Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Nikita Shubin | 602 | 100.00% | 1 | 100.00% |
Total | 602 | 1 |
// SPDX-License-Identifier: GPL-2.0 /* * Cirrus Logic EP93xx timer driver. * Copyright (C) 2021 Nikita Shubin <nikita.shubin@maquefel.me> * * Based on a rewrite of arch/arm/mach-ep93xx/timer.c: */ #include <linux/clockchips.h> #include <linux/clocksource.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/io-64-nonatomic-lo-hi.h> #include <linux/irq.h> #include <linux/kernel.h> #include <linux/of_address.h> #include <linux/of_irq.h> #include <linux/sched_clock.h> #include <asm/mach/time.h> /************************************************************************* * Timer handling for EP93xx ************************************************************************* * The ep93xx has four internal timers. Timers 1, 2 (both 16 bit) and * 3 (32 bit) count down at 508 kHz, are self-reloading, and can generate * an interrupt on underflow. Timer 4 (40 bit) counts down at 983.04 kHz, * is free-running, and can't generate interrupts. * * The 508 kHz timers are ideal for use for the timer interrupt, as the * most common values of HZ divide 508 kHz nicely. We pick the 32 bit * timer (timer 3) to get as long sleep intervals as possible when using * CONFIG_NO_HZ. * * The higher clock rate of timer 4 makes it a better choice than the * other timers for use as clock source and for sched_clock(), providing * a stable 40 bit time base. ************************************************************************* */ #define EP93XX_TIMER1_LOAD 0x00 #define EP93XX_TIMER1_VALUE 0x04 #define EP93XX_TIMER1_CONTROL 0x08 #define EP93XX_TIMER123_CONTROL_ENABLE BIT(7) #define EP93XX_TIMER123_CONTROL_MODE BIT(6) #define EP93XX_TIMER123_CONTROL_CLKSEL BIT(3) #define EP93XX_TIMER1_CLEAR 0x0c #define EP93XX_TIMER2_LOAD 0x20 #define EP93XX_TIMER2_VALUE 0x24 #define EP93XX_TIMER2_CONTROL 0x28 #define EP93XX_TIMER2_CLEAR 0x2c /* * This read-only register contains the low word of the time stamp debug timer * ( Timer4). When this register is read, the high byte of the Timer4 counter is * saved in the Timer4ValueHigh register. */ #define EP93XX_TIMER4_VALUE_LOW 0x60 #define EP93XX_TIMER4_VALUE_HIGH 0x64 #define EP93XX_TIMER4_VALUE_HIGH_ENABLE BIT(8) #define EP93XX_TIMER3_LOAD 0x80 #define EP93XX_TIMER3_VALUE 0x84 #define EP93XX_TIMER3_CONTROL 0x88 #define EP93XX_TIMER3_CLEAR 0x8c #define EP93XX_TIMER123_RATE 508469 #define EP93XX_TIMER4_RATE 983040 struct ep93xx_tcu { void __iomem *base; }; static struct ep93xx_tcu *ep93xx_tcu; static u64 ep93xx_clocksource_read(struct clocksource *c) { struct ep93xx_tcu *tcu = ep93xx_tcu; return lo_hi_readq(tcu->base + EP93XX_TIMER4_VALUE_LOW) & GENMASK_ULL(39, 0); } static u64 notrace ep93xx_read_sched_clock(void) { return ep93xx_clocksource_read(NULL); } static int ep93xx_clkevt_set_next_event(unsigned long next, struct clock_event_device *evt) { struct ep93xx_tcu *tcu = ep93xx_tcu; /* Default mode: periodic, off, 508 kHz */ u32 tmode = EP93XX_TIMER123_CONTROL_MODE | EP93XX_TIMER123_CONTROL_CLKSEL; /* Clear timer */ writel(tmode, tcu->base + EP93XX_TIMER3_CONTROL); /* Set next event */ writel(next, tcu->base + EP93XX_TIMER3_LOAD); writel(tmode | EP93XX_TIMER123_CONTROL_ENABLE, tcu->base + EP93XX_TIMER3_CONTROL); return 0; } static int ep93xx_clkevt_shutdown(struct clock_event_device *evt) { struct ep93xx_tcu *tcu = ep93xx_tcu; /* Disable timer */ writel(0, tcu->base + EP93XX_TIMER3_CONTROL); return 0; } static struct clock_event_device ep93xx_clockevent = { .name = "timer1", .features = CLOCK_EVT_FEAT_ONESHOT, .set_state_shutdown = ep93xx_clkevt_shutdown, .set_state_oneshot = ep93xx_clkevt_shutdown, .tick_resume = ep93xx_clkevt_shutdown, .set_next_event = ep93xx_clkevt_set_next_event, .rating = 300, }; static irqreturn_t ep93xx_timer_interrupt(int irq, void *dev_id) { struct ep93xx_tcu *tcu = ep93xx_tcu; struct clock_event_device *evt = dev_id; /* Writing any value clears the timer interrupt */ writel(1, tcu->base + EP93XX_TIMER3_CLEAR); evt->event_handler(evt); return IRQ_HANDLED; } static int __init ep93xx_timer_of_init(struct device_node *np) { int irq; unsigned long flags = IRQF_TIMER | IRQF_IRQPOLL; struct ep93xx_tcu *tcu; int ret; tcu = kzalloc(sizeof(*tcu), GFP_KERNEL); if (!tcu) return -ENOMEM; tcu->base = of_iomap(np, 0); if (!tcu->base) { pr_err("Can't remap registers\n"); ret = -ENXIO; goto out_free; } ep93xx_tcu = tcu; irq = irq_of_parse_and_map(np, 0); if (irq == 0) irq = -EINVAL; if (irq < 0) { pr_err("EP93XX Timer Can't parse IRQ %d", irq); goto out_free; } /* Enable and register clocksource and sched_clock on timer 4 */ writel(EP93XX_TIMER4_VALUE_HIGH_ENABLE, tcu->base + EP93XX_TIMER4_VALUE_HIGH); clocksource_mmio_init(NULL, "timer4", EP93XX_TIMER4_RATE, 200, 40, ep93xx_clocksource_read); sched_clock_register(ep93xx_read_sched_clock, 40, EP93XX_TIMER4_RATE); /* Set up clockevent on timer 3 */ if (request_irq(irq, ep93xx_timer_interrupt, flags, "ep93xx timer", &ep93xx_clockevent)) pr_err("Failed to request irq %d (ep93xx timer)\n", irq); clockevents_config_and_register(&ep93xx_clockevent, EP93XX_TIMER123_RATE, 1, UINT_MAX); return 0; out_free: kfree(tcu); return ret; } TIMER_OF_DECLARE(ep93xx_timer, "cirrus,ep9301-timer", ep93xx_timer_of_init);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1