Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Amireddy Mallikarjuna reddy | 8593 | 99.88% | 1 | 33.33% |
Peter Harliman Liem | 8 | 0.09% | 1 | 33.33% |
Li Zetao | 2 | 0.02% | 1 | 33.33% |
Total | 8603 | 3 |
// SPDX-License-Identifier: GPL-2.0 /* * Lightning Mountain centralized DMA controller driver * * Copyright (c) 2016 - 2020 Intel Corporation. */ #include <linux/bitfield.h> #include <linux/clk.h> #include <linux/dma-mapping.h> #include <linux/dmapool.h> #include <linux/err.h> #include <linux/export.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/iopoll.h> #include <linux/of_dma.h> #include <linux/of_irq.h> #include <linux/platform_device.h> #include <linux/reset.h> #include "../dmaengine.h" #include "../virt-dma.h" #define DRIVER_NAME "lgm-dma" #define DMA_ID 0x0008 #define DMA_ID_REV GENMASK(7, 0) #define DMA_ID_PNR GENMASK(19, 16) #define DMA_ID_CHNR GENMASK(26, 20) #define DMA_ID_DW_128B BIT(27) #define DMA_ID_AW_36B BIT(28) #define DMA_VER32 0x32 #define DMA_VER31 0x31 #define DMA_VER22 0x0A #define DMA_CTRL 0x0010 #define DMA_CTRL_RST BIT(0) #define DMA_CTRL_DSRAM_PATH BIT(1) #define DMA_CTRL_DBURST_WR BIT(3) #define DMA_CTRL_VLD_DF_ACK BIT(4) #define DMA_CTRL_CH_FL BIT(6) #define DMA_CTRL_DS_FOD BIT(7) #define DMA_CTRL_DRB BIT(8) #define DMA_CTRL_ENBE BIT(9) #define DMA_CTRL_DESC_TMOUT_CNT_V31 GENMASK(27, 16) #define DMA_CTRL_DESC_TMOUT_EN_V31 BIT(30) #define DMA_CTRL_PKTARB BIT(31) #define DMA_CPOLL 0x0014 #define DMA_CPOLL_CNT GENMASK(15, 4) #define DMA_CPOLL_EN BIT(31) #define DMA_CS 0x0018 #define DMA_CS_MASK GENMASK(5, 0) #define DMA_CCTRL 0x001C #define DMA_CCTRL_ON BIT(0) #define DMA_CCTRL_RST BIT(1) #define DMA_CCTRL_CH_POLL_EN BIT(2) #define DMA_CCTRL_CH_ABC BIT(3) /* Adaptive Burst Chop */ #define DMA_CDBA_MSB GENMASK(7, 4) #define DMA_CCTRL_DIR_TX BIT(8) #define DMA_CCTRL_CLASS GENMASK(11, 9) #define DMA_CCTRL_CLASSH GENMASK(19, 18) #define DMA_CCTRL_WR_NP_EN BIT(21) #define DMA_CCTRL_PDEN BIT(23) #define DMA_MAX_CLASS (SZ_32 - 1) #define DMA_CDBA 0x0020 #define DMA_CDLEN 0x0024 #define DMA_CIS 0x0028 #define DMA_CIE 0x002C #define DMA_CI_EOP BIT(1) #define DMA_CI_DUR BIT(2) #define DMA_CI_DESCPT BIT(3) #define DMA_CI_CHOFF BIT(4) #define DMA_CI_RDERR BIT(5) #define DMA_CI_ALL \ (DMA_CI_EOP | DMA_CI_DUR | DMA_CI_DESCPT | DMA_CI_CHOFF | DMA_CI_RDERR) #define DMA_PS 0x0040 #define DMA_PCTRL 0x0044 #define DMA_PCTRL_RXBL16 BIT(0) #define DMA_PCTRL_TXBL16 BIT(1) #define DMA_PCTRL_RXBL GENMASK(3, 2) #define DMA_PCTRL_RXBL_8 3 #define DMA_PCTRL_TXBL GENMASK(5, 4) #define DMA_PCTRL_TXBL_8 3 #define DMA_PCTRL_PDEN BIT(6) #define DMA_PCTRL_RXBL32 BIT(7) #define DMA_PCTRL_RXENDI GENMASK(9, 8) #define DMA_PCTRL_TXENDI GENMASK(11, 10) #define DMA_PCTRL_TXBL32 BIT(15) #define DMA_PCTRL_MEM_FLUSH BIT(16) #define DMA_IRNEN1 0x00E8 #define DMA_IRNCR1 0x00EC #define DMA_IRNEN 0x00F4 #define DMA_IRNCR 0x00F8 #define DMA_C_DP_TICK 0x100 #define DMA_C_DP_TICK_TIKNARB GENMASK(15, 0) #define DMA_C_DP_TICK_TIKARB GENMASK(31, 16) #define DMA_C_HDRM 0x110 /* * If header mode is set in DMA descriptor, * If bit 30 is disabled, HDR_LEN must be configured according to channel * requirement. * If bit 30 is enabled(checksum with heade mode), HDR_LEN has no need to * be configured. It will enable check sum for switch * If header mode is not set in DMA descriptor, * This register setting doesn't matter */ #define DMA_C_HDRM_HDR_SUM BIT(30) #define DMA_C_BOFF 0x120 #define DMA_C_BOFF_BOF_LEN GENMASK(7, 0) #define DMA_C_BOFF_EN BIT(31) #define DMA_ORRC 0x190 #define DMA_ORRC_ORRCNT GENMASK(8, 4) #define DMA_ORRC_EN BIT(31) #define DMA_C_ENDIAN 0x200 #define DMA_C_END_DATAENDI GENMASK(1, 0) #define DMA_C_END_DE_EN BIT(7) #define DMA_C_END_DESENDI GENMASK(9, 8) #define DMA_C_END_DES_EN BIT(16) /* DMA controller capability */ #define DMA_ADDR_36BIT BIT(0) #define DMA_DATA_128BIT BIT(1) #define DMA_CHAN_FLOW_CTL BIT(2) #define DMA_DESC_FOD BIT(3) #define DMA_DESC_IN_SRAM BIT(4) #define DMA_EN_BYTE_EN BIT(5) #define DMA_DBURST_WR BIT(6) #define DMA_VALID_DESC_FETCH_ACK BIT(7) #define DMA_DFT_DRB BIT(8) #define DMA_ORRC_MAX_CNT (SZ_32 - 1) #define DMA_DFT_POLL_CNT SZ_4 #define DMA_DFT_BURST_V22 SZ_2 #define DMA_BURSTL_8DW SZ_8 #define DMA_BURSTL_16DW SZ_16 #define DMA_BURSTL_32DW SZ_32 #define DMA_DFT_BURST DMA_BURSTL_16DW #define DMA_MAX_DESC_NUM (SZ_8K - 1) #define DMA_CHAN_BOFF_MAX (SZ_256 - 1) #define DMA_DFT_ENDIAN 0 #define DMA_DFT_DESC_TCNT 50 #define DMA_HDR_LEN_MAX (SZ_16K - 1) /* DMA flags */ #define DMA_TX_CH BIT(0) #define DMA_RX_CH BIT(1) #define DEVICE_ALLOC_DESC BIT(2) #define CHAN_IN_USE BIT(3) #define DMA_HW_DESC BIT(4) /* Descriptor fields */ #define DESC_DATA_LEN GENMASK(15, 0) #define DESC_BYTE_OFF GENMASK(25, 23) #define DESC_EOP BIT(28) #define DESC_SOP BIT(29) #define DESC_C BIT(30) #define DESC_OWN BIT(31) #define DMA_CHAN_RST 1 #define DMA_MAX_SIZE (BIT(16) - 1) #define MAX_LOWER_CHANS 32 #define MASK_LOWER_CHANS GENMASK(4, 0) #define DMA_OWN 1 #define HIGH_4_BITS GENMASK(3, 0) #define DMA_DFT_DESC_NUM 1 #define DMA_PKT_DROP_DIS 0 enum ldma_chan_on_off { DMA_CH_OFF = 0, DMA_CH_ON = 1, }; enum { DMA_TYPE_TX = 0, DMA_TYPE_RX, DMA_TYPE_MCPY, }; struct ldma_dev; struct ldma_port; struct ldma_chan { struct virt_dma_chan vchan; struct ldma_port *port; /* back pointer */ char name[8]; /* Channel name */ int nr; /* Channel id in hardware */ u32 flags; /* central way or channel based way */ enum ldma_chan_on_off onoff; dma_addr_t desc_phys; void *desc_base; /* Virtual address */ u32 desc_cnt; /* Number of descriptors */ int rst; u32 hdrm_len; bool hdrm_csum; u32 boff_len; u32 data_endian; u32 desc_endian; bool pden; bool desc_rx_np; bool data_endian_en; bool desc_endian_en; bool abc_en; bool desc_init; struct dma_pool *desc_pool; /* Descriptors pool */ u32 desc_num; struct dw2_desc_sw *ds; struct work_struct work; struct dma_slave_config config; }; struct ldma_port { struct ldma_dev *ldev; /* back pointer */ u32 portid; u32 rxbl; u32 txbl; u32 rxendi; u32 txendi; u32 pkt_drop; }; /* Instance specific data */ struct ldma_inst_data { bool desc_in_sram; bool chan_fc; bool desc_fod; /* Fetch On Demand */ bool valid_desc_fetch_ack; u32 orrc; /* Outstanding read count */ const char *name; u32 type; }; struct ldma_dev { struct device *dev; void __iomem *base; struct reset_control *rst; struct clk *core_clk; struct dma_device dma_dev; u32 ver; int irq; struct ldma_port *ports; struct ldma_chan *chans; /* channel list on this DMA or port */ spinlock_t dev_lock; /* Controller register exclusive */ u32 chan_nrs; u32 port_nrs; u32 channels_mask; u32 flags; u32 pollcnt; const struct ldma_inst_data *inst; struct workqueue_struct *wq; }; struct dw2_desc { u32 field; u32 addr; } __packed __aligned(8); struct dw2_desc_sw { struct virt_dma_desc vdesc; struct ldma_chan *chan; dma_addr_t desc_phys; size_t desc_cnt; size_t size; struct dw2_desc *desc_hw; }; static inline void ldma_update_bits(struct ldma_dev *d, u32 mask, u32 val, u32 ofs) { u32 old_val, new_val; old_val = readl(d->base + ofs); new_val = (old_val & ~mask) | (val & mask); if (new_val != old_val) writel(new_val, d->base + ofs); } static inline struct ldma_chan *to_ldma_chan(struct dma_chan *chan) { return container_of(chan, struct ldma_chan, vchan.chan); } static inline struct ldma_dev *to_ldma_dev(struct dma_device *dma_dev) { return container_of(dma_dev, struct ldma_dev, dma_dev); } static inline struct dw2_desc_sw *to_lgm_dma_desc(struct virt_dma_desc *vdesc) { return container_of(vdesc, struct dw2_desc_sw, vdesc); } static inline bool ldma_chan_tx(struct ldma_chan *c) { return !!(c->flags & DMA_TX_CH); } static inline bool ldma_chan_is_hw_desc(struct ldma_chan *c) { return !!