Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Declan Murphy | 3497 | 71.31% | 1 | 8.33% |
Daniele Alessandrelli | 1157 | 23.59% | 2 | 16.67% |
Herbert Xu | 230 | 4.69% | 2 | 16.67% |
Wei Yongjun | 7 | 0.14% | 1 | 8.33% |
Uwe Kleine-König | 4 | 0.08% | 2 | 16.67% |
Yangtao Li | 3 | 0.06% | 1 | 8.33% |
Kim Phillips | 3 | 0.06% | 1 | 8.33% |
Dan Carpenter | 2 | 0.04% | 1 | 8.33% |
Rob Herring | 1 | 0.02% | 1 | 8.33% |
Total | 4904 | 12 |
// SPDX-License-Identifier: GPL-2.0-only /* * Intel Keem Bay OCS HCU Crypto Driver. * * Copyright (C) 2018-2020 Intel Corporation */ #include <crypto/engine.h> #include <crypto/hmac.h> #include <crypto/internal/hash.h> #include <crypto/scatterwalk.h> #include <crypto/sha2.h> #include <crypto/sm3.h> #include <linux/completion.h> #include <linux/dma-mapping.h> #include <linux/err.h> #include <linux/interrupt.h> #include <linux/kernel.h> #include <linux/mod_devicetable.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/string.h> #include "ocs-hcu.h" #define DRV_NAME "keembay-ocs-hcu" /* Flag marking a final request. */ #define REQ_FINAL BIT(0) /* Flag marking a HMAC request. */ #define REQ_FLAGS_HMAC BIT(1) /* Flag set when HW HMAC is being used. */ #define REQ_FLAGS_HMAC_HW BIT(2) /* Flag set when SW HMAC is being used. */ #define REQ_FLAGS_HMAC_SW BIT(3) /** * struct ocs_hcu_ctx: OCS HCU Transform context. * @hcu_dev: The OCS HCU device used by the transformation. * @key: The key (used only for HMAC transformations). * @key_len: The length of the key. * @is_sm3_tfm: Whether or not this is an SM3 transformation. * @is_hmac_tfm: Whether or not this is a HMAC transformation. */ struct ocs_hcu_ctx { struct ocs_hcu_dev *hcu_dev; u8 key[SHA512_BLOCK_SIZE]; size_t key_len; bool is_sm3_tfm; bool is_hmac_tfm; }; /** * struct ocs_hcu_rctx - Context for the request. * @hcu_dev: OCS HCU device to be used to service the request. * @flags: Flags tracking request status. * @algo: Algorithm to use for the request. * @blk_sz: Block size of the transformation / request. * @dig_sz: Digest size of the transformation / request. * @dma_list: OCS DMA linked list. * @hash_ctx: OCS HCU hashing context. * @buffer: Buffer to store: partial block of data and SW HMAC * artifacts (ipad, opad, etc.). * @buf_cnt: Number of bytes currently stored in the buffer. * @buf_dma_addr: The DMA address of @buffer (when mapped). * @buf_dma_count: The number of bytes in @buffer currently DMA-mapped. * @sg: Head of the scatterlist entries containing data. * @sg_data_total: Total data in the SG list at any time. * @sg_data_offset: Offset into the data of the current individual SG node. * @sg_dma_nents: Number of sg entries mapped in dma_list. */ struct ocs_hcu_rctx { struct ocs_hcu_dev *hcu_dev; u32 flags; enum ocs_hcu_algo algo; size_t blk_sz; size_t dig_sz; struct ocs_hcu_dma_list *dma_list; struct ocs_hcu_hash_ctx hash_ctx; /* * Buffer is double the block size because we need space for SW HMAC * artifacts, i.e: * - ipad (1 block) + a possible partial block of data. * - opad (1 block) + digest of H(k ^ ipad || m) */ u8 buffer[2 * SHA512_BLOCK_SIZE]; size_t buf_cnt; dma_addr_t buf_dma_addr; size_t buf_dma_count; struct scatterlist *sg; unsigned int sg_data_total; unsigned int sg_data_offset; unsigned int sg_dma_nents; }; /** * struct ocs_hcu_drv - Driver data * @dev_list: The list of HCU devices. * @lock: The lock protecting dev_list. */ struct ocs_hcu_drv { struct list_head dev_list; spinlock_t lock; /* Protects dev_list. */ }; static struct ocs_hcu_drv ocs_hcu = { .dev_list = LIST_HEAD_INIT(ocs_hcu.dev_list), .lock = __SPIN_LOCK_UNLOCKED(ocs_hcu.lock), }; /* * Return the total amount of data in the request; that is: the data in the * request buffer + the data in the sg list. */ static inline unsigned int kmb_get_total_data(struct ocs_hcu_rctx *rctx) { return rctx->sg_data_total + rctx->buf_cnt; } /* Move remaining content of scatter-gather list to context buffer. */ static int flush_sg_to_ocs_buffer(struct ocs_hcu_rctx *rctx) { size_t count; if (rctx->sg_data_total > (sizeof(rctx->buffer) - rctx->buf_cnt)) { WARN(1, "%s: sg data does not fit in buffer\n", __func__); return -EINVAL; } while (rctx->sg_data_total) { if (!rctx->sg) { WARN(1, "%s: unexpected NULL sg\n", __func__); return -EINVAL; } /* * If current sg has been fully processed, skip to the next * one. */ if (rctx->sg_data_offset == rctx->sg->length) { rctx->sg = sg_next(rctx->sg); rctx->sg_data_offset = 0; continue; } /* * Determine the maximum data available to copy from the node. * Minimum of the length left in the sg node, or the total data * in the request. */ count = min(rctx->sg->length - rctx->sg_data_offset, rctx->sg_data_total); /* Copy from scatter-list entry to context buffer. */ scatterwalk_map_and_copy(&rctx->buffer[rctx->buf_cnt], rctx->sg, rctx->sg_data_offset, count, 0); rctx->sg_data_offset += count; rctx->sg_data_total -= count; rctx->buf_cnt += count; } return 0; } static struct ocs_hcu_dev *kmb_ocs_hcu_find_dev(struct ahash_request *req) { struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct ocs_hcu_ctx *tctx = crypto_ahash_ctx(tfm); /* If the HCU device for the request was previously set, return it. */ if (tctx->hcu_dev) return tctx->hcu_dev; /* * Otherwise, get the first HCU device available (there should be one * and only one device). */ spin_lock_bh(&ocs_hcu.lock); tctx->hcu_dev = list_first_entry_or_null(&ocs_hcu.dev_list, struct ocs_hcu_dev, list); spin_unlock_bh(&ocs_hcu.lock); return tctx->hcu_dev; } /* Free OCS DMA linked list and DMA-able context buffer. */ static void kmb_ocs_hcu_dma_cleanup(struct ahash_request *req, struct ocs_hcu_rctx *rctx) { struct ocs_hcu_dev *hcu_dev = rctx->hcu_dev; struct device *dev = hcu_dev->dev; /* Unmap rctx->buffer (if mapped). */ if (rctx->buf_dma_count) { dma_unmap_single(dev, rctx->buf_dma_addr, rctx->buf_dma_count, DMA_TO_DEVICE); rctx->buf_dma_count = 0; } /* Unmap req->src (if mapped). */ if (rctx->sg_dma_nents) { dma_unmap_sg(dev, req->src, rctx->sg_dma_nents, DMA_TO_DEVICE); rctx->sg_dma_nents = 0; } /* Free dma_list (if allocated). */ if (rctx->dma_list) { ocs_hcu_dma_list_free(hcu_dev, rctx->dma_list); rctx->dma_list = NULL; } } /* * Prepare for DMA operation: * - DMA-map request context buffer (if needed) * - DMA-map SG list (only the entries to be processed, see note below) * - Allocate OCS HCU DMA linked list (number of elements = SG entries to * process + context buffer (if not empty)). * - Add DMA-mapped request context buffer to OCS HCU DMA list. * - Add SG entries to DMA list. * * Note: if this is a final request, we process all the data in the SG list, * otherwise we can only process up to the maximum amount of block-aligned data * (the remainder will be put into the context buffer and processed in the next * request). */ static int kmb_ocs_dma_prepare(struct ahash_request *req) { struct ocs_hcu_rctx *rctx = ahash_request_ctx_dma(req); struct device *dev = rctx->hcu_dev->dev; unsigned int remainder = 0; unsigned int total; size_t nents; size_t count; int rc; int i; /* This function should be called only when there is data to process. */ total = kmb_get_total_data(rctx); if (!total) return -EINVAL; /* * If this is not a final DMA (terminated DMA), the data passed to the * HCU must be aligned to the block size; compute the remainder data to * be processed in the next request. */ if (!(rctx->flags & REQ_FINAL)) remainder = total % rctx->blk_sz; /* Determine the number of scatter gather list entries to process. */ nents = sg_nents_for_len(req->src, rctx->sg_data_total - remainder); /* If there are entries to process, map them. */ if (nents) { rctx->sg_dma_nents = dma_map_sg(dev, req->src, nents, DMA_TO_DEVICE); if (!rctx->sg_dma_nents) { dev_err(dev, "Failed to MAP SG\n"); rc = -ENOMEM; goto cleanup; } /* * The value returned by dma_map_sg() can be < nents; so update * nents accordingly. */ nents = rctx->sg_dma_nents; } /* * If context buffer is not empty, map it and add extra DMA entry for * it. */ if (rctx->buf_cnt) { rctx->buf_dma_addr = dma_map_single(dev, rctx->buffer, rctx->buf_cnt, DMA_TO_DEVICE); if (dma_mapping_error(dev, rctx->buf_dma_addr)) { dev_err(dev, "Failed to map request context buffer\n"); rc = -ENOMEM; goto cleanup; } rctx->buf_dma_count = rctx->buf_cnt; /* Increase number of dma entries. */ nents++; } /* Allocate OCS HCU DMA list. */ rctx->dma_list = ocs_hcu_dma_list_alloc(rctx->hcu_dev, nents); if (!rctx->dma_list) { rc = -ENOMEM; goto cleanup; } /* Add request context buffer (if previously DMA-mapped) */ if (rctx->buf_dma_count) { rc = ocs_hcu_dma_list_add_tail(rctx->hcu_dev, rctx->dma_list, rctx->buf_dma_addr, rctx->buf_dma_count); if (rc) goto cleanup; } /* Add the SG nodes to be processed to the DMA linked list. */ for_each_sg(req->src, rctx->sg, rctx->sg_dma_nents, i) { /* * The number of bytes to add to the list entry is the minimum * between: * - The DMA length of the SG entry. * - The data left to be processed. */ count = min(rctx->sg_data_total - remainder, sg_dma_len(rctx->sg) - rctx->sg_data_offset); /* * Do not create a zero length DMA descriptor. Check in case of * zero length SG node. */ if (count == 0) continue; /* Add sg to HCU DMA list. */ rc = ocs_hcu_dma_list_add_tail(rctx->hcu_dev, rctx->dma_list, rctx->sg->dma_address, count); if (rc) goto cleanup; /* Update amount of data remaining in SG list. */ rctx->sg_data_total -= count; /* * If remaining data is equal to remainder (note: 'less than' * case should never happen in practice), we are done: update * offset and exit the loop. */ if (rctx->sg_data_total <= remainder) { WARN_ON(rctx->sg_data_total < remainder); rctx->sg_data_offset += count; break; } /* * If we get here is because we need to process the next sg in * the list; set offset within the sg to 0. */ rctx->sg_data_offset = 0; } return 0; cleanup: dev_err(dev, "Failed to prepare DMA.\n"); kmb_ocs_hcu_dma_cleanup(req, rctx); return rc; } static void kmb_ocs_hcu_secure_cleanup(struct ahash_request *req) { struct ocs_hcu_rctx *rctx = ahash_request_ctx_dma(req); /* Clear buffer of any data. */ memzero_explicit(rctx->buffer, sizeof(rctx->buffer)); } static int kmb_ocs_hcu_handle_queue(struct ahash_request *req) { struct ocs_hcu_dev *hcu_dev = kmb_ocs_hcu_find_dev(req); if (!hcu_dev) return -ENOENT; return crypto_transfer_hash_request_to_engine(hcu_dev->engine, req); } static int prepare_ipad(struct ahash_request *req) { struct ocs_hcu_rctx *rctx = ahash_request_ctx_dma(req); struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct ocs_hcu_ctx *ctx = crypto_ahash_ctx(tfm); int i; WARN(rctx->buf_cnt, "%s: Context buffer is not empty\n", __func__); WARN(!(rctx->flags & REQ_FLAGS_HMAC_SW), "%s: HMAC_SW flag is not set\n", __func__); /* * Key length must be equal to block size. If key is shorter, * we pad it with zero (note: key cannot be longer, since * longer keys are hashed by kmb_ocs_hcu_setkey()). */ if (ctx->key_len > rctx->blk_sz) { WARN(1, "%s: Invalid key length in tfm context\n", __func__); return -EINVAL; } memzero_explicit(&ctx->key[ctx->key_len], rctx->blk_sz - ctx->key_len); ctx->key_len = rctx->blk_sz; /* * Prepare IPAD for HMAC. Only done for first block. * HMAC(k,m) = H(k ^ opad || H(k ^ ipad || m)) * k ^ ipad will be first hashed block. * k ^ opad will be calculated in the final request. * Only needed if not using HW HMAC. */ for (i = 0; i < rctx->blk_sz; i++) rctx->buffer[i] = ctx->key[i] ^ HMAC_IPAD_VALUE; rctx->buf_cnt = rctx->blk_sz; return 0; } static int kmb_ocs_hcu_do_one_request(struct crypto_engine *engine, void *areq) { struct ahash_request *req = container_of(areq, struct ahash_request, base); struct ocs_hcu_dev *hcu_dev = kmb_ocs_hcu_find_dev(req); struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct ocs_hcu_rctx *rctx = ahash_request_ctx_dma(req); struct ocs_hcu_ctx *tctx = crypto_ahash_ctx(tfm); int rc; int i; if (!hcu_dev) { rc = -ENOENT; goto error; } /* * If hardware HMAC flag is set, perform HMAC in hardware. * * NOTE: this flag implies REQ_FINAL && kmb_get_total_data(rctx) */ if (rctx->flags & REQ_FLAGS_HMAC_HW) { /* Map input data into the HCU DMA linked list. */ rc = kmb_ocs_dma_prepare(req); if (rc) goto error; rc = ocs_hcu_hmac(hcu_dev, rctx->algo, tctx->key, tctx->key_len, rctx->dma_list, req->result, rctx->dig_sz); /* Unmap data and free DMA list regardless of return code. */ kmb_ocs_hcu_dma_cleanup(req, rctx); /* Process previous return code. */ if (rc) goto error; goto done; } /* Handle update request case. */ if (!