Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Dave Jiang | 4365 | 63.44% | 37 | 30.33% |
Dan J Williams | 1177 | 17.11% | 33 | 27.05% |
Tom Picard | 309 | 4.49% | 1 | 0.82% |
Christopher Leech | 288 | 4.19% | 2 | 1.64% |
Shannon Nelson | 281 | 4.08% | 9 | 7.38% |
Roland Dreier | 143 | 2.08% | 2 | 1.64% |
Maciej Sosnowski | 91 | 1.32% | 3 | 2.46% |
Logan Gunthorpe | 84 | 1.22% | 1 | 0.82% |
Pan Bian | 38 | 0.55% | 2 | 1.64% |
Christoph Hellwig | 16 | 0.23% | 1 | 0.82% |
Dan Aloni | 12 | 0.17% | 1 | 0.82% |
Russell King | 9 | 0.13% | 2 | 1.64% |
Bolarinwa Olayemi Saheed | 6 | 0.09% | 1 | 0.82% |
Waiman Long | 5 | 0.07% | 1 | 0.82% |
Yajun Deng | 5 | 0.07% | 1 | 0.82% |
Brice Goglin | 5 | 0.07% | 1 | 0.82% |
Wang Qing | 4 | 0.06% | 1 | 0.82% |
Bartlomiej Zolnierkiewicz | 4 | 0.06% | 1 | 0.82% |
Björn Helgaas | 3 | 0.04% | 1 | 0.82% |
Rami Rosen | 3 | 0.04% | 1 | 0.82% |
Yang Hongyang | 3 | 0.04% | 1 | 0.82% |
Paul Gortmaker | 3 | 0.04% | 1 | 0.82% |
Geliang Tang | 3 | 0.04% | 1 | 0.82% |
David S. Miller | 3 | 0.04% | 1 | 0.82% |
Kees Cook | 2 | 0.03% | 1 | 0.82% |
Thomas Gleixner | 2 | 0.03% | 1 | 0.82% |
Linus Torvalds (pre-git) | 2 | 0.03% | 1 | 0.82% |
Krister Johansen | 2 | 0.03% | 1 | 0.82% |
Linus Torvalds | 1 | 0.01% | 1 | 0.82% |
Lee Jones | 1 | 0.01% | 1 | 0.82% |
Benoit Boissinot | 1 | 0.01% | 1 | 0.82% |
Christoph Lameter | 1 | 0.01% | 1 | 0.82% |
Allen Pais | 1 | 0.01% | 1 | 0.82% |
Arvind Yadav | 1 | 0.01% | 1 | 0.82% |
Luc Van Oostenryck | 1 | 0.01% | 1 | 0.82% |
Leonid Ravich | 1 | 0.01% | 1 | 0.82% |
Prarit Bhargava | 1 | 0.01% | 1 | 0.82% |
Julia Lawall | 1 | 0.01% | 1 | 0.82% |
Vinod Koul | 1 | 0.01% | 1 | 0.82% |
Christophe Jaillet | 1 | 0.01% | 1 | 0.82% |
Total | 6880 | 122 |
// SPDX-License-Identifier: GPL-2.0-only /* * Intel I/OAT DMA Linux driver * Copyright(c) 2004 - 2015 Intel Corporation. */ #include <linux/init.h> #include <linux/module.h> #include <linux/slab.h> #include <linux/pci.h> #include <linux/interrupt.h> #include <linux/dmaengine.h> #include <linux/delay.h> #include <linux/dma-mapping.h> #include <linux/workqueue.h> #include <linux/prefetch.h> #include <linux/dca.h> #include <linux/sizes.h> #include "dma.h" #include "registers.h" #include "hw.h" #include "../dmaengine.h" MODULE_VERSION(IOAT_DMA_VERSION); MODULE_LICENSE("Dual BSD/GPL"); MODULE_AUTHOR("Intel Corporation"); static const struct pci_device_id ioat_pci_tbl[] = { /* I/OAT v3 platforms */ { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_IOAT_TBG0) }, { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_IOAT_TBG1) }, { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_IOAT_TBG2) }, { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_IOAT_TBG3) }, { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_IOAT_TBG4) }, { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_IOAT_TBG5) }, { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_IOAT_TBG6) }, { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_IOAT_TBG7) }, /* I/OAT v3.2 platforms */ { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_IOAT_JSF0) }, { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_IOAT_JSF1) }, { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_IOAT_JSF2) }, { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_IOAT_JSF3) }, { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_IOAT_JSF4) }, { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_IOAT_JSF5) }, { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_IOAT_JSF6) }, { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_IOAT_JSF7) }, { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_IOAT_JSF8) }, { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_IOAT_JSF9) }, { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_IOAT_SNB0) }, { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_IOAT_SNB1) }, { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_IOAT_SNB2) }, { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_IOAT_SNB3) }, { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_IOAT_SNB4) }, { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_IOAT_SNB5) }, { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_IOAT_SNB6) }, { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_IOAT_SNB7) }, { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_IOAT_SNB8) }, { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_IOAT_SNB9) }, { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_IOAT_IVB0) }, { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_IOAT_IVB1) }, { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_IOAT_IVB2) }, { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_IOAT_IVB3) }, { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_IOAT_IVB4) }, { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_IOAT_IVB5) }, { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_IOAT_IVB6) }, { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_IOAT_IVB7) }, { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_IOAT_IVB8) }, { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_IOAT_IVB9) }, { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_IOAT_HSW0) }, { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_IOAT_HSW1) }, { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_IOAT_HSW2) }, { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_IOAT_HSW3) }, { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_IOAT_HSW4) }, { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_IOAT_HSW5) }, { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_IOAT_HSW6) }, { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_IOAT_HSW7) }, { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_IOAT_HSW8) }, { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_IOAT_HSW9) }, { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_IOAT_BDX0) }, { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_IOAT_BDX1) }, { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_IOAT_BDX2) }, { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_IOAT_BDX3) }, { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_IOAT_BDX4) }, { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_IOAT_BDX5) }, { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_IOAT_BDX6) }, { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_IOAT_BDX7) }, { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_IOAT_BDX8) }, { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_IOAT_BDX9) }, { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_IOAT_SKX) }, /* I/OAT v3.3 platforms */ { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_IOAT_BWD0) }, { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_IOAT_BWD1) }, { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_IOAT_BWD2) }, { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_IOAT_BWD3) }, { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_IOAT_BDXDE0) }, { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_IOAT_BDXDE1) }, { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_IOAT_BDXDE2) }, { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_IOAT_BDXDE3) }, /* I/OAT v3.4 platforms */ { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_IOAT_ICX) }, { 0, } }; MODULE_DEVICE_TABLE(pci, ioat_pci_tbl); static int ioat_pci_probe(struct pci_dev *pdev, const struct pci_device_id *id); static void ioat_remove(struct pci_dev *pdev); static void ioat_init_channel(struct ioatdma_device *ioat_dma, struct ioatdma_chan *ioat_chan, int idx); static void ioat_intr_quirk(struct ioatdma_device *ioat_dma); static void ioat_enumerate_channels(struct ioatdma_device *ioat_dma); static int ioat3_dma_self_test(struct ioatdma_device *ioat_dma); static int ioat_dca_enabled = 1; module_param(ioat_dca_enabled, int, 0644); MODULE_PARM_DESC(ioat_dca_enabled, "control support of dca service (default: 1)"); int ioat_pending_level = 7; module_param(ioat_pending_level, int, 0644); MODULE_PARM_DESC(ioat_pending_level, "high-water mark for pushing ioat descriptors (default: 7)"); static char ioat_interrupt_style[32] = "msix"; module_param_string(ioat_interrupt_style, ioat_interrupt_style, sizeof(ioat_interrupt_style), 0644); MODULE_PARM_DESC(ioat_interrupt_style, "set ioat interrupt style: msix (default), msi, intx"); struct kmem_cache *ioat_cache; struct kmem_cache *ioat_sed_cache; static bool is_jf_ioat(struct pci_dev *pdev) { switch (pdev->device) { case PCI_DEVICE_ID_INTEL_IOAT_JSF0: case PCI_DEVICE_ID_INTEL_IOAT_JSF1: case PCI_DEVICE_ID_INTEL_IOAT_JSF2: case PCI_DEVICE_ID_INTEL_IOAT_JSF3: case PCI_DEVICE_ID_INTEL_IOAT_JSF4: case PCI_DEVICE_ID_INTEL_IOAT_JSF5: case PCI_DEVICE_ID_INTEL_IOAT_JSF6: case PCI_DEVICE_ID_INTEL_IOAT_JSF7: case PCI_DEVICE_ID_INTEL_IOAT_JSF8: case PCI_DEVICE_ID_INTEL_IOAT_JSF9: return true; default: return false; } } static bool is_snb_ioat(struct pci_dev *pdev) { switch (pdev->device) { case PCI_DEVICE_ID_INTEL_IOAT_SNB0: case PCI_DEVICE_ID_INTEL_IOAT_SNB1: case PCI_DEVICE_ID_INTEL_IOAT_SNB2: case PCI_DEVICE_ID_INTEL_IOAT_SNB3: case PCI_DEVICE_ID_INTEL_IOAT_SNB4: case PCI_DEVICE_ID_INTEL_IOAT_SNB5: case PCI_DEVICE_ID_INTEL_IOAT_SNB6: case PCI_DEVICE_ID_INTEL_IOAT_SNB7: case PCI_DEVICE_ID_INTEL_IOAT_SNB8: case PCI_DEVICE_ID_INTEL_IOAT_SNB9: return true; default: return false; } } static bool is_ivb_ioat(struct pci_dev *pdev) { switch (pdev->device) { case PCI_DEVICE_ID_INTEL_IOAT_IVB0: case PCI_DEVICE_ID_INTEL_IOAT_IVB1: case PCI_DEVICE_ID_INTEL_IOAT_IVB2: case PCI_DEVICE_ID_INTEL_IOAT_IVB3: case PCI_DEVICE_ID_INTEL_IOAT_IVB4: case PCI_DEVICE_ID_INTEL_IOAT_IVB5: case PCI_DEVICE_ID_INTEL_IOAT_IVB6: case PCI_DEVICE_ID_INTEL_IOAT_IVB7: case PCI_DEVICE_ID_INTEL_IOAT_IVB8: case PCI_DEVICE_ID_INTEL_IOAT_IVB9: return true; default: return false; } } static bool is_hsw_ioat(struct pci_dev *pdev) { switch (pdev->device) { case PCI_DEVICE_ID_INTEL_IOAT_HSW0: case PCI_DEVICE_ID_INTEL_IOAT_HSW1: