Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Angelo Dureghello | 2161 | 46.89% | 5 | 15.62% |
Jingchang Lu | 849 | 18.42% | 3 | 9.38% |
Frank Li | 769 | 16.68% | 9 | 28.12% |
Tudor Laurentiu | 255 | 5.53% | 1 | 3.12% |
Vinod Koul | 195 | 4.23% | 2 | 6.25% |
Robin Gong | 143 | 3.10% | 4 | 12.50% |
Joy Zou | 123 | 2.67% | 1 | 3.12% |
Yao Yuan | 63 | 1.37% | 1 | 3.12% |
Peng Ma | 36 | 0.78% | 1 | 3.12% |
Krzysztof Kozlowski | 7 | 0.15% | 2 | 6.25% |
Gustavo A. R. Silva | 5 | 0.11% | 1 | 3.12% |
Maxime Ripard | 2 | 0.04% | 1 | 3.12% |
Mao Wenan | 1 | 0.02% | 1 | 3.12% |
Total | 4609 | 32 |
// SPDX-License-Identifier: GPL-2.0+ // // Copyright (c) 2013-2014 Freescale Semiconductor, Inc // Copyright (c) 2017 Sysam, Angelo Dureghello <angelo@sysam.it> #include <linux/dmapool.h> #include <linux/module.h> #include <linux/slab.h> #include <linux/dma-mapping.h> #include <linux/pm_runtime.h> #include <linux/pm_domain.h> #include "fsl-edma-common.h" #define EDMA_CR 0x00 #define EDMA_ES 0x04 #define EDMA_ERQ 0x0C #define EDMA_EEI 0x14 #define EDMA_SERQ 0x1B #define EDMA_CERQ 0x1A #define EDMA_SEEI 0x19 #define EDMA_CEEI 0x18 #define EDMA_CINT 0x1F #define EDMA_CERR 0x1E #define EDMA_SSRT 0x1D #define EDMA_CDNE 0x1C #define EDMA_INTR 0x24 #define EDMA_ERR 0x2C #define EDMA64_ERQH 0x08 #define EDMA64_EEIH 0x10 #define EDMA64_SERQ 0x18 #define EDMA64_CERQ 0x19 #define EDMA64_SEEI 0x1a #define EDMA64_CEEI 0x1b #define EDMA64_CINT 0x1c #define EDMA64_CERR 0x1d #define EDMA64_SSRT 0x1e #define EDMA64_CDNE 0x1f #define EDMA64_INTH 0x20 #define EDMA64_INTL 0x24 #define EDMA64_ERRH 0x28 #define EDMA64_ERRL 0x2c void fsl_edma_tx_chan_handler(struct fsl_edma_chan *fsl_chan) { spin_lock(&fsl_chan->vchan.lock); if (!fsl_chan->edesc) { /* terminate_all called before */ spin_unlock(&fsl_chan->vchan.lock); return; } if (!fsl_chan->edesc->iscyclic) { list_del(&fsl_chan->edesc->vdesc.node); vchan_cookie_complete(&fsl_chan->edesc->vdesc); fsl_chan->edesc = NULL; fsl_chan->status = DMA_COMPLETE; fsl_chan->idle = true; } else { vchan_cyclic_callback(&fsl_chan->edesc->vdesc); } if (!fsl_chan->edesc) fsl_edma_xfer_desc(fsl_chan); spin_unlock(&fsl_chan->vchan.lock); } static void fsl_edma3_enable_request(struct fsl_edma_chan *fsl_chan) { u32 val, flags; flags = fsl_edma_drvflags(fsl_chan); val = edma_readl_chreg(fsl_chan, ch_sbr); /* Remote/local swapped wrongly on iMX8 QM Audio edma */ if (flags & FSL_EDMA_DRV_QUIRK_SWAPPED) { if (!fsl_chan->is_rxchan) val |= EDMA_V3_CH_SBR_RD; else val |= EDMA_V3_CH_SBR_WR; } else { if (fsl_chan->is_rxchan) val |= EDMA_V3_CH_SBR_RD; else val |= EDMA_V3_CH_SBR_WR; } if (fsl_chan->is_remote) val &= ~(EDMA_V3_CH_SBR_RD | EDMA_V3_CH_SBR_WR); edma_writel_chreg(fsl_chan, val, ch_sbr); if (flags & FSL_EDMA_DRV_HAS_CHMUX) { /* * ch_mux: With the exception of 0, attempts to write a value * already in use will be forced to 0. */ if (!edma_readl_chreg(fsl_chan, ch_mux)) edma_writel_chreg(fsl_chan, fsl_chan->srcid, ch_mux); } val = edma_readl_chreg(fsl_chan, ch_csr); val |= EDMA_V3_CH_CSR_ERQ; edma_writel_chreg(fsl_chan, val, ch_csr); } static void fsl_edma_enable_request(struct fsl_edma_chan *fsl_chan) { struct edma_regs *regs = &fsl_chan->edma->regs; u32 ch = fsl_chan->vchan.chan.chan_id; if (fsl_edma_drvflags(fsl_chan) & FSL_EDMA_DRV_SPLIT_REG) return fsl_edma3_enable_request(fsl_chan); if (fsl_chan->edma->drvdata->flags & FSL_EDMA_DRV_WRAP_IO) { edma_writeb(fsl_chan->edma, EDMA_SEEI_SEEI(ch), regs->seei); edma_writeb(fsl_chan->edma, ch, regs->serq); } else { /* ColdFire is big endian, and accesses natively * big endian I/O peripherals */ iowrite8(EDMA_SEEI_SEEI(ch), regs->seei); iowrite8(ch, regs->serq); } } static void fsl_edma3_disable_request(struct fsl_edma_chan *fsl_chan) { u32 val = edma_readl_chreg(fsl_chan, ch_csr); u32 flags; flags = fsl_edma_drvflags(fsl_chan); if (flags & FSL_EDMA_DRV_HAS_CHMUX) edma_writel_chreg(fsl_chan, 0, ch_mux); val &= ~EDMA_V3_CH_CSR_ERQ; edma_writel_chreg(fsl_chan, val, ch_csr); } void fsl_edma_disable_request(struct fsl_edma_chan *fsl_chan) { struct edma_regs *regs = &fsl_chan->edma->regs; u32 ch = fsl_chan->vchan.chan.chan_id; if (fsl_edma_drvflags(fsl_chan) & FSL_EDMA_DRV_SPLIT_REG) return fsl_edma3_disable_request(fsl_chan); if (fsl_chan->edma->drvdata->flags & FSL_EDMA_DRV_WRAP_IO) { edma_writeb(fsl_chan->edma, ch, regs->cerq); edma_writeb(fsl_chan->edma, EDMA_CEEI_CEEI(ch), regs->ceei); } else { /* ColdFire is big endian, and accesses natively * big endian I/O peripherals */ iowrite8(ch, regs->cerq); iowrite8(EDMA_CEEI_CEEI(ch), regs->ceei); } } static void mux_configure8(struct fsl_edma_chan *fsl_chan, void __iomem *addr, u32 off, u32 slot, bool enable) { u8 val8; if (enable) val8 = EDMAMUX_CHCFG_ENBL | slot; else val8 = EDMAMUX_CHCFG_DIS; iowrite8(val8, addr + off); } static void mux_configure32(struct fsl_edma_chan *fsl_chan, void __iomem *addr, u32 off, u32 slot, bool enable) { u32 val; if (enable) val = EDMAMUX_CHCFG_ENBL << 24 | slot; else val = EDMAMUX_CHCFG_DIS; iowrite32(val, addr + off * 4); } void fsl_edma_chan_mux(struct fsl_edma_chan *fsl_chan, unsigned int slot, bool enable) { u32 ch = fsl_chan->vchan.chan.chan_id; void __iomem *muxaddr; unsigned int chans_per_mux, ch_off; int endian_diff[4] = {3, 1, -1, -3}; u32 dmamux_nr = fsl_chan->edma->drvdata->dmamuxs; if (!dmamux_nr) return; chans_per_mux = fsl_chan->edma->n_chans / dmamux_nr; ch_off = fsl_chan->vchan.chan.chan_id % chans_per_mux; if (fsl_chan->edma->drvdata->flags & FSL_EDMA_DRV_MUX_SWAP) ch_off += endian_diff[ch_off % 4]; muxaddr = fsl_chan->edma->muxbase[ch / chans_per_mux]; slot = EDMAMUX_CHCFG_SOURCE(slot); if (fsl_chan->edma->drvdata->flags & FSL_EDMA_DRV_CONFIG32) mux_configure32(fsl_chan, muxaddr, ch_off, slot, enable); else mux_configure8(fsl_chan, muxaddr, ch_off, slot, enable); } static unsigned int fsl_edma_get_tcd_attr(enum dma_slave_buswidth addr_width) { u32 