(c->flags & DMA_HW_DESC); } static void ldma_dev_reset(struct ldma_dev *d) { unsigned long flags; spin_lock_irqsave(&d->dev_lock, flags); ldma_update_bits(d, DMA_CTRL_RST, DMA_CTRL_RST, DMA_CTRL); spin_unlock_irqrestore(&d->dev_lock, flags); } static void ldma_dev_pkt_arb_cfg(struct ldma_dev *d, bool enable) { unsigned long flags; u32 mask = DMA_CTRL_PKTARB; u32 val = enable ? DMA_CTRL_PKTARB : 0; spin_lock_irqsave(&d->dev_lock, flags); ldma_update_bits(d, mask, val, DMA_CTRL); spin_unlock_irqrestore(&d->dev_lock, flags); } static void ldma_dev_sram_desc_cfg(struct ldma_dev *d, bool enable) { unsigned long flags; u32 mask = DMA_CTRL_DSRAM_PATH; u32 val = enable ? DMA_CTRL_DSRAM_PATH : 0; spin_lock_irqsave(&d->dev_lock, flags); ldma_update_bits(d, mask, val, DMA_CTRL); spin_unlock_irqrestore(&d->dev_lock, flags); } static void ldma_dev_chan_flow_ctl_cfg(struct ldma_dev *d, bool enable) { unsigned long flags; u32 mask, val; if (d->inst->type != DMA_TYPE_TX) return; mask = DMA_CTRL_CH_FL; val = enable ? DMA_CTRL_CH_FL : 0; spin_lock_irqsave(&d->dev_lock, flags); ldma_update_bits(d, mask, val, DMA_CTRL); spin_unlock_irqrestore(&d->dev_lock, flags); } static void ldma_dev_global_polling_enable(struct ldma_dev *d) { unsigned long flags; u32 mask = DMA_CPOLL_EN | DMA_CPOLL_CNT; u32 val = DMA_CPOLL_EN; val |= FIELD_PREP(DMA_CPOLL_CNT, d->pollcnt); spin_lock_irqsave(&d->dev_lock, flags); ldma_update_bits(d, mask, val, DMA_CPOLL); spin_unlock_irqrestore(&d->dev_lock, flags); } static void ldma_dev_desc_fetch_on_demand_cfg(struct ldma_dev *d, bool enable) { unsigned long flags; u32 mask, val; if (d->inst->type == DMA_TYPE_MCPY) return; mask = DMA_CTRL_DS_FOD; val = enable ? DMA_CTRL_DS_FOD : 0; spin_lock_irqsave(&d->dev_lock, flags); ldma_update_bits(d, mask, val, DMA_CTRL); spin_unlock_irqrestore(&d->dev_lock, flags); } static void ldma_dev_byte_enable_cfg(struct ldma_dev *d, bool enable) { unsigned long flags; u32 mask = DMA_CTRL_ENBE; u32 val = enable ? DMA_CTRL_ENBE : 0; spin_lock_irqsave(&d->dev_lock, flags); ldma_update_bits(d, mask, val, DMA_CTRL); spin_unlock_irqrestore(&d->dev_lock, flags); } static void ldma_dev_orrc_cfg(struct ldma_dev *d) { unsigned long flags; u32 val = 0; u32 mask; if (d->inst->type == DMA_TYPE_RX) return; mask = DMA_ORRC_EN | DMA_ORRC_ORRCNT; if (d->inst->orrc > 0 && d->inst->orrc <= DMA_ORRC_MAX_CNT) val = DMA_ORRC_EN | FIELD_PREP(DMA_ORRC_ORRCNT, d->inst->orrc); spin_lock_irqsave(&d->dev_lock, flags); ldma_update_bits(d, mask, val, DMA_ORRC); spin_unlock_irqrestore(&d->dev_lock, flags); } static void ldma_dev_df_tout_cfg(struct ldma_dev *d, bool enable, int tcnt) { u32 mask = DMA_CTRL_DESC_TMOUT_CNT_V31; unsigned long flags; u32 val; if (enable) val = DMA_CTRL_DESC_TMOUT_EN_V31 | FIELD_PREP(DMA_CTRL_DESC_TMOUT_CNT_V31, tcnt); else val = 0; spin_lock_irqsave(&d->dev_lock, flags); ldma_update_bits(d, mask, val, DMA_CTRL); spin_unlock_irqrestore(&d->dev_lock, flags); } static void ldma_dev_dburst_wr_cfg(struct ldma_dev *d, bool enable) { unsigned long flags; u32 mask, val; if (d->inst->type != DMA_TYPE_RX && d->inst->type != DMA_TYPE_MCPY) return; mask = DMA_CTRL_DBURST_WR; val = enable ? DMA_CTRL_DBURST_WR : 0; spin_lock_irqsave(&d->dev_lock, flags); ldma_update_bits(d, mask, val, DMA_CTRL); spin_unlock_irqrestore(&d->dev_lock, flags); } static void ldma_dev_vld_fetch_ack_cfg(struct ldma_dev *d, bool enable) { unsigned long flags; u32 mask, val; if (d->inst->type != DMA_TYPE_TX) return; mask = DMA_CTRL_VLD_DF_ACK; val = enable ? DMA_CTRL_VLD_DF_ACK : 0; spin_lock_irqsave(&d->dev_lock, flags); ldma_update_bits(d, mask, val, DMA_CTRL); spin_unlock_irqrestore(&d->dev_lock, flags); } static void ldma_dev_drb_cfg(struct ldma_dev *d, int enable) { unsigned long flags; u32 mask = DMA_CTRL_DRB; u32 val = enable ? DMA_CTRL_DRB : 0; spin_lock_irqsave(&d->dev_lock, flags); ldma_update_bits(d, mask, val, DMA_CTRL); spin_unlock_irqrestore(&d->dev_lock, flags); } static int ldma_dev_cfg(struct ldma_dev *d) { bool enable; ldma_dev_pkt_arb_cfg(d, true); ldma_dev_global_polling_enable(d); enable = !!(d->flags & DMA_DFT_DRB); ldma_dev_drb_cfg(d, enable); enable = !!(d->flags & DMA_EN_BYTE_EN); ldma_dev_byte_enable_cfg(d, enable); enable = !!(d->flags & DMA_CHAN_FLOW_CTL); ldma_dev_chan_flow_ctl_cfg(d, enable); enable = !!(d->flags & DMA_DESC_FOD); ldma_dev_desc_fetch_on_demand_cfg(d, enable); enable = !!(d->flags & DMA_DESC_IN_SRAM); ldma_dev_sram_desc_cfg(d, enable); enable = !!(d->flags & DMA_DBURST_WR); ldma_dev_dburst_wr_cfg(d, enable); enable = !!