case PCI_DEVICE_ID_INTEL_IOAT_HSW2: case PCI_DEVICE_ID_INTEL_IOAT_HSW3: case PCI_DEVICE_ID_INTEL_IOAT_HSW4: case PCI_DEVICE_ID_INTEL_IOAT_HSW5: case PCI_DEVICE_ID_INTEL_IOAT_HSW6: case PCI_DEVICE_ID_INTEL_IOAT_HSW7: case PCI_DEVICE_ID_INTEL_IOAT_HSW8: case PCI_DEVICE_ID_INTEL_IOAT_HSW9: return true; default: return false; } } static bool is_bdx_ioat(struct pci_dev *pdev) { switch (pdev->device) { case PCI_DEVICE_ID_INTEL_IOAT_BDX0: case PCI_DEVICE_ID_INTEL_IOAT_BDX1: case PCI_DEVICE_ID_INTEL_IOAT_BDX2: case PCI_DEVICE_ID_INTEL_IOAT_BDX3: case PCI_DEVICE_ID_INTEL_IOAT_BDX4: case PCI_DEVICE_ID_INTEL_IOAT_BDX5: case PCI_DEVICE_ID_INTEL_IOAT_BDX6: case PCI_DEVICE_ID_INTEL_IOAT_BDX7: case PCI_DEVICE_ID_INTEL_IOAT_BDX8: case PCI_DEVICE_ID_INTEL_IOAT_BDX9: return true; default: return false; } } static inline bool is_skx_ioat(struct pci_dev *pdev) { return (pdev->device == PCI_DEVICE_ID_INTEL_IOAT_SKX) ? true : false; } static bool is_xeon_cb32(struct pci_dev *pdev) { return is_jf_ioat(pdev) || is_snb_ioat(pdev) || is_ivb_ioat(pdev) || is_hsw_ioat(pdev) || is_bdx_ioat(pdev) || is_skx_ioat(pdev); } bool is_bwd_ioat(struct pci_dev *pdev) { switch (pdev->device) { case PCI_DEVICE_ID_INTEL_IOAT_BWD0: case PCI_DEVICE_ID_INTEL_IOAT_BWD1: case PCI_DEVICE_ID_INTEL_IOAT_BWD2: case PCI_DEVICE_ID_INTEL_IOAT_BWD3: /* even though not Atom, BDX-DE has same DMA silicon */ case PCI_DEVICE_ID_INTEL_IOAT_BDXDE0: case PCI_DEVICE_ID_INTEL_IOAT_BDXDE1: case PCI_DEVICE_ID_INTEL_IOAT_BDXDE2: case PCI_DEVICE_ID_INTEL_IOAT_BDXDE3: return true; default: return false; } } static bool is_bwd_noraid(struct pci_dev *pdev) { switch (pdev->device) { case PCI_DEVICE_ID_INTEL_IOAT_BWD2: case PCI_DEVICE_ID_INTEL_IOAT_BWD3: case PCI_DEVICE_ID_INTEL_IOAT_BDXDE0: case PCI_DEVICE_ID_INTEL_IOAT_BDXDE1: case PCI_DEVICE_ID_INTEL_IOAT_BDXDE2: case PCI_DEVICE_ID_INTEL_IOAT_BDXDE3: return true; default: return false; } } /* * Perform a IOAT transaction to verify the HW works. */ #define IOAT_TEST_SIZE 2000 static void ioat_dma_test_callback(void *dma_async_param) { struct completion *cmp = dma_async_param; complete(cmp); } /** * ioat_dma_self_test - Perform a IOAT transaction to verify the HW works. * @ioat_dma: dma device to be tested */ static int ioat_dma_self_test(struct ioatdma_device *ioat_dma) { int i; u8 *src; u8 *dest; struct dma_device *dma = &ioat_dma->dma_dev; struct device *dev = &ioat_dma->pdev->dev; struct dma_chan *dma_chan; struct dma_async_tx_descriptor *tx; dma_addr_t dma_dest, dma_src; dma_cookie_t cookie; int err = 0; struct completion cmp; unsigned long tmo; unsigned long flags; src = kzalloc(IOAT_TEST_SIZE, GFP_KERNEL); if (!src) return -ENOMEM; dest = kzalloc(IOAT_TEST_SIZE, GFP_KERNEL); if (!dest) { kfree(src); return -ENOMEM; } /* Fill in src buffer */ for (i = 0; i < IOAT_TEST_SIZE; i++) src[i] = (u8)i; /* Start copy, using first DMA channel */ dma_chan = container_of(dma->channels.next, struct dma_chan, device_node); if (dma->device_alloc_chan_resources(dma_chan) < 1) { dev_err(dev, "selftest cannot allocate chan resource\n"); err = -ENODEV; goto out; } dma_src = dma_map_single(dev, src, IOAT_TEST_SIZE, DMA_TO_DEVICE); if (dma_mapping_error(dev, dma_src)) { dev_err(dev, "mapping src buffer failed\n"); err = -ENOMEM; goto free_resources; } dma_dest = dma_map_single(dev, dest, IOAT_TEST_SIZE, DMA_FROM_DEVICE); if (dma_mapping_error(dev, dma_dest)) { dev_err(dev, "mapping dest buffer failed\n"); err = -ENOMEM; goto unmap_src; } flags = DMA_PREP_INTERRUPT; tx = ioat_dma->dma_dev.device_prep_dma_memcpy(dma_chan, dma_dest, dma_src, IOAT_TEST_SIZE, flags); if (!tx) { dev_err(dev, "Self-test prep failed, disabling\n"); err = -ENODEV; goto unmap_dma; } async_tx_ack(tx); init_completion(&cmp); tx->callback = ioat_dma_test_callback; tx->callback_param = &cmp; cookie = tx->tx_submit(tx); if (cookie < 0) { dev_err(dev, "Self-test setup failed, disabling\n"); err = -ENODEV; goto unmap_dma; } dma->device_issue_pending(dma_chan); tmo = wait_for_completion_timeout(&cmp, msecs_to_jiffies(3000)); if (tmo == 0 || dma->device_tx_status(dma_chan, cookie, NULL) != DMA_COMPLETE) { dev_err(dev, "Self-test copy timed out, disabling\n"); err = -ENODEV; goto unmap_dma; } if (memcmp(src, dest, IOAT_TEST_SIZE)) { dev_err(dev, "Self-test copy failed compare, disabling\n"); err = -ENODEV; goto unmap_dma; } unmap_dma: dma_unmap_single(dev, dma_dest, IOAT_TEST_SIZE, DMA_FROM_DEVICE); unmap_src: dma_unmap_single(dev, dma_src, IOAT_TEST_SIZE, DMA_TO_DEVICE); free_resources: dma->device_free_chan_resources(dma_chan); out: kfree(src); kfree(dest); return err; } /** * ioat_dma_setup_interrupts - setup interrupt handler * @ioat_dma: ioat dma device */ int ioat_dma_setup_interrupts(struct ioatdma_device *ioat_dma) { struct ioatdma_chan *ioat_chan; struct pci_dev *pdev = ioat_dma->pdev; struct device *dev = &pdev->dev; struct msix_entry *msix; int i, j, msixcnt; int err = -EINVAL; u8 intrctrl = 0; if (!strcmp(ioat_interrupt_style, "msix")) goto msix; if (!strcmp(ioat_interrupt_style, "msi")) goto msi; if (!strcmp(ioat_interrupt_style, "intx")) goto intx; dev_err(dev, "invalid ioat_interrupt_style %s\n", ioat_interrupt_style); goto err_no_irq; msix: /* The number of MSI-X vectors should equal the number of channels */ msixcnt = ioat_dma->chancnt; for (i = 0; i < msixcnt; i++) ioat_dma->msix_entries[i].entry = i; err = pci_enable_msix_exact(pdev, ioat_dma->msix_entries, msixcnt); if (err) goto msi; for (i = 0; i < msixcnt; i++) { msix = &ioat_dma->msix_entries[i]; ioat_chan = ioat_chan_by_index(ioat_dma, i); err = devm_request_irq(dev, msix->vector, ioat_dma_do_interrupt_msix, 0, "ioat-msix", ioat_chan); if (err) { for (j = 0; j < i; j++) { msix = &ioat_dma->msix_entries[j]; ioat_chan = ioat_chan_by_index(ioat_dma, j); devm_free_irq(dev, msix->vector, ioat_chan); } goto msi; } } intrctrl |= IOAT_INTRCTRL_MSIX_VECTOR_CONTROL; ioat_dma->irq_mode = IOAT_MSIX; goto done; msi: err = pci_enable_msi(pdev); if (err) goto intx; err = devm_request_irq(dev, pdev->irq, ioat_dma_do_interrupt, 0, "ioat-msi", ioat_dma); if (err) { pci_disable_msi(pdev); goto intx; } ioat_dma->irq_mode = IOAT_MSI; goto done; intx: err = devm_request_irq(dev, pdev->irq, ioat_dma_do_interrupt, IRQF_SHARED, "ioat-intx", ioat_dma); if (err) goto err_no_irq; ioat_dma->irq_mode = IOAT_INTX; done: if (is_bwd_ioat(pdev)) ioat_intr_quirk(ioat_dma); intrctrl |= IOAT_INTRCTRL_MASTER_INT_EN; writeb(intrctrl, ioat_dma->reg_base + IOAT_INTRCTRL_OFFSET); return 0; err_no_irq: /* Disable all interrupt generation */ writeb(0, ioat_dma->reg_base + IOAT_INTRCTRL_OFFSET); ioat_dma->irq_mode = IOAT_NOIRQ; dev_err(dev, "no usable interrupts\n"); return err; } static void ioat_disable_interrupts(struct ioatdma_device *ioat_dma) { /* Disable all interrupt generation */ writeb(0, ioat_dma->reg_base + IOAT_INTRCTRL_OFFSET); } static int ioat_probe(struct ioatdma_device *ioat_dma) { int err = -ENODEV; struct dma_device *dma = &ioat_dma->dma_dev; struct pci_dev *pdev = ioat_dma->pdev; struct device *dev = &pdev->dev; ioat_dma->completion_pool = dma_pool_create("completion_pool", dev, sizeof(u64), SMP_CACHE_BYTES, SMP_CACHE_BYTES); if (!ioat_dma->completion_pool) { err = -ENOMEM; goto err_out; } ioat_enumerate_channels(ioat_dma); dma_cap_set(DMA_MEMCPY, dma->cap_mask); dma->dev = &pdev->dev; if (!ioat_dma->chancnt) { dev_err(dev, "channel enumeration error\n"); goto err_setup_interrupts; } err = ioat_dma_setup_interrupts(ioat_dma); if (err) goto err_setup_interrupts; err = ioat3_dma_self_test(ioat_dma); if (err) goto err_self_test; return 0; err_self_test: ioat_disable_interrupts(ioat_dma); err_setup_interrupts: dma_pool_destroy(ioat_dma->completion_pool); err_out: return err; } static int ioat_register(struct ioatdma_device *ioat_dma) { int err = dma_async_device_register(&ioat_dma->dma_dev); if (err) { ioat_disable_interrupts(ioat_dma); dma_pool_destroy(ioat_dma->completion_pool); } return err; } static void ioat_dma_remove(struct ioatdma_device *ioat_dma) { struct dma_device *dma = &ioat_dma->dma_dev; ioat_disable_interrupts(ioat_dma); ioat_kobject_del(ioat_dma); dma_async_device_unregister(dma); } /** * ioat_enumerate_channels - find and initialize the device's channels * @ioat_dma: the ioat dma device to be enumerated */ static void ioat_enumerate_channels(struct ioatdma_device *ioat_dma) { struct ioatdma_chan *ioat_chan; struct device *dev = &ioat_dma->pdev->dev; struct dma_device *dma = &ioat_dma->dma_dev; u8 xfercap_log; int chancnt; int i; INIT_LIST_HEAD(&dma->channels); chancnt = readb(ioat_dma->reg_base + IOAT_CHANCNT_OFFSET); chancnt &= 0x1f; /* bits [4:0] valid */ if (chancnt > ARRAY_SIZE(ioat_dma->idx)) { dev_warn(dev, "(%d) exceeds max supported channels (%zu)\n", chancnt, ARRAY_SIZE(ioat_dma->idx)); chancnt = ARRAY_SIZE(ioat_dma->idx); } xfercap_log = readb(ioat_dma->reg_base + IOAT_XFERCAP_OFFSET); xfercap_log &= 0x1f; /* bits [4:0] valid */ if (xfercap_log == 0) return; dev_dbg(dev, "%s: xfercap = %d\n", __func__, 1 << xfercap_log); for (i = 0; i < chancnt; i++) { ioat_chan = kzalloc(sizeof(*ioat_chan), GFP_KERNEL); if (!ioat_chan) break; ioat_init_channel(ioat_dma, ioat_chan, i); ioat_chan->xfercap_log = xfercap_log; spin_lock_init(&ioat_chan->prep_lock); if (ioat_reset_hw(ioat_chan)) { i = 0; break; } } ioat_dma->chancnt = i; } /** * ioat_free_chan_resources - release all the descriptors * @c: the channel to be cleaned */ static void ioat_free_chan_resources(struct dma_chan *c) { struct ioatdma_chan *ioat_chan = to_ioat_chan(c); struct ioatdma_device *ioat_dma = ioat_chan->ioat_dma; struct ioat_ring_ent *desc; const int total_descs = 1 << ioat_chan->alloc_order; int descs; int i; /* Before freeing channel resources first check * if they have been previously allocated for this channel. */ if (!ioat_chan->ring) return; ioat_stop(ioat_chan); if (!test_bit(IOAT_CHAN_DOWN, &ioat_chan->state)) { ioat_reset_hw(ioat_chan); /* Put LTR to idle */ if (ioat_dma->version >= IOAT_VER_3_4) writeb(IOAT_CHAN_LTR_SWSEL_IDLE, ioat_chan->reg_base + IOAT_CHAN_LTR_SWSEL_OFFSET); } spin_lock_bh(&ioat_chan->cleanup_lock); spin_lock_bh(&ioat_chan->prep_lock); descs = ioat_ring_space(ioat_chan); dev_dbg(to_dev(ioat_chan), "freeing %d idle descriptors\n", descs); for (i = 0; i < descs; i++) { desc = ioat_get_ring_ent(ioat_chan, ioat_chan->head + i); ioat_free_ring_ent(desc, c); } if (descs < total_descs) dev_err(to_dev(ioat_chan), "Freeing %d in use descriptors!