(rctx->flags & REQ_FINAL)) { /* Update should always have input data. */ if (!kmb_get_total_data(rctx)) return -EINVAL; /* Map input data into the HCU DMA linked list. */ rc = kmb_ocs_dma_prepare(req); if (rc) goto error; /* Do hashing step. */ rc = ocs_hcu_hash_update(hcu_dev, &rctx->hash_ctx, rctx->dma_list); /* Unmap data and free DMA list regardless of return code. */ kmb_ocs_hcu_dma_cleanup(req, rctx); /* Process previous return code. */ if (rc) goto error; /* * Reset request buffer count (data in the buffer was just * processed). */ rctx->buf_cnt = 0; /* * Move remaining sg data into the request buffer, so that it * will be processed during the next request. * * NOTE: we have remaining data if kmb_get_total_data() was not * a multiple of block size. */ rc = flush_sg_to_ocs_buffer(rctx); if (rc) goto error; goto done; } /* If we get here, this is a final request. */ /* If there is data to process, use finup. */ if (kmb_get_total_data(rctx)) { /* Map input data into the HCU DMA linked list. */ rc = kmb_ocs_dma_prepare(req); if (rc) goto error; /* Do hashing step. */ rc = ocs_hcu_hash_finup(hcu_dev, &rctx->hash_ctx, rctx->dma_list, req->result, rctx->dig_sz); /* Free DMA list regardless of return code. */ kmb_ocs_hcu_dma_cleanup(req, rctx); /* Process previous return code. */ if (rc) goto error; } else { /* Otherwise (if we have no data), use final. */ rc = ocs_hcu_hash_final(hcu_dev, &rctx->hash_ctx, req->result, rctx->dig_sz); if (rc) goto error; } /* * If we are finalizing a SW HMAC request, we just computed the result * of: H(k ^ ipad || m). * * We now need to complete the HMAC calculation with the OPAD step, * that is, we need to compute H(k ^ opad || digest), where digest is * the digest we just obtained, i.e., H(k ^ ipad || m). */ if (rctx->flags & REQ_FLAGS_HMAC_SW) { /* * Compute k ^ opad and store it in the request buffer (which * is not used anymore at this point). * Note: key has been padded / hashed already (so keylen == * blksz) . */ WARN_ON(tctx->key_len != rctx->blk_sz); for (i = 0; i < rctx->blk_sz; i++) rctx->buffer[i] = tctx->key[i] ^ HMAC_OPAD_VALUE; /* Now append the digest to the rest of the buffer. */ for (i = 0; (i < rctx->dig_sz); i++) rctx->buffer[rctx->blk_sz + i] = req->result[i]; /* Now hash the buffer to obtain the final HMAC. */ rc = ocs_hcu_digest(hcu_dev, rctx->algo, rctx->buffer, rctx->blk_sz + rctx->dig_sz, req->result, rctx->dig_sz); if (rc) goto error; } /* Perform secure clean-up. */ kmb_ocs_hcu_secure_cleanup(req); done: crypto_finalize_hash_request(hcu_dev->engine, req, 0); return 0; error: kmb_ocs_hcu_secure_cleanup(req); return rc; } static int kmb_ocs_hcu_init(struct ahash_request *req) { struct ocs_hcu_dev *hcu_dev = kmb_ocs_hcu_find_dev(req); struct ocs_hcu_rctx *rctx = ahash_request_ctx_dma(req); struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct ocs_hcu_ctx *ctx = crypto_ahash_ctx(tfm); if (!hcu_dev) return -ENOENT; /* Initialize entire request context to zero. */ memset(rctx, 0, sizeof(*rctx)); rctx->hcu_dev = hcu_dev; rctx->dig_sz = crypto_ahash_digestsize(tfm); switch (rctx->dig_sz) { #ifdef CONFIG_CRYPTO_DEV_KEEMBAY_OCS_HCU_HMAC_SHA224 case SHA224_DIGEST_SIZE: rctx->blk_sz = SHA224_BLOCK_SIZE; rctx->algo = OCS_HCU_ALGO_SHA224; break; #endif /* CONFIG_CRYPTO_DEV_KEEMBAY_OCS_HCU_HMAC_SHA224 */ case SHA256_DIGEST_SIZE: rctx->blk_sz = SHA256_BLOCK_SIZE; /* * SHA256 and SM3 have the same digest size: use info from tfm * context to find out which one we should use. */ rctx->algo = ctx->is_sm3_tfm ? OCS_HCU_ALGO_SM3 : OCS_HCU_ALGO_SHA256; break; case SHA384_DIGEST_SIZE: rctx->blk_sz = SHA384_BLOCK_SIZE; rctx->algo = OCS_HCU_ALGO_SHA384; break; case SHA512_DIGEST_SIZE: rctx->blk_sz = SHA512_BLOCK_SIZE; rctx->algo = OCS_HCU_ALGO_SHA512; break; default: return -EINVAL; } /* Initialize intermediate data. */ ocs_hcu_hash_init(&rctx->hash_ctx, rctx->algo); /* If this a HMAC request, set HMAC flag. */ if (ctx->is_hmac_tfm) rctx->flags |= REQ_FLAGS_HMAC; return 0; } static int kmb_ocs_hcu_update(struct ahash_request *req) { struct ocs_hcu_rctx *rctx = ahash_request_ctx_dma(req); int rc; if (!req->nbytes) return 0; rctx->sg_data_total = req->nbytes; rctx->sg_data_offset = 0; rctx->sg = req->src; /* * If we are doing HMAC, then we must use SW-assisted HMAC, since HW * HMAC does not support context switching (there it can only be used * with finup() or digest()). */ if (rctx->flags & REQ_FLAGS_HMAC && !(rctx->flags & REQ_FLAGS_HMAC_SW)) { rctx->flags |= REQ_FLAGS_HMAC_SW; rc = prepare_ipad(req); if (rc) return rc; } /* * If remaining sg_data fits into ctx buffer, just copy it there; we'll * process it at the next update() or final(). */ if (rctx->sg_data_total <= (sizeof(rctx->buffer) - rctx->buf_cnt)) return flush_sg_to_ocs_buffer(rctx); return kmb_ocs_hcu_handle_queue(req); } /* Common logic for kmb_ocs_hcu_final() and kmb_ocs_hcu_finup(). */ static int kmb_ocs_hcu_fin_common(struct ahash_request *req) { struct ocs_hcu_rctx *rctx = ahash_request_ctx_dma(req); struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct ocs_hcu_ctx *ctx = crypto_ahash_ctx(tfm); int rc; rctx->flags |= REQ_FINAL; /* * If this is a HMAC request and, so far, we didn't have to switch to * SW HMAC, check if we can use HW HMAC. */ if (rctx->flags & REQ_FLAGS_HMAC && !(rctx->flags & REQ_FLAGS_HMAC_SW)) { /* * If we are here, it means we never processed any data so far, * so we can use HW HMAC, but only if there is some data to * process (since OCS HW MAC does not support zero-length * messages) and the key length is supported by the hardware * (OCS HCU HW only supports length <= 64); if HW HMAC cannot * be used, fall back to SW-assisted HMAC. */ if (kmb_get_total_data(rctx) && ctx->key_len <= OCS_HCU_HW_KEY_LEN) { rctx->flags |= REQ_FLAGS_HMAC_HW; } else { rctx->flags |= REQ_FLAGS_HMAC_SW; rc = prepare_ipad(req); if (rc) return rc; } } return kmb_ocs_hcu_handle_queue(req); } static int kmb_ocs_hcu_final(struct ahash_request *req) { struct ocs_hcu_rctx *rctx = ahash_request_ctx_dma(req); rctx->sg_data_total = 0; rctx->sg_data_offset = 0; rctx->sg = NULL; return kmb_ocs_hcu_fin_common(req); } static int kmb_ocs_hcu_finup(struct ahash_request *req) { struct ocs_hcu_rctx *rctx = ahash_request_ctx_dma(req); rctx->sg_data_total = req->nbytes; rctx->sg_data_offset = 0; rctx->sg = req->src; return kmb_ocs_hcu_fin_common(req); } static int kmb_ocs_hcu_digest(struct ahash_request *req) { int rc = 0; struct ocs_hcu_dev *hcu_dev = kmb_ocs_hcu_find_dev(req); if (!hcu_dev) return -ENOENT; rc = kmb_ocs_hcu_init(req); if (rc) return rc; rc = kmb_ocs_hcu_finup(req); return rc; } static int kmb_ocs_hcu_export(struct ahash_request *req, void *out) { struct ocs_hcu_rctx *rctx = ahash_request_ctx_dma(req); /* Intermediate data is always stored and applied per request. */ memcpy(out, rctx, sizeof(*rctx)); return 0; } static int kmb_ocs_hcu_import(struct ahash_request *req, const void *in) { struct ocs_hcu_rctx *rctx = ahash_request_ctx_dma(req); /* Intermediate data is always stored and applied per request. */ memcpy(rctx, in, sizeof(*rctx)); return 0; } static int kmb_ocs_hcu_setkey(struct crypto_ahash *tfm, const u8 *key, unsigned int keylen) { unsigned int digestsize = crypto_ahash_digestsize(tfm); struct ocs_hcu_ctx *ctx = crypto_ahash_ctx(tfm); size_t blk_sz = crypto_ahash_blocksize(tfm); struct crypto_ahash *ahash_tfm; struct ahash_request *req; struct crypto_wait wait; struct scatterlist sg; const char *alg_name; int rc; /* * Key length must be equal to block size: * - If key is shorter, we are done for now (the key will be padded * later on); this is to maximize the use