(d->flags & DMA_VALID_DESC_FETCH_ACK); ldma_dev_vld_fetch_ack_cfg(d, enable); if (d->ver > DMA_VER22) { ldma_dev_orrc_cfg(d); ldma_dev_df_tout_cfg(d, true, DMA_DFT_DESC_TCNT); } dev_dbg(d->dev, "%s Controller 0x%08x configuration done\n", d->inst->name, readl(d->base + DMA_CTRL)); return 0; } static int ldma_chan_cctrl_cfg(struct ldma_chan *c, u32 val) { struct ldma_dev *d = to_ldma_dev(c->vchan.chan.device); u32 class_low, class_high; unsigned long flags; u32 reg; spin_lock_irqsave(&d->dev_lock, flags); ldma_update_bits(d, DMA_CS_MASK, c->nr, DMA_CS); reg = readl(d->base + DMA_CCTRL); /* Read from hardware */ if (reg & DMA_CCTRL_DIR_TX) c->flags |= DMA_TX_CH; else c->flags |= DMA_RX_CH; /* Keep the class value unchanged */ class_low = FIELD_GET(DMA_CCTRL_CLASS, reg); class_high = FIELD_GET(DMA_CCTRL_CLASSH, reg); val &= ~DMA_CCTRL_CLASS; val |= FIELD_PREP(DMA_CCTRL_CLASS, class_low); val &= ~DMA_CCTRL_CLASSH; val |= FIELD_PREP(DMA_CCTRL_CLASSH, class_high); writel(val, d->base + DMA_CCTRL); spin_unlock_irqrestore(&d->dev_lock, flags); return 0; } static void ldma_chan_irq_init(struct ldma_chan *c) { struct ldma_dev *d = to_ldma_dev(c->vchan.chan.device); unsigned long flags; u32 enofs, crofs; u32 cn_bit; if (c->nr < MAX_LOWER_CHANS) { enofs = DMA_IRNEN; crofs = DMA_IRNCR; } else { enofs = DMA_IRNEN1; crofs = DMA_IRNCR1; } cn_bit = BIT(c->nr & MASK_LOWER_CHANS); spin_lock_irqsave(&d->dev_lock, flags); ldma_update_bits(d, DMA_CS_MASK, c->nr, DMA_CS); /* Clear all interrupts and disabled it */ writel(0, d->base + DMA_CIE); writel(DMA_CI_ALL, d->base + DMA_CIS); ldma_update_bits(d, cn_bit, 0, enofs); writel(cn_bit, d->base + crofs); spin_unlock_irqrestore(&d->dev_lock, flags); } static void ldma_chan_set_class(struct ldma_chan *c, u32 val) { struct ldma_dev *d = to_ldma_dev(c->vchan.chan.device); u32 class_val; if (d->inst->type == DMA_TYPE_MCPY || val > DMA_MAX_CLASS) return; /* 3 bits low */ class_val = FIELD_PREP(DMA_CCTRL_CLASS, val & 0x7); /* 2 bits high */ class_val |= FIELD_PREP(DMA_CCTRL_CLASSH, (val >> 3) & 0x3); ldma_update_bits(d, DMA_CS_MASK, c->nr, DMA_CS); ldma_update_bits(d, DMA_CCTRL_CLASS | DMA_CCTRL_CLASSH, class_val, DMA_CCTRL); } static int ldma_chan_on(struct ldma_chan *c) { struct ldma_dev *d = to_ldma_dev(c->vchan.chan.device); unsigned long flags; /* If descriptors not configured, not allow to turn on channel */ if (WARN_ON(!c->desc_init)) return -EINVAL; spin_lock_irqsave(&d->dev_lock, flags); ldma_update_bits(d, DMA_CS_MASK, c->nr, DMA_CS); ldma_update_bits(d, DMA_CCTRL_ON, DMA_CCTRL_ON, DMA_CCTRL); spin_unlock_irqrestore(&d->dev_lock, flags); c->onoff = DMA_CH_ON; return 0; } static int ldma_chan_off(struct ldma_chan *c) { struct ldma_dev *d = to_ldma_dev(c->vchan.chan.device); unsigned long flags; u32 val; int ret; spin_lock_irqsave(&d->dev_lock, flags); ldma_update_bits(d, DMA_CS_MASK, c->nr, DMA_CS); ldma_update_bits(d, DMA_CCTRL_ON, 0, DMA_CCTRL); spin_unlock_irqrestore(&d->dev_lock, flags); ret = readl_poll_timeout_atomic(d->base + DMA_CCTRL, val, !(val & DMA_CCTRL_ON), 0, 10000); if (ret) return ret; c->onoff = DMA_CH_OFF; return 0; } static void ldma_chan_desc_hw_cfg(struct ldma_chan *c, dma_addr_t desc_base, int desc_num) { struct ldma_dev *d = to_ldma_dev(c->vchan.chan.device); unsigned long flags; spin_lock_irqsave(&d->dev_lock, flags); ldma_update_bits(d, DMA_CS_MASK, c->nr, DMA_CS); writel(lower_32_bits(desc_base), d->base + DMA_CDBA); /* Higher 4 bits of 36 bit addressing */ if (IS_ENABLED(CONFIG_64BIT)) { u32 hi = upper_32_bits(desc_base) & HIGH_4_BITS; ldma_update_bits(d, DMA_CDBA_MSB, FIELD_PREP(DMA_CDBA_MSB, hi), DMA_CCTRL); } writel(desc_num, d->base + DMA_CDLEN); spin_unlock_irqrestore(&d->dev_lock, flags); c->desc_init = true; } static struct dma_async_tx_descriptor * ldma_chan_desc_cfg(struct dma_chan *chan, dma_addr_t desc_base, int desc_num) { struct ldma_chan *c = to_ldma_chan(chan); struct ldma_dev *d = to_ldma_dev(c->vchan.chan.device); struct dma_async_tx_descriptor *tx; struct dw2_desc_sw *ds; if (!desc_num) { dev_err(d->dev, "Channel %d must allocate descriptor first\n", c->nr); return NULL; } if (desc_num > DMA_MAX_DESC_NUM) { dev_err(d->dev, "Channel %d descriptor number out of range %d\n", c->nr, desc_num); return NULL; } ldma_chan_desc_hw_cfg(c, desc_base, desc_num); c->flags |= DMA_HW_DESC; c->desc_cnt = desc_num; c->desc_phys = desc_base; ds = kzalloc(sizeof(*ds), GFP_NOWAIT); if (!ds) return NULL; tx = &ds->vdesc.tx; dma_async_tx_descriptor_init(tx, chan); return tx; } static int ldma_chan_reset(struct ldma_chan *c) { struct ldma_dev *d = to_ldma_dev(c->vchan.chan.device); unsigned long flags; u32 val; int ret; ret = ldma_chan_off(c); if (ret) return ret; spin_lock_irqsave(&d->dev_lock, flags); ldma_update_bits(d, DMA_CS_MASK, c->nr, DMA_CS); ldma_update_bits(d, DMA_CCTRL_RST, DMA_CCTRL_RST, DMA_CCTRL); spin_unlock_irqrestore(&d->dev_lock, flags); ret = readl_poll_timeout_atomic(d->base + DMA_CCTRL, val, !(val & DMA_CCTRL_RST), 0, 10000); if (ret) return ret; c->rst = 1; c->desc_init = false; return 0; } static void ldma_chan_byte_offset_cfg(struct ldma_chan *c, u32 boff_len) { struct ldma_dev *d = to_ldma_dev(c->vchan.chan.device); u32 mask = DMA_C_BOFF_EN | DMA_C_BOFF_BOF_LEN; u32 val; if (boff_len > 0 && boff_len <= DMA_CHAN_BOFF_MAX) val = FIELD_PREP(DMA_C_BOFF_BOF_LEN, boff_len) | DMA_C_BOFF_EN; else val = 0; ldma_update_bits(d, DMA_CS_MASK, c->nr, DMA_CS); ldma_update_bits(d, mask, val, DMA_C_BOFF); } static void ldma_chan_data_endian_cfg(struct ldma_chan *c, bool enable, u32 endian_type) { struct ldma_dev *d = to_ldma_dev(c->vchan.chan.device); u32 mask = DMA_C_END_DE_EN | DMA_C_END_DATAENDI; u32 val; if (enable) val = DMA_C_END_DE_EN | FIELD_PREP(DMA_C_END_DATAENDI, endian_type); else val = 0; ldma_update_bits(d, DMA_CS_MASK, c->nr, DMA_CS); ldma_update_bits(d, mask, val, DMA_C_ENDIAN); } static void ldma_chan_desc_endian_cfg(struct ldma_chan *c, bool enable, u32 endian_type) { struct ldma_dev *d = to_ldma_dev(c->vchan.chan.device); u32 mask = DMA_C_END_DES_EN | DMA_C_END_DESENDI; u32 val; if (enable) val = DMA_C_END_DES_EN | FIELD_PREP(DMA_C_END_DESENDI, endian_type); else val = 0; ldma_update_bits(d, DMA_CS_MASK, c->nr, DMA_CS); ldma_update_bits(d, mask, val, DMA_C_ENDIAN); } static void ldma_chan_hdr_mode_cfg(struct ldma_chan *c, u32 hdr_len, bool csum) { struct ldma_dev *d = to_ldma_dev(c->vchan.chan.device); u32 mask, val; /* NB, csum disabled, hdr length must be provided */ if (!csum && (!hdr_len || hdr_len > DMA_HDR_LEN_MAX)) return; mask = DMA_C_HDRM_HDR_SUM; val = DMA_C_HDRM_HDR_SUM; if (!csum && hdr_len) val = hdr_len; ldma_update_bits(d, DMA_CS_MASK, c->nr, DMA_CS); ldma_update_bits(d, mask, val, DMA_C_HDRM); } static void ldma_chan_rxwr_np_cfg(struct ldma_chan *c, bool enable) { struct ldma_dev *d = to_ldma_dev(c->vchan.chan.device); u32 mask, val; /* Only valid for RX channel */ if (ldma_chan_tx(c)) return; mask = DMA_CCTRL_WR_NP_EN; val = enable ? DMA_CCTRL_WR_NP_EN : 0; ldma_update_bits(d, DMA_CS_MASK, c->nr, DMA_CS); ldma_update_bits(d, mask, val, DMA_CCTRL); } static void ldma_chan_abc_cfg(struct ldma_chan *c, bool enable) { struct ldma_dev *d = to_ldma_dev(c->vchan.chan.device); u32 mask, val; if (d->ver < DMA_VER32 || ldma_chan_tx(c)) return; mask = DMA_CCTRL_CH_ABC; val = enable ? DMA_CCTRL_CH_ABC : 0; ldma_update_bits(d, DMA_CS_MASK, c->nr, DMA_CS); ldma_update_bits(d, mask, val, DMA_CCTRL); } static int ldma_port_cfg(struct ldma_port *p) { unsigned long flags; struct ldma_dev *d; u32 reg; d = p->ldev; reg = FIELD_PREP(DMA_PCTRL_TXENDI, p->txendi); reg |= FIELD_PREP(DMA_PCTRL_RXENDI, p->rxendi); if (d->ver == DMA_VER22) { reg |= FIELD_PREP(DMA_PCTRL_TXBL, p->txbl); reg |= FIELD_PREP(DMA_PCTRL_RXBL, p->rxbl); } else { reg |= FIELD_PREP(DMA_PCTRL_PDEN, p->pkt_drop); if (p->txbl == DMA_BURSTL_32DW) reg |= DMA_PCTRL_TXBL32; else if (p->txbl == DMA_BURSTL_16DW) reg |= DMA_PCTRL_TXBL16; else reg |= FIELD_PREP(DMA_PCTRL_TXBL, DMA_PCTRL_TXBL_8); if (p->rxbl == DMA_BURSTL_32DW) reg |= DMA_PCTRL_RXBL32; else if (p->rxbl == DMA_BURSTL_16DW) reg |= DMA_PCTRL_RXBL16; else reg |= FIELD_PREP(DMA_PCTRL_RXBL, DMA_PCTRL_RXBL_8); } spin_lock_irqsave(&d->dev_lock, flags); writel(p->portid, d->base + DMA_PS); writel(reg, d->base + DMA_PCTRL); spin_unlock_irqrestore(&d->dev_lock, flags); reg = readl(d->base + DMA_PCTRL); /* read back */ dev_dbg(d->dev, "Port Control 0x%08x configuration done\n", reg); return 0; } static int ldma_chan_cfg(struct ldma_chan *c) { struct ldma_dev *d = to_ldma_dev(c->vchan.chan.device); unsigned long flags; u32 reg; reg = c->pden ? DMA_CCTRL_PDEN : 0; reg |= c->onoff ? DMA_CCTRL_ON : 0; reg |= c->rst ? DMA_CCTRL_RST : 0; ldma_chan_cctrl_cfg(c, reg); ldma_chan_irq_init(c); if (d->ver <= DMA_VER22) return 0; spin_lock_irqsave(&d->dev_lock, flags); ldma_chan_set_class(c, c->nr); ldma_chan_byte_offset_cfg(c, c->boff_len); ldma_chan_data_endian_cfg(c, c->data_endian_en, c->data_endian); ldma_chan_desc_endian_cfg(c, c->desc_endian_en, c->desc_endian); ldma_chan_hdr_mode_cfg(c, c->hdrm_len, c->hdrm_csum); ldma_chan_rxwr_np_cfg(c, c->desc_rx_np); ldma_chan_abc_cfg(c, c->abc_en); spin_unlock_irqrestore(&d->dev_lock, flags); if (ldma_chan_is_hw_desc(c)) ldma_chan_desc_hw_cfg(c, c->desc_phys, c->desc_cnt); return 0; } static void ldma_dev_init(struct ldma_dev *d) { unsigned long ch_mask = (unsigned long)d->channels_mask; struct ldma_port *p; struct ldma_chan *c; int i; u32 j; spin_lock_init(&d->dev_lock); ldma_dev_reset(d); ldma_dev_cfg(d); /* DMA port initialization */ for (i = 0; i < d->port_nrs; i++) { p = &d->ports[i]; ldma_port_cfg(p); } /* DMA channel initialization */ for_each_set_bit(j, &ch_mask, d->chan_nrs) { c = &d->chans[j]; ldma_chan_cfg(c); } } static int ldma_parse_dt(struct ldma_dev *d) { struct fwnode_handle *fwnode = dev_fwnode(d->dev); struct ldma_port *p; int i; if (fwnode_property_read_bool(fwnode, "intel,dma-byte-en")) d->flags |= DMA_EN_BYTE_EN; if (fwnode_property_read_bool(fwnode, "intel,dma-dburst-wr")) d->flags |= DMA_DBURST_WR; if (fwnode_property_read_bool(fwnode, "intel,dma-drb")) d->flags |= DMA_DFT_DRB; if (fwnode_property_read_u32(fwnode, "intel,dma-poll-cnt", &d->pollcnt)) d->pollcnt = DMA_DFT_POLL_CNT; if (d->inst->chan_fc) d->flags |= DMA_CHAN_FLOW_CTL; if (d->inst->desc_fod) d->flags |= DMA_DESC_FOD; if (d->inst->desc_in_sram) d->flags |= DMA_DESC_IN_SRAM; if (d->inst->valid_desc_fetch_ack) d->flags |= DMA_VALID_DESC_FETCH_ACK; if (d->ver > DMA_VER22) { if (!d->port_nrs) return -EINVAL; for (i = 0; i < d->port_nrs; i++) { p = &d->ports[i]; p->rxendi = DMA_DFT_ENDIAN; p->txendi = DMA_DFT_ENDIAN; p->rxbl = DMA_DFT_BURST; p->txbl = DMA_DFT_BURST; p->pkt_drop = DMA_PKT_DROP_DIS; } } return 0; } static void dma_free_desc_resource(struct virt_dma_desc *vdesc) { struct dw2_desc_sw *ds = to_lgm_dma_desc(vdesc); struct ldma_chan *c = ds->chan; dma_pool_free(c->desc_pool, ds->desc_hw, ds->desc_phys); kfree(ds); } static struct dw2_desc_sw * dma_alloc_desc_resource(int num, struct ldma_chan *c) { struct device *dev = c->vchan.chan.device->dev; struct dw2_desc_sw *ds; if (num > c->desc_num) { dev_err(dev, "sg num %d exceed max %d\n", num, c->desc_num); return NULL; } ds = kzalloc(sizeof(*ds), GFP_NOWAIT); if (!ds) return NULL; ds->chan = c; ds->desc_hw = dma_pool_zalloc(c->desc_pool, GFP_ATOMIC, &ds->desc_phys); if (!ds->desc_hw) { dev_dbg(dev, "out of memory for link descriptor\n"); kfree(ds); return NULL; } ds->desc_cnt = num; return ds; } static void ldma_chan_irq_en(struct ldma_chan *c) { struct ldma_dev *d = to_ldma_dev(c->vchan.chan.device); unsigned long flags; spin_lock_irqsave(&d->dev_lock, flags); writel(c->nr, d->base + DMA_CS); writel(DMA_CI_EOP, d->base + DMA_CIE); writel(BIT(c->nr), d->base + DMA_IRNEN); spin_unlock_irqrestore(&d->dev_lock, flags); } static void ldma_issue_pending(struct dma_chan *chan) { struct ldma_chan *c = to_ldma_chan(chan); struct ldma_dev *d = to_ldma_dev(c->vchan.chan.device); unsigned long flags; if (d->ver == DMA_VER22) { spin_lock_irqsave(&c->vchan.lock, flags); if (vchan_issue_pending(&c->vchan)) { struct virt_dma_desc *vdesc; /* Get the next descriptor */ vdesc = vchan_next_desc(&c->vchan); if (!vdesc) { c->ds = NULL; spin_unlock_irqrestore(&c->vchan.lock, flags); return; } list_del(&vdesc->node); c->ds = to_lgm_dma_desc(vdesc); ldma_chan_desc_hw_cfg(c, c->ds->desc_phys, c->ds->desc_cnt); ldma_chan_irq_en(c); } spin_unlock_irqrestore(&c->vchan.lock, flags); } ldma_chan_on(c); } static void ldma_synchronize(struct dma_chan *chan) { struct ldma_chan *c = to_ldma_chan(chan); /* * clear any pending work if any. In that * case the resource needs to be free here. */ cancel_work_sync(&c->work); vchan_synchronize(&c->vchan); if (c->ds) dma_free_desc_resource(&c->ds->vdesc); } static int ldma_terminate_all(struct dma_chan *chan) { struct ldma_chan *c = to_ldma_chan(chan); unsigned long flags; LIST_HEAD(head); spin_lock_irqsave(&c->vchan.lock, flags); vchan_get_all_descriptors(&c->vchan, &head); spin_unlock_irqrestore(&c->vchan.lock, flags); vchan_dma_desc_free_list(&c->vchan, &head); return ldma_chan_reset(c); } static int ldma_resume_chan(struct dma_chan *chan) { struct ldma_chan *c = to_ldma_chan(chan); ldma_chan_on(c); return 0; } static int ldma_pause_chan(struct dma_chan *chan) { struct ldma_chan *c = to_ldma_chan(chan); return ldma_chan_off(c); } static enum dma_status ldma_tx_status(struct dma_chan *chan, dma_cookie_t cookie, struct dma_tx_state *txstate) { struct ldma_chan *c = to_ldma_chan(chan); struct ldma_dev *d = to_ldma_dev(c->vchan.chan.device); enum dma_status status = DMA_COMPLETE; if (d->ver == DMA_VER22) status = dma_cookie_status(chan, cookie, txstate); return status; } static void dma_chan_irq(int irq, void *data) { struct ldma_chan *c = data; struct ldma_dev *d = to_ldma_dev(c->vchan.chan.device); u32 stat; /* Disable channel interrupts */ writel(c->nr, d->base + DMA_CS); stat = readl(d->base + DMA_CIS); if (!stat) return; writel(readl(d->base + DMA_CIE) & ~DMA_CI_ALL, d->base + DMA_CIE); writel(stat, d->base + DMA_CIS); queue_work(d->wq, &c->work); } static irqreturn_t dma_interrupt(int irq, void *dev_id) { struct ldma_dev *d = dev_id; struct ldma_chan *c; unsigned long irncr; u32 cid; irncr = readl(d->base + DMA_IRNCR); if (!irncr) { dev_err(d->dev, "dummy interrupt\n"); return IRQ_NONE; } for_each_set_bit(cid, &irncr, d->chan_nrs) { /* Mask */ writel(readl(d->base + DMA_IRNEN) & ~BIT(cid), d->base + DMA_IRNEN); /* Ack */ writel(readl(d->base + DMA_IRNCR) | BIT(cid), d->base + DMA_IRNCR); c = &d->chans[cid]; dma_chan_irq(irq, c); } return IRQ_HANDLED; } static void prep_slave_burst_len(struct ldma_chan *c) { struct ldma_port *p = c->port; struct dma_slave_config *cfg = &c->config; if (cfg->dst_maxburst) cfg->src_maxburst = cfg->dst_maxburst; /* TX and RX has the same burst length */ p->txbl = ilog2(cfg->src_maxburst); p->rxbl = p->txbl; } static struct dma_async_tx_descriptor * ldma_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl, unsigned int sglen, enum dma_transfer_direction dir, unsigned long flags, void *context) { struct ldma_chan *c = to_ldma_chan(chan); struct ldma_dev *d = to_ldma_dev(c->vchan.chan.device); size_t len, avail, total = 0; struct dw2_desc *hw_ds; struct dw2_desc_sw *ds; struct scatterlist *sg; int num = sglen, i; dma_addr_t addr; if (!sgl) return NULL; if (d->ver > DMA_VER22) return ldma_chan_desc_cfg(chan, sgl->dma_address, sglen); for_each_sg(sgl, sg, sglen, i) { avail = sg_dma_len(sg); if (avail > DMA_MAX_SIZE) num += DIV_ROUND_UP(avail, DMA_MAX_SIZE) - 1; } ds = dma_alloc_desc_resource(num, c); if (!ds) return NULL; c->ds = ds; num = 0; /* sop and eop has to be handled nicely */ for_each_sg(sgl, sg, sglen, i) { addr = sg_dma_address(sg); avail = sg_dma_len(sg); total += avail; do { len = min_t(size_t, avail, DMA_MAX_SIZE); hw_ds = &ds->desc_hw[num]; switch (sglen) { case 1: hw_ds->field &= ~DESC_SOP; hw_ds->field |= FIELD_PREP(DESC_SOP, 1); hw_ds->field &= ~DESC_EOP; hw_ds->field |= FIELD_PREP(DESC_EOP, 1); break; default: if (num == 0) { hw_ds->field &= ~DESC_SOP; hw_ds->field |= FIELD_PREP(DESC_SOP, 1); hw_ds->field &= ~DESC_EOP; hw_ds->field |= FIELD_PREP(DESC_EOP, 0); } else if (num == (sglen - 1)) { hw_ds->field &= ~DESC_SOP; hw_ds->field |= FIELD_PREP(DESC_SOP, 0); hw_ds->field &= ~DESC_EOP; hw_ds->field |= FIELD_PREP(DESC_EOP, 1); } else { hw_ds->field &= ~DESC_SOP; hw_ds->field |= FIELD_PREP(DESC_SOP, 