\n", total_descs - descs); for (i = 0; i < total_descs - descs; i++) { desc = ioat_get_ring_ent(ioat_chan, ioat_chan->tail + i); dump_desc_dbg(ioat_chan, desc); ioat_free_ring_ent(desc, c); } for (i = 0; i < ioat_chan->desc_chunks; i++) { dma_free_coherent(to_dev(ioat_chan), IOAT_CHUNK_SIZE, ioat_chan->descs[i].virt, ioat_chan->descs[i].hw); ioat_chan->descs[i].virt = NULL; ioat_chan->descs[i].hw = 0; } ioat_chan->desc_chunks = 0; kfree(ioat_chan->ring); ioat_chan->ring = NULL; ioat_chan->alloc_order = 0; dma_pool_free(ioat_dma->completion_pool, ioat_chan->completion, ioat_chan->completion_dma); spin_unlock_bh(&ioat_chan->prep_lock); spin_unlock_bh(&ioat_chan->cleanup_lock); ioat_chan->last_completion = 0; ioat_chan->completion_dma = 0; ioat_chan->dmacount = 0; } /* ioat_alloc_chan_resources - allocate/initialize ioat descriptor ring * @chan: channel to be initialized */ static int ioat_alloc_chan_resources(struct dma_chan *c) { struct ioatdma_chan *ioat_chan = to_ioat_chan(c); struct ioat_ring_ent **ring; u64 status; int order; int i = 0; u32 chanerr; /* have we already been set up? */ if (ioat_chan->ring) return 1 << ioat_chan->alloc_order; /* Setup register to interrupt and write completion status on error */ writew(IOAT_CHANCTRL_RUN, ioat_chan->reg_base + IOAT_CHANCTRL_OFFSET); /* allocate a completion writeback area */ /* doing 2 32bit writes to mmio since 1 64b write doesn't work */ ioat_chan->completion = dma_pool_zalloc(ioat_chan->ioat_dma->completion_pool, GFP_NOWAIT, &ioat_chan->completion_dma); if (!ioat_chan->completion) return -ENOMEM; writel(((u64)ioat_chan->completion_dma) & 0x00000000FFFFFFFF, ioat_chan->reg_base + IOAT_CHANCMP_OFFSET_LOW); writel(((u64)ioat_chan->completion_dma) >> 32, ioat_chan->reg_base + IOAT_CHANCMP_OFFSET_HIGH); order = IOAT_MAX_ORDER; ring = ioat_alloc_ring(c, order, GFP_NOWAIT); if (!ring) return -ENOMEM; spin_lock_bh(&ioat_chan->cleanup_lock); spin_lock_bh(&ioat_chan->prep_lock); ioat_chan->ring = ring; ioat_chan->head = 0; ioat_chan->issued = 0; ioat_chan->tail = 0; ioat_chan->alloc_order = order; set_bit(IOAT_RUN, &ioat_chan->state); spin_unlock_bh(&ioat_chan->prep_lock); spin_unlock_bh(&ioat_chan->cleanup_lock); /* Setting up LTR values for 3.4 or later */ if (ioat_chan->ioat_dma->version >= IOAT_VER_3_4) { u32 lat_val; lat_val = IOAT_CHAN_LTR_ACTIVE_SNVAL | IOAT_CHAN_LTR_ACTIVE_SNLATSCALE | IOAT_CHAN_LTR_ACTIVE_SNREQMNT; writel(lat_val, ioat_chan->reg_base + IOAT_CHAN_LTR_ACTIVE_OFFSET); lat_val = IOAT_CHAN_LTR_IDLE_SNVAL | IOAT_CHAN_LTR_IDLE_SNLATSCALE | IOAT_CHAN_LTR_IDLE_SNREQMNT; writel(lat_val, ioat_chan->reg_base + IOAT_CHAN_LTR_IDLE_OFFSET); /* Select to active */ writeb(IOAT_CHAN_LTR_SWSEL_ACTIVE, ioat_chan->reg_base + IOAT_CHAN_LTR_SWSEL_OFFSET); } ioat_start_null_desc(ioat_chan); /* check that we got off the ground */ do { udelay(1); status = ioat_chansts(ioat_chan); } while (i++ < 20 && !is_ioat_active(status) && !is_ioat_idle(status)); if (is_ioat_active(status) || is_ioat_idle(status)) return 1 << ioat_chan->alloc_order; chanerr = readl(ioat_chan->reg_base + IOAT_CHANERR_OFFSET); dev_WARN(to_dev(ioat_chan), "failed to start channel chanerr: %#x\n", chanerr); ioat_free_chan_resources(c); return -EFAULT; } /* common channel initialization */ static void ioat_init_channel(struct ioatdma_device *ioat_dma, struct ioatdma_chan *ioat_chan, int idx) { struct dma_device *dma = &ioat_dma->dma_dev; ioat_chan->ioat_dma = ioat_dma; ioat_chan->reg_base = ioat_dma->reg_base + (0x80 * (idx + 1)); spin_lock_init(&ioat_chan->cleanup_lock); ioat_chan->dma_chan.device = dma; dma_cookie_init(&ioat_chan->dma_chan); list_add_tail(&ioat_chan->dma_chan.device_node, &dma->channels); ioat_dma->idx[idx] = ioat_chan; timer_setup(&ioat_chan->timer, ioat_timer_event, 0); tasklet_setup(&ioat_chan->cleanup_task, ioat_cleanup_event); } #define IOAT_NUM_SRC_TEST 6 /* must be <= 8 */ static int ioat_xor_val_self_test(struct ioatdma_device *ioat_dma) { int i, src_idx; struct page *dest; struct page *xor_srcs[IOAT_NUM_SRC_TEST]; struct page *xor_val_srcs[IOAT_NUM_SRC_TEST + 1]; dma_addr_t dma_srcs[IOAT_NUM_SRC_TEST + 1]; dma_addr_t dest_dma; struct dma_async_tx_descriptor *tx; struct dma_chan *dma_chan; dma_cookie_t cookie; u8 cmp_byte = 0; u32 cmp_word; u32 xor_val_result; int err = 0; struct completion cmp; unsigned long tmo; struct device *dev = &ioat_dma->pdev->dev; struct dma_device *dma = &ioat_dma->dma_dev; u8 op = 0; dev_dbg(dev, "%s\n", __func__); if (!dma_has_cap(DMA_XOR, dma->cap_mask)) return 0; for (src_idx = 0; src_idx < IOAT_NUM_SRC_TEST; src_idx++) { xor_srcs[src_idx] = alloc_page(GFP_KERNEL); if (!xor_srcs[src_idx]) { while (src_idx--) __free_page(xor_srcs[src_idx]); return -ENOMEM; } } dest = alloc_page(GFP_KERNEL); if (!dest) { while (src_idx--) __free_page(xor_srcs[src_idx]); return -ENOMEM; } /* Fill in src buffers */ for (src_idx = 0; src_idx < IOAT_NUM_SRC_TEST; src_idx++) { u8 *ptr = page_address(xor_srcs[src_idx]); for (i = 0; i < PAGE_SIZE; i++) ptr[i] = (1 << src_idx); } for (src_idx = 0; src_idx < IOAT_NUM_SRC_TEST; src_idx++) cmp_byte ^= (u8) (1 << src_idx); cmp_word = (cmp_byte << 24) | (cmp_byte << 16) | (cmp_byte << 8) | cmp_byte; memset(page_address(dest), 0, PAGE_SIZE); dma_chan = container_of(dma->channels.next, struct dma_chan, device_node); if (dma->device_alloc_chan_resources(dma_chan) < 1) { err = -ENODEV; goto out; } /* test xor */ op = IOAT_OP_XOR; dest_dma = dma_map_page(dev, dest, 0, PAGE_SIZE, DMA_FROM_DEVICE); if (dma_mapping_error(dev, dest_dma)) { err = -ENOMEM; goto free_resources; } for (i = 0; i < IOAT_NUM_SRC_TEST; i++) { dma_srcs[i] = dma_map_page(dev, xor_srcs[i], 0, PAGE_SIZE, DMA_TO_DEVICE); if (dma_mapping_error(dev, dma_srcs[i])) { err = -ENOMEM; goto dma_unmap; } } tx = dma->device_prep_dma_xor(dma_chan, dest_dma, dma_srcs, IOAT_NUM_SRC_TEST, PAGE_SIZE, DMA_PREP_INTERRUPT); if (!tx) { dev_err(dev, "Self-test xor prep failed\n"); err = -ENODEV; goto dma_unmap; } async_tx_ack(tx); init_completion(&cmp); tx->callback = ioat_dma_test_callback; tx->callback_param = &cmp; cookie = tx->tx_submit(tx); if (cookie < 0) { dev_err(dev, "Self-test xor setup failed\n"); err = -ENODEV; goto dma_unmap; } dma->device_issue_pending(dma_chan); tmo = wait_for_completion_timeout(&cmp, msecs_to_jiffies(3000)); if (tmo == 0 || dma->device_tx_status(dma_chan, cookie, NULL) != DMA_COMPLETE) { dev_err(dev, "Self-test xor timed out\n"); err = -ENODEV; goto dma_unmap; } for (i = 0; i < IOAT_NUM_SRC_TEST; i++) dma_unmap_page(dev, dma_srcs[i], PAGE_SIZE, DMA_TO_DEVICE); dma_sync_single_for_cpu(dev, dest_dma, PAGE_SIZE, DMA_FROM_DEVICE); for (i = 0; i < (PAGE_SIZE / sizeof(u32)); i++) { u32 *ptr = page_address(dest); if (ptr[i] != cmp_word) { dev_err(dev, "Self-test xor failed compare\n"); err = -ENODEV; goto free_resources; } } dma_sync_single_for_device(dev, dest_dma, PAGE_SIZE, DMA_FROM_DEVICE); dma_unmap_page(dev, dest_dma, PAGE_SIZE, DMA_FROM_DEVICE); /* skip validate if the capability is not present */ if (!dma_has_cap(DMA_XOR_VAL, dma_chan->device->cap_mask)) goto free_resources; op = IOAT_OP_XOR_VAL; /* validate the sources with the destintation page */ for (i = 0; i < IOAT_NUM_SRC_TEST; i++) xor_val_srcs[i] = xor_srcs[i]; xor_val_srcs[i] = dest; xor_val_result = 1; for (i = 0; i < IOAT_NUM_SRC_TEST + 1; i++) { dma_srcs[i] = dma_map_page(dev, xor_val_srcs[i], 0, PAGE_SIZE, DMA_TO_DEVICE); if (dma_mapping_error(dev, dma_srcs[i])) { err = -ENOMEM; goto dma_unmap; } } tx = dma->device_prep_dma_xor_val(dma_chan, dma_srcs, IOAT_NUM_SRC_TEST + 1, PAGE_SIZE, &xor_val_result, DMA_PREP_INTERRUPT); if (!tx) { dev_err(dev, "Self-test zero prep failed\n"); err = -ENODEV; goto dma_unmap; } async_tx_ack(tx); init_completion(&cmp); tx->callback = ioat_dma_test_callback; tx->callback_param = &cmp; cookie = tx->tx_submit(tx); if (cookie < 0) { dev_err(dev, "Self-test zero setup failed\n"); err = -ENODEV; goto dma_unmap; } dma->device_issue_pending(dma_chan); tmo = wait_for_completion_timeout(&cmp, msecs_to_jiffies(3000)); if (tmo == 0 || dma->device_tx_status(dma_chan, cookie, NULL) != DMA_COMPLETE) { dev_err(dev, "Self-test validate timed out\n"); err = -ENODEV; goto dma_unmap; } for (i = 0; i < IOAT_NUM_SRC_TEST + 1; i++) dma_unmap_page(dev, dma_srcs[i], PAGE_SIZE, DMA_TO_DEVICE); if (xor_val_result != 0) { dev_err(dev, "Self-test validate failed compare\n"); err = -ENODEV; goto free_resources; } memset(page_address(dest), 0, PAGE_SIZE); /* test for non-zero parity sum */ op = IOAT_OP_XOR_VAL; xor_val_result = 0; for (i = 0; i < IOAT_NUM_SRC_TEST + 1; i++) { dma_srcs[i] = dma_map_page(dev, xor_val_srcs[i], 0, PAGE_SIZE, DMA_TO_DEVICE); if (dma_mapping_error(dev, dma_srcs[i])) { err = -ENOMEM; goto dma_unmap; } } tx = dma->device_prep_dma_xor_val(dma_chan, dma_srcs, IOAT_NUM_SRC_TEST + 1, PAGE_SIZE, &xor_val_result, DMA_PREP_INTERRUPT); if (!tx) { dev_err(dev, "Self-test 2nd zero prep failed\n"); err = -ENODEV; goto dma_unmap; } async_tx_ack(tx); init_completion(&cmp); tx->callback = ioat_dma_test_callback; tx->callback_param = &cmp; cookie = tx->tx_submit(tx); if (cookie < 0) { dev_err(dev, "Self-test 2nd zero setup failed\n"); err = -ENODEV; goto dma_unmap; } dma->device_issue_pending(dma_chan); tmo = wait_for_completion_timeout(&cmp, msecs_to_jiffies(3000)); if (tmo == 0 || dma->device_tx_status(dma_chan, cookie, NULL) != DMA_COMPLETE) { dev_err(dev, "Self-test 