bmc *priv; struct device_node *np; bool have_upstream_irq; u32 upstream_irq[2]; int rc, channel; int nr_addrs; u32 addrs[2]; np = pdev->dev.of_node->parent; if (!of_device_is_compatible(np, "aspeed,ast2400-lpc-v2") && !of_device_is_compatible(np, "aspeed,ast2500-lpc-v2") && !of_device_is_compatible(np, "aspeed,ast2600-lpc-v2")) { dev_err(&pdev->dev, "unsupported LPC device binding\n"); return -ENODEV; } channel = aspeed_kcs_of_get_channel(pdev); if (channel < 0) return channel; nr_addrs = aspeed_kcs_of_get_io_address(pdev, addrs); if (nr_addrs < 0) return nr_addrs; np = pdev->dev.of_node; rc = of_property_read_u32_array(np, "aspeed,lpc-interrupts", upstream_irq, 2); if (rc && rc != -EINVAL) return -EINVAL; have_upstream_irq = !rc; priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; kcs_bmc = &priv->kcs_bmc; kcs_bmc->dev = &pdev->dev; kcs_bmc->channel = channel; kcs_bmc->ioreg = ast_kcs_bmc_ioregs[channel - 1]; kcs_bmc->ops = &aspeed_kcs_ops; priv->map = syscon_node_to_regmap(pdev->dev.parent->of_node); if (IS_ERR(priv->map)) { dev_err(&pdev->dev, "Couldn't get regmap\n"); return -ENODEV; } spin_lock_init(&priv->obe.lock); priv->obe.remove = false; timer_setup(&priv->obe.timer, aspeed_kcs_check_obe, 0); rc = aspeed_kcs_set_address(kcs_bmc, addrs, nr_addrs); if (rc) return rc; /* Host to BMC IRQ */ rc = aspeed_kcs_config_downstream_irq(kcs_bmc, pdev); if (rc) return rc; /* BMC to Host IRQ */ if (have_upstream_irq) { rc = aspeed_kcs_config_upstream_irq(priv, upstream_irq[0], upstream_irq[1]); if (rc < 0) return rc; } else { priv->upstream_irq.mode = aspeed_kcs_irq_none; } platform_set_drvdata(pdev, priv); aspeed_kcs_irq_mask_update(kcs_bmc, (KCS_BMC_EVENT_TYPE_IBF | KCS_BMC_EVENT_TYPE_OBE), 0); aspeed_kcs_enable_channel(kcs_bmc, true); rc = kcs_bmc_add_device(&priv->kcs_bmc); if (rc) { dev_warn(&pdev->dev, "Failed to register channel %d: %d\n", kcs_bmc->channel, rc); return rc; } dev_info(&pdev->dev, "Initialised channel %d at 0x%x\n", kcs_bmc->channel, addrs[0]); return 0; } static int aspeed_kcs_remove(struct platform_device *pdev) { struct aspeed_kcs_bmc *priv = platform_get_drvdata(pdev); struct kcs_bmc_device *kcs_bmc = &priv->kcs_bmc; kcs_bmc_remove_device(kcs_bmc); aspeed_kcs_enable_channel(kcs_bmc, false); aspeed_kcs_irq_mask_update(kcs_bmc, (KCS_BMC_EVENT_TYPE_IBF | KCS_BMC_EVENT_TYPE_OBE), 0); /* Make sure it's proper dead */ spin_lock_irq(&priv->obe.lock); priv->obe.remove = true; spin_unlock_irq(&priv->obe.lock); del_timer_sync(&priv->obe.timer); return 0; } static const struct of_device_id ast_kcs_bmc_match[] = { { .compatible = "aspeed,ast2400-kcs-bmc-v2" }, { .compatible = "aspeed,ast2500-kcs-bmc-v2" }, { .compatible = "aspeed,ast2600-kcs-bmc" }, { } }; MODULE_DEVICE_TABLE(of, ast_kcs_bmc_match); static struct platform_driver ast_kcs_bmc_driver = { .driver = { .name = DEVICE_NAME, .of_match_table = ast_kcs_bmc_match, }, .probe = aspeed_kcs_probe, .remove = aspeed_kcs_remove, }; module_platform_driver(ast_kcs_bmc_driver); MODULE_LICENSE("GPL v2"); MODULE_AUTHOR("Haiyue Wang <haiyue.wang@linux.intel.com>"); MODULE_AUTHOR("Andrew Jeffery <andrew@aj.id.au>"); MODULE_DESCRIPTION("Aspeed device interface to the KCS BMC device");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1