of HW HMAC (which works * only for keys <= 64 bytes). * - If key is longer, we hash it. */ if (keylen <= blk_sz) { memcpy(ctx->key, key, keylen); ctx->key_len = keylen; return 0; } switch (digestsize) { #ifdef CONFIG_CRYPTO_DEV_KEEMBAY_OCS_HCU_HMAC_SHA224 case SHA224_DIGEST_SIZE: alg_name = "sha224-keembay-ocs"; break; #endif /* CONFIG_CRYPTO_DEV_KEEMBAY_OCS_HCU_HMAC_SHA224 */ case SHA256_DIGEST_SIZE: alg_name = ctx->is_sm3_tfm ? "sm3-keembay-ocs" : "sha256-keembay-ocs"; break; case SHA384_DIGEST_SIZE: alg_name = "sha384-keembay-ocs"; break; case SHA512_DIGEST_SIZE: alg_name = "sha512-keembay-ocs"; break; default: return -EINVAL; } ahash_tfm = crypto_alloc_ahash(alg_name, 0, 0); if (IS_ERR(ahash_tfm)) return PTR_ERR(ahash_tfm); req = ahash_request_alloc(ahash_tfm, GFP_KERNEL); if (!req) { rc = -ENOMEM; goto err_free_ahash; } crypto_init_wait(&wait); ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG, crypto_req_done, &wait); crypto_ahash_clear_flags(ahash_tfm, ~0); sg_init_one(&sg, key, keylen); ahash_request_set_crypt(req, &sg, ctx->key, keylen); rc = crypto_wait_req(crypto_ahash_digest(req), &wait); if (rc == 0) ctx->key_len = digestsize; ahash_request_free(req); err_free_ahash: crypto_free_ahash(ahash_tfm); return rc; } /* Set request size and initialize tfm context. */ static void __cra_init(struct crypto_tfm *tfm, struct ocs_hcu_ctx *ctx) { crypto_ahash_set_reqsize_dma(__crypto_ahash_cast(tfm), sizeof(struct ocs_hcu_rctx)); } static int kmb_ocs_hcu_sha_cra_init(struct crypto_tfm *tfm) { struct ocs_hcu_ctx *ctx = crypto_tfm_ctx(tfm); __cra_init(tfm, ctx); return 0; } static int kmb_ocs_hcu_sm3_cra_init(struct crypto_tfm *tfm) { struct ocs_hcu_ctx *ctx = crypto_tfm_ctx(tfm); __cra_init(tfm, ctx); ctx->is_sm3_tfm = true; return 0; } static int kmb_ocs_hcu_hmac_sm3_cra_init(struct crypto_tfm *tfm) { struct ocs_hcu_ctx *ctx = crypto_tfm_ctx(tfm); __cra_init(tfm, ctx); ctx->is_sm3_tfm = true; ctx->is_hmac_tfm = true; return 0; } static int kmb_ocs_hcu_hmac_cra_init(struct crypto_tfm *tfm) { struct ocs_hcu_ctx *ctx = crypto_tfm_ctx(tfm); __cra_init(tfm, ctx); ctx->is_hmac_tfm = true; return 0; } /* Function called when 'tfm' is de-initialized. */ static void kmb_ocs_hcu_hmac_cra_exit(struct crypto_tfm *tfm) { struct ocs_hcu_ctx *ctx = crypto_tfm_ctx(tfm); /* Clear the key. */ memzero_explicit(ctx->key, sizeof(ctx->key)); } static struct ahash_engine_alg ocs_hcu_algs[] = { #ifdef CONFIG_CRYPTO_DEV_KEEMBAY_OCS_HCU_HMAC_SHA224 { .base.init = kmb_ocs_hcu_init, .base.update = kmb_ocs_hcu_update, .base.final = kmb_ocs_hcu_final, .base.finup = kmb_ocs_hcu_finup, .base.digest = kmb_ocs_hcu_digest, .base.export = kmb_ocs_hcu_export, .base.import = kmb_ocs_hcu_import, .base.halg = { .digestsize = SHA224_DIGEST_SIZE, .statesize = sizeof(struct ocs_hcu_rctx), .base = { .cra_name = "sha224", .cra_driver_name = "sha224-keembay-ocs", .cra_priority = 255, .cra_flags = CRYPTO_ALG_ASYNC, .cra_blocksize = SHA224_BLOCK_SIZE, .cra_ctxsize = sizeof(struct ocs_hcu_ctx), .cra_alignmask = 0, .cra_module = THIS_MODULE, .cra_init = kmb_ocs_hcu_sha_cra_init, } }, .op.do_one_request = kmb_ocs_hcu_do_one_request, }, { .base.init = kmb_ocs_hcu_init, .base.update = kmb_ocs_hcu_update, .base.final = kmb_ocs_hcu_final, .base.finup = kmb_ocs_hcu_finup, .base.digest = kmb_ocs_hcu_digest, .base.export = kmb_ocs_hcu_export, .base.import = kmb_ocs_hcu_import, .base.setkey = kmb_ocs_hcu_setkey, .base.halg = { .digestsize = SHA224_DIGEST_SIZE, .statesize = sizeof(struct ocs_hcu_rctx), .base = { .cra_name = "hmac(sha224)", .cra_driver_name = "hmac-sha224-keembay-ocs", .cra_priority = 255, .cra_flags = CRYPTO_ALG_ASYNC, .cra_blocksize = SHA224_BLOCK_SIZE, .cra_ctxsize = sizeof(struct ocs_hcu_ctx), .cra_alignmask = 0, .cra_module = THIS_MODULE, .cra_init = kmb_ocs_hcu_hmac_cra_init, .cra_exit = kmb_ocs_hcu_hmac_cra_exit, } }, .op.do_one_request = kmb_ocs_hcu_do_one_request, }, #endif /* CONFIG_CRYPTO_DEV_KEEMBAY_OCS_HCU_HMAC_SHA224 */ { .base.init = kmb_ocs_hcu_init, .base.update = kmb_ocs_hcu_update, .base.final = kmb_ocs_hcu_final, .base.finup = kmb_ocs_hcu_finup, .base.digest = kmb_ocs_hcu_digest, .base.export = kmb_ocs_hcu_export, .base.import = kmb_ocs_hcu_import, .base.halg = { .digestsize = SHA256_DIGEST_SIZE, .statesize = sizeof(struct ocs_hcu_rctx), .base = { .cra_name = "sha256", .cra_driver_name = "sha256-keembay-ocs", .cra_priority = 255, .cra_flags = CRYPTO_ALG_ASYNC, .cra_blocksize = SHA256_BLOCK_SIZE, .cra_ctxsize = sizeof(struct ocs_hcu_ctx), .cra_alignmask = 0, .cra_module = THIS_MODULE, .cra_init = kmb_ocs_hcu_sha_cra_init, } }, .op.do_one_request = kmb_ocs_hcu_do_one_request, }, { .base.init = kmb_ocs_hcu_init, .base.update = kmb_ocs_hcu_update, .base.final = kmb_ocs_hcu_final, .base.finup = kmb_ocs_hcu_finup, .base.digest = kmb_ocs_hcu_digest, .base.export = kmb_ocs_hcu_export, .base.import = kmb_ocs_hcu_import, .base.setkey = kmb_ocs_hcu_setkey, .base.halg = { .digestsize = SHA256_DIGEST_SIZE, .statesize = sizeof(struct ocs_hcu_rctx), .base = { .cra_name = "hmac(sha256)", .cra_driver_name = "hmac-sha256-keembay-ocs", .cra_priority = 255, .cra_flags = CRYPTO_ALG_ASYNC, .cra_blocksize = SHA256_BLOCK_SIZE, .cra_ctxsize = sizeof(struct ocs_hcu_ctx), .cra_alignmask = 0, .cra_module = THIS_MODULE, .cra_init = kmb_ocs_hcu_hmac_cra_init, .cra_exit = kmb_ocs_hcu_hmac_cra_exit, } }, .op.do_one_request = kmb_ocs_hcu_do_one_request, }, { .base.init = kmb_ocs_hcu_init, .base.update = kmb_ocs_hcu_update, .base.final = kmb_ocs_hcu_final, .base.finup = kmb_ocs_hcu_finup, .base.digest = kmb_ocs_hcu_digest, .base.export = kmb_ocs_hcu_export, .base.import = kmb_ocs_hcu_import, .base.halg = { .digestsize = SM3_DIGEST_SIZE, .statesize = sizeof(struct ocs_hcu_rctx), .base = { .cra_name = "sm3", .cra_driver_name = "sm3-keembay-ocs", .cra_priority = 255, .cra_flags = CRYPTO_ALG_ASYNC, .cra_blocksize = SM3_BLOCK_SIZE, .cra_ctxsize = sizeof(struct ocs_hcu_ctx), .cra_alignmask = 0, .cra_module = THIS_MODULE, .cra_init = kmb_ocs_hcu_sm3_cra_init, } }, .op.do_one_request = kmb_ocs_hcu_do_one_request, }, { .base.init = kmb_ocs_hcu_init, .base.update = kmb_ocs_hcu_update, .base.final = kmb_ocs_hcu_final, .base.finup = kmb_ocs_hcu_finup, .base.digest = kmb_ocs_hcu_digest, .base.export = kmb_ocs_hcu_export, .base.import = kmb_ocs_hcu_import, .base.setkey = kmb_ocs_hcu_setkey, .base.halg = { .digestsize = SM3_DIGEST_SIZE, .statesize = sizeof(struct ocs_hcu_rctx), .base = { .cra_name = "hmac(sm3)", .cra_driver_name = "hmac-sm3-keembay-ocs", .cra_priority = 255, .cra_flags = CRYPTO_ALG_ASYNC, .cra_blocksize = SM3_BLOCK_SIZE, .cra_ctxsize = sizeof(struct ocs_hcu_ctx), .cra_alignmask = 0, .cra_module = THIS_MODULE, .cra_init = kmb_ocs_hcu_hmac_sm3_cra_init, .cra_exit = kmb_ocs_hcu_hmac_cra_exit, } }, .op.do_one_request = kmb_ocs_hcu_do_one_request, }, { .base.init = kmb_ocs_hcu_init, .base.update = kmb_ocs_hcu_update, .base.final = kmb_ocs_hcu_final, .base.finup = kmb_ocs_hcu_finup, .base.digest = kmb_ocs_hcu_digest, .base.export = kmb_ocs_hcu_export, .base.import = kmb_ocs_hcu_import, .base.halg = { .digestsize = SHA384_DIGEST_SIZE, .statesize = sizeof(struct ocs_hcu_rctx), .base = { .cra_name = "sha384", .cra_driver_name = "sha384-keembay-ocs", .cra_priority = 255, .cra_flags = CRYPTO_ALG_ASYNC, .cra_blocksize = SHA384_BLOCK_SIZE, .cra_ctxsize = sizeof(struct ocs_hcu_ctx), .cra_alignmask = 0, .cra_module = THIS_MODULE, .cra_init = kmb_ocs_hcu_sha_cra_init, } }, .op.do_one_request = kmb_ocs_hcu_do_one_request, }, { .base.init = kmb_ocs_hcu_init, .base.update = kmb_ocs_hcu_update, .base.final = kmb_ocs_hcu_final, .base.finup = kmb_ocs_hcu_finup, .base.digest = kmb_ocs_hcu_digest, .base.export = kmb_ocs_hcu_export, .base.import = kmb_ocs_hcu_import, .base.setkey = kmb_ocs_hcu_setkey, .base.halg = { .digestsize = SHA384_DIGEST_SIZE, .statesize = sizeof(struct ocs_hcu_rctx), .base = { .cra_name = "hmac(sha384)", .cra_driver_name = "hmac-sha384-keembay-ocs", .cra_priority = 255, .cra_flags = CRYPTO_ALG_ASYNC, .cra_blocksize = SHA384_BLOCK_SIZE, .cra_ctxsize = sizeof(struct ocs_hcu_ctx), .cra_alignmask = 0, .cra_module = THIS_MODULE, .cra_init = kmb_ocs_hcu_hmac_cra_init, .cra_exit = kmb_ocs_hcu_hmac_cra_exit, } }, .op.do_one_request = kmb_ocs_hcu_do_one_request, }, { .base.init = kmb_ocs_hcu_init, .base.update = kmb_ocs_hcu_update, .base.final = kmb_ocs_hcu_final, .base.finup = kmb_ocs_hcu_finup, .base.digest = kmb_ocs_hcu_digest, .base.export = kmb_ocs_hcu_export, .base.import = kmb_ocs_hcu_import, .base.halg = { .digestsize = SHA512_DIGEST_SIZE, .statesize = sizeof(struct ocs_hcu_rctx), .base = { .cra_name = "sha512", .cra_driver_name = "sha512-keembay-ocs", .cra_priority = 255, .cra_flags = CRYPTO_ALG_ASYNC, .cra_blocksize = SHA512_BLOCK_SIZE, .cra_ctxsize = sizeof(struct ocs_hcu_ctx), .cra_alignmask = 0, .cra_module = THIS_MODULE, .cra_init = kmb_ocs_hcu_sha_cra_init, } }, .op.do_one_request = kmb_ocs_hcu_do_one_request, }, { .base.init = kmb_ocs_hcu_init, .base.update = kmb_ocs_hcu_update, .base.final = kmb_ocs_hcu_final, .base.finup = kmb_ocs_hcu_finup, .base.digest = kmb_ocs_hcu_digest, .base.export = kmb_ocs_hcu_export, .base.import = kmb_ocs_hcu_import, .base.setkey = kmb_ocs_hcu_setkey, .base.halg = { .digestsize = SHA512_DIGEST_SIZE, .statesize = sizeof(struct ocs_hcu_rctx), .base = { .cra_name = "hmac(sha512)", .cra_driver_name = "hmac-sha512-keembay-ocs", .cra_priority = 255, .cra_flags = CRYPTO_ALG_ASYNC, .cra_blocksize = SHA512_BLOCK_SIZE, .cra_ctxsize = sizeof(struct ocs_hcu_ctx), .cra_alignmask = 0, .cra_module = THIS_MODULE, .cra_init = kmb_ocs_hcu_hmac_cra_init, .cra_exit = kmb_ocs_hcu_hmac_cra_exit, } }, .op.do_one_request = kmb_ocs_hcu_do_one_request, }, }; /* Device tree driver match. */ static const struct of_device_id kmb_ocs_hcu_of_match[] = { { .compatible = "intel,keembay-ocs-hcu", }, {} }; static void kmb_ocs_hcu_remove(struct platform_device *pdev) { struct ocs_hcu_dev *hcu_dev = platform_get_drvdata(pdev); crypto_engine_unregister_ahashes(ocs_hcu_algs, ARRAY_SIZE(ocs_hcu_algs)); crypto_engine_exit(hcu_dev->engine); spin_lock_bh(&ocs_hcu.lock); list_del(&hcu_dev->list); spin_unlock_bh(&ocs_hcu.lock); } static int kmb_ocs_hcu_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct ocs_hcu_dev *hcu_dev; int rc; hcu_dev = devm_kzalloc(dev, sizeof(*hcu_dev), GFP_KERNEL); if (!hcu_dev) return -ENOMEM; hcu_dev->dev = dev; platform_set_drvdata(pdev, hcu_dev); rc = dma_set_mask_and_coherent(&pdev->dev, OCS_HCU_DMA_BIT_MASK); if (rc) return rc; hcu_dev->io_base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(hcu_dev->io_base)) return PTR_ERR(hcu_dev->io_base); init_completion(&hcu_dev->irq_done); /* Get and request IRQ. */ hcu_dev->irq = platform_get_irq(pdev, 0); if (hcu_dev->irq < 0) return hcu_dev->irq; rc = devm_request_threaded_irq(&pdev->dev, hcu_dev->irq, ocs_hcu_irq_handler, NULL, 0, "keembay-ocs-hcu", hcu_dev); if (rc < 0) { dev_err(dev, "Could not request IRQ.\n"); return rc; } INIT_LIST_HEAD(&hcu_dev->list); spin_lock_bh(&ocs_hcu.lock); list_add_tail(&hcu_dev->list, &ocs_hcu.dev_list); spin_unlock_bh(&ocs_hcu.lock); /* Initialize crypto engine */ hcu_dev->engine = crypto_engine_alloc_init(dev, 1); if (!hcu_dev->engine) { rc = -ENOMEM; goto list_del; } rc = crypto_engine_start(hcu_dev->engine); if (rc) { dev_err(dev, "Could not start engine.\n"); goto cleanup; } /* Security infrastructure guarantees OCS clock is enabled. */ rc = crypto_engine_register_ahashes(ocs_hcu_algs, ARRAY_SIZE(ocs_hcu_algs)); if (rc) { dev_err(dev, "Could not register algorithms.\n"); goto cleanup; } return 0; cleanup: crypto_engine_exit(hcu_dev->engine); list_del: spin_lock_bh(&ocs_hcu.lock); list_del(&hcu_dev->list); spin_unlock_bh(&ocs_hcu.lock); return rc; } /* The OCS driver is a platform device. */ static struct platform_driver kmb_ocs_hcu_driver = { .probe = kmb_ocs_hcu_probe, .remove_new = kmb_ocs_hcu_remove, .driver = { .name = DRV_NAME, .of_match_table = kmb_ocs_hcu_of_match, }, }; module_platform_driver(kmb_ocs_hcu_driver); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1