2nd validate timed out\n"); err = -ENODEV; goto dma_unmap; } if (xor_val_result != SUM_CHECK_P_RESULT) { dev_err(dev, "Self-test validate failed compare\n"); err = -ENODEV; goto dma_unmap; } for (i = 0; i < IOAT_NUM_SRC_TEST + 1; i++) dma_unmap_page(dev, dma_srcs[i], PAGE_SIZE, DMA_TO_DEVICE); goto free_resources; dma_unmap: if (op == IOAT_OP_XOR) { while (--i >= 0) dma_unmap_page(dev, dma_srcs[i], PAGE_SIZE, DMA_TO_DEVICE); dma_unmap_page(dev, dest_dma, PAGE_SIZE, DMA_FROM_DEVICE); } else if (op == IOAT_OP_XOR_VAL) { while (--i >= 0) dma_unmap_page(dev, dma_srcs[i], PAGE_SIZE, DMA_TO_DEVICE); } free_resources: dma->device_free_chan_resources(dma_chan); out: src_idx = IOAT_NUM_SRC_TEST; while (src_idx--) __free_page(xor_srcs[src_idx]); __free_page(dest); return err; } static int ioat3_dma_self_test(struct ioatdma_device *ioat_dma) { int rc; rc = ioat_dma_self_test(ioat_dma); if (rc) return rc; rc = ioat_xor_val_self_test(ioat_dma); return rc; } static void ioat_intr_quirk(struct ioatdma_device *ioat_dma) { struct dma_device *dma; struct dma_chan *c; struct ioatdma_chan *ioat_chan; u32 errmask; dma = &ioat_dma->dma_dev; /* * if we have descriptor write back error status, we mask the * error interrupts */ if (ioat_dma->cap & IOAT_CAP_DWBES) { list_for_each_entry(c, &dma->channels, device_node) { ioat_chan = to_ioat_chan(c); errmask = readl(ioat_chan->reg_base + IOAT_CHANERR_MASK_OFFSET); errmask |= IOAT_CHANERR_XOR_P_OR_CRC_ERR | IOAT_CHANERR_XOR_Q_ERR; writel(errmask, ioat_chan->reg_base + IOAT_CHANERR_MASK_OFFSET); } } } static int ioat3_dma_probe(struct ioatdma_device *ioat_dma, int dca) { struct pci_dev *pdev = ioat_dma->pdev; int dca_en = system_has_dca_enabled(pdev); struct dma_device *dma; struct dma_chan *c; struct ioatdma_chan *ioat_chan; int err; u16 val16; dma = &ioat_dma->dma_dev; dma->device_prep_dma_memcpy = ioat_dma_prep_memcpy_lock; dma->device_issue_pending = ioat_issue_pending; dma->device_alloc_chan_resources = ioat_alloc_chan_resources; dma->device_free_chan_resources = ioat_free_chan_resources; dma_cap_set(DMA_INTERRUPT, dma->cap_mask); dma->device_prep_dma_interrupt = ioat_prep_interrupt_lock; ioat_dma->cap = readl(ioat_dma->reg_base + IOAT_DMA_CAP_OFFSET); if (is_xeon_cb32(pdev) || is_bwd_noraid(pdev)) ioat_dma->cap &= ~(IOAT_CAP_XOR | IOAT_CAP_PQ | IOAT_CAP_RAID16SS); /* dca is incompatible with raid operations */ if (dca_en && (ioat_dma->cap & (IOAT_CAP_XOR|IOAT_CAP_PQ))) ioat_dma->cap &= ~(IOAT_CAP_XOR|IOAT_CAP_PQ); if (ioat_dma->cap & IOAT_CAP_XOR) { dma->max_xor = 8; dma_cap_set(DMA_XOR, dma->cap_mask); dma->device_prep_dma_xor = ioat_prep_xor; dma_cap_set(DMA_XOR_VAL, dma->cap_mask); dma->device_prep_dma_xor_val = ioat_prep_xor_val; } if (ioat_dma->cap & IOAT_CAP_PQ) { dma->device_prep_dma_pq = ioat_prep_pq; dma->device_prep_dma_pq_val = ioat_prep_pq_val; dma_cap_set(DMA_PQ, dma->cap_mask); dma_cap_set(DMA_PQ_VAL, dma->cap_mask); if (ioat_dma->cap & IOAT_CAP_RAID16SS) dma_set_maxpq(dma, 16, 0); else dma_set_maxpq(dma, 8, 0); if (!(ioat_dma->cap & IOAT_CAP_XOR)) { dma->device_prep_dma_xor = ioat_prep_pqxor; dma->device_prep_dma_xor_val = ioat_prep_pqxor_val; dma_cap_set(DMA_XOR, dma->cap_mask); dma_cap_set(DMA_XOR_VAL, dma->cap_mask); if (ioat_dma->cap & IOAT_CAP_RAID16SS) dma->max_xor = 16; else dma->max_xor = 8; } } dma->device_tx_status = ioat_tx_status; /* starting with CB3.3 super extended descriptors are supported */ if (ioat_dma->cap & IOAT_CAP_RAID16SS) { char pool_name[14]; int i; for (i = 0; i < MAX_SED_POOLS; i++) { snprintf(pool_name, 14, "ioat_hw%d_sed", i); /* allocate SED DMA pool */ ioat_dma->sed_hw_pool[i] = dmam_pool_create(pool_name, &pdev->dev, SED_SIZE * (i + 1), 64, 0); if (!ioat_dma->sed_hw_pool[i]) return -ENOMEM; } } if (!(ioat_dma->cap & (IOAT_CAP_XOR | IOAT_CAP_PQ))) dma_cap_set(DMA_PRIVATE, dma->cap_mask); err = ioat_probe(ioat_dma); if (err) return err; list_for_each_entry(c, &dma->channels, device_node) { ioat_chan = to_ioat_chan(c); writel(IOAT_DMA_DCA_ANY_CPU, ioat_chan->reg_base + IOAT_DCACTRL_OFFSET); } err = ioat_register(ioat_dma); if (err) return err; ioat_kobject_add(ioat_dma, &ioat_ktype); if (dca) ioat_dma->dca = ioat_dca_init(pdev, ioat_dma->reg_base); /* disable relaxed ordering */ err = pcie_capability_read_word(pdev, PCI_EXP_DEVCTL, &val16); if (err) return pcibios_err_to_errno(err); /* clear relaxed ordering enable */ val16 &= ~PCI_EXP_DEVCTL_RELAX_EN; err = pcie_capability_write_word(pdev, PCI_EXP_DEVCTL, val16); if (err) return pcibios_err_to_errno(err); if (ioat_dma->cap & IOAT_CAP_DPS) writeb(ioat_pending_level + 1, ioat_dma->reg_base + IOAT_PREFETCH_LIMIT_OFFSET); return 0; } static void ioat_shutdown(struct pci_dev *pdev) { struct ioatdma_device *ioat_dma = pci_get_drvdata(pdev); struct ioatdma_chan *ioat_chan; int i; if (!ioat_dma) return; for (i = 0; i < IOAT_MAX_CHANS; i++) { ioat_chan = ioat_dma->idx[i]; if (!ioat_chan) continue; spin_lock_bh(&ioat_chan->prep_lock); set_bit(IOAT_CHAN_DOWN, &ioat_chan->state); spin_unlock_bh(&ioat_chan->prep_lock); /* * Synchronization rule for del_timer_sync(): * - The caller must not hold locks which would prevent * completion of the timer's handler. * So prep_lock cannot be held before calling it. */ del_timer_sync(&ioat_chan->timer); /* this should quiesce then reset */ ioat_reset_hw(ioat_chan); } ioat_disable_interrupts(ioat_dma); } static void ioat_resume(struct ioatdma_device *ioat_dma) { struct ioatdma_chan *ioat_chan; u32 chanerr; int i; for (i = 0; i < IOAT_MAX_CHANS; i++) { ioat_chan = ioat_dma->idx[i]; if (!ioat_chan) continue; spin_lock_bh(&ioat_chan->prep_lock); clear_bit(IOAT_CHAN_DOWN, &ioat_chan->state); spin_unlock_bh(&ioat_chan->prep_lock); chanerr = readl(ioat_chan->reg_base + IOAT_CHANERR_OFFSET); writel(chanerr, ioat_chan->reg_base + IOAT_CHANERR_OFFSET); /* no need to reset as shutdown already did that */ } } #define DRV_NAME "ioatdma" static pci_ers_result_t ioat_pcie_error_detected(struct pci_dev *pdev, pci_channel_state_t error) { dev_dbg(&pdev->dev, "%s: PCIe AER error %d\n", DRV_NAME, error); /* quiesce and block I/O */ ioat_shutdown(pdev); return PCI_ERS_RESULT_NEED_RESET; } static pci_ers_result_t ioat_pcie_error_slot_reset(struct pci_dev *pdev) { pci_ers_result_t result = PCI_ERS_RESULT_RECOVERED; dev_dbg(&pdev->dev, "%s post reset handling\n", DRV_NAME); if (pci_enable_device_mem(pdev) < 0) { dev_err(&pdev->dev, "Failed to enable PCIe device after reset.\n"); result = PCI_ERS_RESULT_DISCONNECT; } else { pci_set_master(pdev); pci_restore_state(pdev); pci_save_state(pdev); pci_wake_from_d3(pdev, false); } return result; } static void ioat_pcie_error_resume(struct pci_dev *pdev) { struct ioatdma_device *ioat_dma = pci_get_drvdata(pdev); dev_dbg(&pdev->dev, "%s: AER handling resuming\n", DRV_NAME); /* initialize and bring everything back */ ioat_resume(ioat_dma); } static const struct pci_error_handlers ioat_err_handler = { .error_detected = ioat_pcie_error_detected, .slot_reset = ioat_pcie_error_slot_reset, .resume = ioat_pcie_error_resume, }; static struct pci_driver ioat_pci_driver = { .name = DRV_NAME, .id_table = ioat_pci_tbl, .probe = ioat_pci_probe, .remove = ioat_remove, .shutdown = ioat_shutdown, .err_handler = &ioat_err_handler, }; static void release_ioatdma(struct dma_device *device) { struct ioatdma_device *d = to_ioatdma_device(device); int i; for (i = 0; i < IOAT_MAX_CHANS; i++) kfree(d->idx[i]); dma_pool_destroy(d->completion_pool); kfree(d); } static struct ioatdma_device * alloc_ioatdma(struct pci_dev *pdev, void __iomem *iobase) { struct ioatdma_device *d = kzalloc(sizeof(*d), GFP_KERNEL); if (!d) return NULL; d->pdev = pdev; d->reg_base = iobase; d->dma_dev.device_release = release_ioatdma; return d; } static int ioat_pci_probe(struct pci_dev *pdev, const struct pci_device_id *id) { void __iomem * const *iomap; struct device *dev = &pdev->dev; struct ioatdma_device *device; int err; err = pcim_enable_device(pdev); if (err) return err; err = pcim_iomap_regions(pdev, 1 << IOAT_MMIO_BAR, DRV_NAME); if (err) return err; iomap = pcim_iomap_table(pdev); if (!iomap) return -ENOMEM; err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); if (err) return err; device = alloc_ioatdma(pdev, iomap[IOAT_MMIO_BAR]); if (!device) return -ENOMEM; pci_set_master(pdev); pci_set_drvdata(pdev, device); device->version = readb(device->reg_base + IOAT_VER_OFFSET); if (device->version >= IOAT_VER_3_4) ioat_dca_enabled = 0; if (device->version >= IOAT_VER_3_0) { if (is_skx_ioat(pdev)) device->version = IOAT_VER_3_2; err = ioat3_dma_probe(device, ioat_dca_enabled); } else return -ENODEV; if (err) { dev_err(dev, "Intel(R) I/OAT DMA Engine init failed\n"); return -ENODEV; } return 0; } static void ioat_remove(struct pci_dev *pdev) { struct ioatdma_device *device = pci_get_drvdata(pdev); if (!device) return; ioat_shutdown(pdev); dev_err(&pdev->dev, "Removing dma and dca services\n"); if (device->dca) { unregister_dca_provider(device->dca, &pdev->dev); free_dca_provider(device->dca); device->dca = NULL; } ioat_dma_remove(device); } static int __init ioat_init_module(void) { int err = -ENOMEM; pr_info("%s: Intel(R) QuickData Technology Driver %s\n", DRV_NAME, IOAT_DMA_VERSION); ioat_cache = kmem_cache_create("ioat", sizeof(struct ioat_ring_ent), 0, SLAB_HWCACHE_ALIGN, NULL); if (!ioat_cache) return -ENOMEM; ioat_sed_cache = KMEM_CACHE(ioat_sed_ent, 0); if (!ioat_sed_cache) goto err_ioat_cache; err = pci_register_driver(&ioat_pci_driver); if (err) goto err_ioat3_cache; return 0; err_ioat3_cache: kmem_cache_destroy(ioat_sed_cache); err_ioat_cache: kmem_cache_destroy(ioat_cache); return err; } module_init(ioat_init_module); static void __exit ioat_exit_module(void) { pci_unregister_driver(&ioat_pci_driver); kmem_cache_destroy(ioat_cache); } module_exit(ioat_exit_module);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1