val; if (addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; val = ffs(addr_width) - 1; return val | (val << 8); } void fsl_edma_free_desc(struct virt_dma_desc *vdesc) { struct fsl_edma_desc *fsl_desc; int i; fsl_desc = to_fsl_edma_desc(vdesc); for (i = 0; i < fsl_desc->n_tcds; i++) dma_pool_free(fsl_desc->echan->tcd_pool, fsl_desc->tcd[i].vtcd, fsl_desc->tcd[i].ptcd); kfree(fsl_desc); } int fsl_edma_terminate_all(struct dma_chan *chan) { struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan); unsigned long flags; LIST_HEAD(head); spin_lock_irqsave(&fsl_chan->vchan.lock, flags); fsl_edma_disable_request(fsl_chan); fsl_chan->edesc = NULL; fsl_chan->idle = true; vchan_get_all_descriptors(&fsl_chan->vchan, &head); spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags); vchan_dma_desc_free_list(&fsl_chan->vchan, &head); if (fsl_edma_drvflags(fsl_chan) & FSL_EDMA_DRV_HAS_PD) pm_runtime_allow(fsl_chan->pd_dev); return 0; } int fsl_edma_pause(struct dma_chan *chan) { struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan); unsigned long flags; spin_lock_irqsave(&fsl_chan->vchan.lock, flags); if (fsl_chan->edesc) { fsl_edma_disable_request(fsl_chan); fsl_chan->status = DMA_PAUSED; fsl_chan->idle = true; } spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags); return 0; } int fsl_edma_resume(struct dma_chan *chan) { struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan); unsigned long flags; spin_lock_irqsave(&fsl_chan->vchan.lock, flags); if (fsl_chan->edesc) { fsl_edma_enable_request(fsl_chan); fsl_chan->status = DMA_IN_PROGRESS; fsl_chan->idle = false; } spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags); return 0; } static void fsl_edma_unprep_slave_dma(struct fsl_edma_chan *fsl_chan) { if (fsl_chan->dma_dir != DMA_NONE) dma_unmap_resource(fsl_chan->vchan.chan.device->dev, fsl_chan->dma_dev_addr, fsl_chan->dma_dev_size, fsl_chan->dma_dir, 0); fsl_chan->dma_dir = DMA_NONE; } static bool fsl_edma_prep_slave_dma(struct fsl_edma_chan *fsl_chan, enum dma_transfer_direction dir) { struct device *dev = fsl_chan->vchan.chan.device->dev; enum dma_data_direction dma_dir; phys_addr_t addr = 0; u32 size = 0; switch (dir) { case DMA_MEM_TO_DEV: dma_dir = DMA_FROM_DEVICE; addr = fsl_chan->cfg.dst_addr; size = fsl_chan->cfg.dst_maxburst; break; case DMA_DEV_TO_MEM: dma_dir = DMA_TO_DEVICE; addr = fsl_chan->cfg.src_addr; size = fsl_chan->cfg.src_maxburst; break; default: dma_dir = DMA_NONE; break; } /* Already mapped for this config? */ if (fsl_chan->dma_dir == dma_dir) return true; fsl_edma_unprep_slave_dma(fsl_chan); fsl_chan->dma_dev_addr = dma_map_resource(dev, addr, size, dma_dir, 0); if (dma_mapping_error(dev, fsl_chan->dma_dev_addr)) return false; fsl_chan->dma_dev_size = size; fsl_chan->dma_dir = dma_dir; return true; } int fsl_edma_slave_config(struct dma_chan *chan, struct dma_slave_config *cfg) { struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan); memcpy(&fsl_chan->cfg, cfg, sizeof(*cfg)); fsl_edma_unprep_slave_dma(fsl_chan); return 0; } static size_t fsl_edma_desc_residue(struct fsl_edma_chan *fsl_chan, struct virt_dma_desc *vdesc, bool in_progress) { struct fsl_edma_desc *edesc = fsl_chan->edesc; enum dma_transfer_direction dir = edesc->dirn; dma_addr_t cur_addr, dma_addr; size_t len, size; u32 nbytes = 0; int i; /* calculate the total size in this desc */ for (len = i = 0; i < fsl_chan->edesc->n_tcds; i++) { nbytes = le32_to_cpu(edesc->tcd[i].vtcd->nbytes); if (nbytes & (EDMA_V3_TCD_NBYTES_DMLOE | EDMA_V3_TCD_NBYTES_SMLOE)) nbytes = EDMA_V3_TCD_NBYTES_MLOFF_NBYTES(nbytes); len += nbytes * le16_to_cpu(edesc->tcd[i].vtcd->biter); } if (!in_progress) return len; if (dir == DMA_MEM_TO_DEV) cur_addr = edma_read_tcdreg(fsl_chan, saddr); else cur_addr = edma_read_tcdreg(fsl_chan, daddr); /* figure out the finished and calculate the residue */ for (i = 0; i < fsl_chan->edesc->n_tcds; i++) { nbytes = le32_to_cpu(edesc->tcd[i].vtcd->nbytes); if (nbytes & (EDMA_V3_TCD_NBYTES_DMLOE | EDMA_V3_TCD_NBYTES_SMLOE)) nbytes = EDMA_V3_TCD_NBYTES_MLOFF_NBYTES(nbytes); size = nbytes * le16_to_cpu(edesc->tcd[i].vtcd->biter); if (dir == DMA_MEM_TO_DEV) dma_addr = le32_to_cpu(edesc->tcd[i].vtcd->saddr); else dma_addr = le32_to_cpu(edesc->tcd[i].vtcd->daddr); len -= size; if (cur_addr >= dma_addr && cur_addr < dma_addr + size) { len += dma_addr + size - cur_addr; break; } } return len; } enum dma_status fsl_edma_tx_status(struct dma_chan *chan, dma_cookie_t cookie, struct dma_tx_state *txstate) { struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan); struct virt_dma_desc *vdesc; enum dma_status status; unsigned long flags; status = dma_cookie_status(chan, cookie, txstate); if (status == DMA_COMPLETE) return status; if (!txstate) return fsl_chan->status; spin_lock_irqsave(&fsl_chan->vchan.lock, flags); vdesc = vchan_find_desc(&fsl_chan->vchan, cookie); if (fsl_chan->edesc && cookie == fsl_chan->edesc->vdesc.tx.cookie) txstate->residue = fsl_edma_desc_residue(fsl_chan, vdesc, true); else if (vdesc) txstate->residue = fsl_edma_desc_residue(fsl_chan, vdesc, false); else txstate->residue = 0; spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags); return fsl_chan->status; } static void fsl_edma_set_tcd_regs(struct fsl_edma_chan *fsl_chan, struct fsl_edma_hw_tcd *tcd) { u16 csr = 0; /* * TCD parameters are stored in struct fsl_edma_hw_tcd in little * endian format. However, we need to load the TCD registers in * big- or little-endian obeying the eDMA engine model endian, * and this is performed from specific edma_write functions */ edma_write_tcdreg(fsl_chan, 0, csr); edma_write_tcdreg(fsl_chan, tcd->saddr, saddr); edma_write_tcdreg(fsl_chan, tcd->daddr, daddr); edma_write_tcdreg(fsl_chan, tcd->attr, attr); edma_write_tcdreg(fsl_chan, tcd->soff, soff); edma_write_tcdreg(fsl_chan, tcd->nbytes, nbytes); edma_write_tcdreg(fsl_chan, tcd->slast, slast); edma_write_tcdreg(fsl_chan, tcd->citer, citer); edma_write_tcdreg(fsl_chan, tcd->biter, biter); edma_write_tcdreg(fsl_chan, tcd->doff, doff); edma_write_tcdreg(fsl_chan, tcd->dlast_sga, dlast_sga); csr = le16_to_cpu(tcd->csr); if (fsl_chan->is_sw) { csr |= EDMA_TCD_CSR_START; tcd->csr = cpu_to_le16(csr); } /* * Must clear CHn_CSR[DONE] bit before enable TCDn_CSR[ESG] at EDMAv3 * eDMAv4 have not such requirement. * Change MLINK need clear CHn_CSR[DONE] for both eDMAv3 and eDMAv4. */ if (((fsl_edma_drvflags(fsl_chan) & FSL_EDMA_DRV_CLEAR_DONE_E_SG) && (csr & EDMA_TCD_CSR_E_SG)) || ((fsl_edma_drvflags(fsl_chan) & FSL_EDMA_DRV_CLEAR_DONE_E_LINK) && (csr & EDMA_TCD_CSR_E_LINK))) edma_writel_chreg(fsl_chan, edma_readl_chreg(fsl_chan, ch_csr), ch_csr); edma_write_tcdreg(fsl_chan, tcd->csr, csr); } static inline void fsl_edma_fill_tcd(struct fsl_edma_chan *fsl_chan, struct fsl_edma_hw_tcd *tcd, u32 src, u32 dst, u16 attr, u16 soff, u32 nbytes, u32 slast, u16 citer, u16 biter, u16 doff, u32 dlast_sga, bool major_int, bool disable_req, bool enable_sg) { struct dma_slave_config *cfg = &fsl_chan->cfg; u16 csr = 0; u32 burst; /* * eDMA hardware SGs require the TCDs to be stored in little * endian format irrespective of the register endian model. * So we put the value in little endian in memory, waiting * for fsl_edma_set_tcd_regs doing the swap. */ tcd->saddr = cpu_to_le32(src); tcd->daddr = cpu_to_le32(dst); tcd->attr = cpu_to_le16(attr); tcd->soff = cpu_to_le16(soff); if (fsl_chan->is_multi_fifo) { /* set mloff to support multiple fifo */ burst = cfg->direction == DMA_DEV_TO_MEM ? cfg->src_addr_width : cfg->dst_addr_width; nbytes |= EDMA_V3_TCD_NBYTES_MLOFF(-(burst * 4)); /* enable DMLOE/SMLOE */ if (cfg->direction == DMA_MEM_TO_DEV) { nbytes |= EDMA_V3_TCD_NBYTES_DMLOE; nbytes &= ~EDMA_V3_TCD_NBYTES_SMLOE; } else { nbytes |= EDMA_V3_TCD_NBYTES_SMLOE; nbytes &= ~EDMA_V3_TCD_NBYTES_DMLOE; } } tcd->nbytes = cpu_to_le32(nbytes); tcd->slast = cpu_to_le32(slast); tcd->citer = cpu_to_le16(EDMA_TCD_CITER_CITER(citer)); tcd->doff = cpu_to_le16(doff); tcd->dlast_sga = cpu_to_le32(dlast_sga); tcd->biter = cpu_to_le16(EDMA_TCD_BITER_BITER(biter)); if (major_int) csr |= EDMA_TCD_CSR_INT_MAJOR; if (disable_req) csr |= EDMA_TCD_CSR_D_REQ; if (enable_sg) csr |= EDMA_TCD_CSR_E_SG; if (fsl_chan->is_rxchan) csr |= EDMA_TCD_CSR_ACTIVE; if (fsl_chan->is_sw) csr |= EDMA_TCD_CSR_START; tcd->csr = cpu_to_le16(csr); } static struct fsl_edma_desc *fsl_edma_alloc_desc(struct fsl_edma_chan *fsl_chan, int sg_len) { struct fsl_edma_desc *fsl_desc; int i; fsl_desc = kzalloc(struct_size(fsl_desc, tcd, sg_len), GFP_NOWAIT); if (!fsl_desc) return NULL; fsl_desc->echan = fsl_chan; fsl_desc->n_tcds = sg_len; for (i = 0; i < sg_len; i++) { fsl_desc->tcd[i].vtcd = dma_pool_alloc(fsl_chan->tcd_pool, GFP_NOWAIT, &fsl_desc->tcd[i].ptcd); if (!fsl_desc->tcd[i].vtcd) goto err; } return fsl_desc; err: while (--i >= 0) dma_pool_free(fsl_chan->tcd_pool, fsl_desc->tcd[i].vtcd, fsl_desc->tcd[i].ptcd); kfree(fsl_desc); return NULL; } struct dma_async_tx_descriptor *fsl_edma_prep_dma_cyclic( struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len, size_t period_len, enum dma_transfer_direction direction, unsigned long flags) { struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan); struct fsl_edma_desc *fsl_desc; dma_addr_t dma_buf_next; bool major_int = true; int sg_len, i; u32 src_addr, dst_addr, last_sg, nbytes; u16 soff, doff, iter; if (!is_slave_direction(direction)) return NULL; if (!fsl_edma_prep_slave_dma(fsl_chan, direction)) return NULL; sg_len = buf_len / period_len; fsl_desc = fsl_edma_alloc_desc(fsl_chan, sg_len); if (!fsl_desc) return NULL; fsl_desc->iscyclic = true; fsl_desc->dirn = direction; dma_buf_next = dma_addr; if (direction == DMA_MEM_TO_DEV) { fsl_chan->attr = fsl_edma_get_tcd_attr(fsl_chan->cfg.dst_addr_width); nbytes = fsl_chan->cfg.dst_addr_width * fsl_chan->cfg.dst_maxburst; } else { fsl_chan->attr = fsl_edma_get_tcd_attr(fsl_chan->cfg.src_addr_width); nbytes = fsl_chan->cfg.src_addr_width * fsl_chan->cfg.src_maxburst; } iter = period_len / nbytes; for (i = 0; i < sg_len; i++) { if (dma_buf_next >= dma_addr + buf_len) dma_buf_next = dma_addr; /* get next sg's physical address */ last_sg = fsl_desc->tcd[(i + 1) % sg_len].ptcd; if (direction == DMA_MEM_TO_DEV) { src_addr = dma_buf_next; dst_addr = fsl_chan->dma_dev_addr; soff = fsl_chan->cfg.dst_addr_width; doff = fsl_chan->is_multi_fifo ? 4 : 0; } else if (direction == DMA_DEV_TO_MEM) { src_addr = fsl_chan->dma_dev_addr; dst_addr = dma_buf_next; soff = fsl_chan->is_multi_fifo ? 4 : 0; doff = fsl_chan->cfg.src_addr_width; } else { /* DMA_DEV_TO_DEV */ src_addr = fsl_chan->cfg.src_addr; dst_addr = fsl_chan->cfg.dst_addr; soff = doff = 0; major_int = false; } fsl_edma_fill_tcd(fsl_chan, fsl_desc->tcd[i].vtcd, src_addr, dst_addr, fsl_chan->attr, soff, nbytes, 0, iter, iter, doff, last_sg, major_int, false, true); dma_buf_next += period_len; } return vchan_tx_prep(&fsl_chan->vchan, &fsl_desc->vdesc, flags); } struct dma_async_tx_descriptor *fsl_edma_prep_slave_sg( struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len, enum dma_transfer_direction direction, unsigned long flags, void *context) { struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan); struct fsl_edma_desc *fsl_desc; struct scatterlist *sg; u32 src_addr, dst_addr, last_sg, nbytes; u16 soff, doff, iter; int i; if (!is_slave_direction(direction)) return NULL; if (!fsl_edma_prep_slave_dma(fsl_chan, direction)) return NULL; fsl_desc = fsl_edma_alloc_desc(fsl_chan, sg_len); if (!fsl_desc) return NULL; fsl_desc->iscyclic = false; fsl_desc->dirn = direction; if (direction == DMA_MEM_TO_DEV) { fsl_chan->attr = fsl_edma_get_tcd_attr(fsl_chan->cfg.dst_addr_width); nbytes = fsl_chan->cfg.dst_addr_width * fsl_chan->cfg.dst_maxburst; } else { fsl_chan->attr = fsl_edma_get_tcd_attr(fsl_chan->cfg.src_addr_width); nbytes = fsl_chan->cfg.src_addr_width * fsl_chan->cfg.src_maxburst; } for_each_sg(sgl, sg, sg_len, i) { if (direction == DMA_MEM_TO_DEV) { src_addr = sg_dma_address(sg); dst_addr = fsl_chan->dma_dev_addr; soff = fsl_chan->cfg.dst_addr_width; doff = 0; } else if (direction == DMA_DEV_TO_MEM) { src_addr = fsl_chan->dma_dev_addr; dst_addr = sg_dma_address(sg); soff = 0; doff = fsl_chan->cfg.src_addr_width; } else { /* DMA_DEV_TO_DEV */ src_addr = fsl_chan->cfg.src_addr; dst_addr = fsl_chan->cfg.dst_addr; soff = 0; doff = 0; } /* * Choose the suitable burst length if sg_dma_len is not * multiple of burst length so that the whole transfer length is * multiple of minor loop(burst length). */ if (sg_dma_len(sg) % nbytes) { u32 width = (direction == DMA_DEV_TO_MEM) ? doff : soff; u32 burst = (direction == DMA_DEV_TO_MEM) ? fsl_chan->cfg.src_maxburst : fsl_chan->cfg.dst_maxburst; int j; for (j = burst; j > 1; j--) { if (!(sg_dma_len(sg) % (j * width))) { nbytes = j * width; break; } } /* Set burst size as 1 if there's no suitable one */ if (j == 1) nbytes = width; } iter = sg_dma_len(sg) / nbytes; if (i < sg_len - 1) { last_sg = fsl_desc->tcd[(i + 1)].ptcd; fsl_edma_fill_tcd(fsl_chan, fsl_desc->tcd[i].vtcd, src_addr, dst_addr, fsl_chan->attr, soff, nbytes, 0, iter, iter, doff, last_sg, false, false, true); } else { last_sg = 0; fsl_edma_fill_tcd(fsl_chan, fsl_desc->tcd[i].vtcd, src_addr, dst_addr, fsl_chan->attr, soff, nbytes, 0, iter, iter, doff, last_sg, true, true, false); } } return vchan_tx_prep(&fsl_chan->vchan, &fsl_desc->vdesc, flags); } struct dma_async_tx_descriptor *fsl_edma_prep_memcpy(struct dma_chan *chan, dma_addr_t dma_dst, dma_addr_t dma_src, size_t len, unsigned long flags) { struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan); struct fsl_edma_desc *fsl_desc; fsl_desc = fsl_edma_alloc_desc(fsl_chan, 1); if (!fsl_desc) return NULL; fsl_desc->iscyclic = false; fsl_chan->is_sw = true; /* To match with copy_align and max_seg_size so 1 tcd is enough */ fsl_edma_fill_tcd(fsl_chan, fsl_desc->tcd[0].vtcd, dma_src, dma_dst, fsl_edma_get_tcd_attr(DMA_SLAVE_BUSWIDTH_32_BYTES), 32, len, 0, 1, 1, 32, 0, true, true, false); return vchan_tx_prep(&fsl_chan->vchan, &fsl_desc->vdesc, flags); } void fsl_edma_xfer_desc(struct fsl_edma_chan *fsl_chan) { struct virt_dma_desc *vdesc; lockdep_assert_held(&fsl_chan->vchan.lock); vdesc = vchan_next_desc(&fsl_chan->vchan); if (!vdesc) return; fsl_chan->edesc = to_fsl_edma_desc(vdesc); fsl_edma_set_tcd_regs(fsl_chan, fsl_chan->edesc->tcd[0].vtcd); fsl_edma_enable_request(fsl_chan); fsl_chan->status = DMA_IN_PROGRESS; fsl_chan->idle = false; } void fsl_edma_issue_pending(struct dma_chan *chan) { struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan); unsigned long flags; spin_lock_irqsave(&fsl_chan->vchan.lock, flags); if (unlikely(fsl_chan->pm_state != RUNNING)) { spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags); /* cannot submit due to suspend */ return; } if (vchan_issue_pending(&fsl_chan->vchan) && !fsl_chan->edesc) fsl_edma_xfer_desc(fsl_chan); spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags); } int fsl_edma_alloc_chan_resources(struct dma_chan *chan) { struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan); fsl_chan->tcd_pool = dma_pool_create("tcd_pool", chan->device->dev, sizeof(struct fsl_edma_hw_tcd), 32, 0); return 0; } void fsl_edma_free_chan_resources(struct dma_chan *chan) { struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan); struct fsl_edma_engine *edma = fsl_chan->edma; unsigned long flags; LIST_HEAD(head); spin_lock_irqsave(&fsl_chan->vchan.lock, flags); fsl_edma_disable_request(fsl_chan); if (edma->drvdata->dmamuxs) fsl_edma_chan_mux(fsl_chan, 0, false); fsl_chan->edesc = NULL; vchan_get_all_descriptors(&fsl_chan->vchan, &head); fsl_edma_unprep_slave_dma(fsl_chan); spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags); vchan_dma_desc_free_list(&fsl_chan->vchan, &head); dma_pool_destroy(fsl_chan->tcd_pool); fsl_chan->tcd_pool = NULL; fsl_chan->is_sw = false; fsl_chan->srcid = 0; } void fsl_edma_cleanup_vchan(struct dma_device *dmadev) { struct fsl_edma_chan *chan, *_chan; list_for_each_entry_safe(chan, _chan, &dmadev->channels, vchan.chan.device_node) { list_del(&chan->vchan.chan.device_node); tasklet_kill(&chan->vchan.task); } } /* * On the 32 channels Vybrid/mpc577x edma version, register offsets are * different compared to ColdFire mcf5441x 64 channels edma. * * This function sets up register offsets as per proper declared version * so must be called in xxx_edma_probe() just after setting the * edma "version" and "membase" appropriately. */ void fsl_edma_setup_regs(struct fsl_edma_engine *edma) { bool is64 = !!(edma->drvdata->flags & FSL_EDMA_DRV_EDMA64); edma->regs.cr = edma->membase + EDMA_CR; edma->regs.es = edma->membase + EDMA_ES; edma->regs.erql = edma->membase + EDMA_ERQ; edma->regs.eeil = edma->membase + EDMA_EEI; edma->regs.serq = edma->membase + (is64 ? EDMA64_SERQ : EDMA_SERQ); edma->regs.cerq = edma->membase + (is64 ? EDMA64_CERQ : EDMA_CERQ); edma->regs.seei = edma->membase + (is64 ? EDMA64_SEEI : EDMA_SEEI); edma->regs.ceei = edma->membase + (is64 ? EDMA64_CEEI : EDMA_CEEI); edma->regs.cint = edma->membase + (is64 ? EDMA64_CINT : EDMA_CINT); edma->regs.cerr = edma->membase + (is64 ? EDMA64_CERR : EDMA_CERR); edma->regs.ssrt = edma->membase + (is64 ? EDMA64_SSRT : EDMA_SSRT); edma->regs.cdne = edma->membase + (is64 ? EDMA64_CDNE : EDMA_CDNE); edma->regs.intl = edma->membase + (is64 ? EDMA64_INTL : EDMA_INTR); edma->regs.errl = edma->membase + (is64 ? EDMA64_ERRL : EDMA_ERR); if (is64) { edma->regs.erqh = edma->membase + EDMA64_ERQH; edma->regs.eeih = edma->membase + EDMA64_EEIH; edma->regs.errh = edma->membase + EDMA64_ERRH; edma->regs.inth = edma->membase + EDMA64_INTH; } } MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1