0); hw_ds->field &= ~DESC_EOP; hw_ds->field |= FIELD_PREP(DESC_EOP, 0); } break; } /* Only 32 bit address supported */ hw_ds->addr = (u32)addr; hw_ds->field &= ~DESC_DATA_LEN; hw_ds->field |= FIELD_PREP(DESC_DATA_LEN, len); hw_ds->field &= ~DESC_C; hw_ds->field |= FIELD_PREP(DESC_C, 0); hw_ds->field &= ~DESC_BYTE_OFF; hw_ds->field |= FIELD_PREP(DESC_BYTE_OFF, addr & 0x3); /* Ensure data ready before ownership change */ wmb(); hw_ds->field &= ~DESC_OWN; hw_ds->field |= FIELD_PREP(DESC_OWN, DMA_OWN); /* Ensure ownership changed before moving forward */ wmb(); num++; addr += len; avail -= len; } while (avail); } ds->size = total; prep_slave_burst_len(c); return vchan_tx_prep(&c->vchan, &ds->vdesc, DMA_CTRL_ACK); } static int ldma_slave_config(struct dma_chan *chan, struct dma_slave_config *cfg) { struct ldma_chan *c = to_ldma_chan(chan); memcpy(&c->config, cfg, sizeof(c->config)); return 0; } static int ldma_alloc_chan_resources(struct dma_chan *chan) { struct ldma_chan *c = to_ldma_chan(chan); struct ldma_dev *d = to_ldma_dev(c->vchan.chan.device); struct device *dev = c->vchan.chan.device->dev; size_t desc_sz; if (d->ver > DMA_VER22) { c->flags |= CHAN_IN_USE; return 0; } if (c->desc_pool) return c->desc_num; desc_sz = c->desc_num * sizeof(struct dw2_desc); c->desc_pool = dma_pool_create(c->name, dev, desc_sz, __alignof__(struct dw2_desc), 0); if (!c->desc_pool) { dev_err(dev, "unable to allocate descriptor pool\n"); return -ENOMEM; } return c->desc_num; } static void ldma_free_chan_resources(struct dma_chan *chan) { struct ldma_chan *c = to_ldma_chan(chan); struct ldma_dev *d = to_ldma_dev(c->vchan.chan.device); if (d->ver == DMA_VER22) { dma_pool_destroy(c->desc_pool); c->desc_pool = NULL; vchan_free_chan_resources(to_virt_chan(chan)); ldma_chan_reset(c); } else { c->flags &= ~CHAN_IN_USE; } } static void dma_work(struct work_struct *work) { struct ldma_chan *c = container_of(work, struct ldma_chan, work); struct dma_async_tx_descriptor *tx = &c->ds->vdesc.tx; struct virt_dma_chan *vc = &c->vchan; struct dmaengine_desc_callback cb; struct virt_dma_desc *vd, *_vd; unsigned long flags; LIST_HEAD(head); spin_lock_irqsave(&c->vchan.lock, flags); list_splice_tail_init(&vc->desc_completed, &head); spin_unlock_irqrestore(&c->vchan.lock, flags); dmaengine_desc_get_callback(tx, &cb); dma_cookie_complete(tx); dmaengine_desc_callback_invoke(&cb, NULL); list_for_each_entry_safe(vd, _vd, &head, node) { dmaengine_desc_get_callback(tx, &cb); dma_cookie_complete(tx); list_del(&vd->node); dmaengine_desc_callback_invoke(&cb, NULL); vchan_vdesc_fini(vd); } c->ds = NULL; } static void update_burst_len_v22(struct ldma_chan *c, struct ldma_port *p, u32 burst) { if (ldma_chan_tx(c)) p->txbl = ilog2(burst); else p->rxbl = ilog2(burst); } static void update_burst_len_v3X(struct ldma_chan *c, struct ldma_port *p, u32 burst) { if (ldma_chan_tx(c)) p->txbl = burst; else p->rxbl = burst; } static int update_client_configs(struct of_dma *ofdma, struct of_phandle_args *spec) { struct ldma_dev *d = ofdma->of_dma_data; u32 chan_id = spec->args[0]; u32 port_id = spec->args[1]; u32 burst = spec->args[2]; struct ldma_port *p; struct ldma_chan *c; if (chan_id >= d->chan_nrs || port_id >= d->port_nrs) return 0; p = &d->ports[port_id]; c = &d->chans[chan_id]; c->port = p; if (d->ver == DMA_VER22) update_burst_len_v22(c, p, burst); else update_burst_len_v3X(c, p, burst); ldma_port_cfg(p); return 1; } static struct dma_chan *ldma_xlate(struct of_phandle_args *spec, struct of_dma *ofdma) { struct ldma_dev *d = ofdma->of_dma_data; u32 chan_id = spec->args[0]; int ret; if (!spec->args_count) return NULL; /* if args_count is 1 driver use default settings */ if (spec->args_count > 1) { ret = update_client_configs(ofdma, spec); if (!ret) return NULL; } return dma_get_slave_channel(&d->chans[chan_id].vchan.chan); } static void ldma_dma_init_v22(int i, struct ldma_dev *d) { struct ldma_chan *c; c = &d->chans[i]; c->nr = i; /* Real channel number */ c->rst = DMA_CHAN_RST; c->desc_num = DMA_DFT_DESC_NUM; snprintf(c->name, sizeof(c->name), "chan%d", c->nr); INIT_WORK(&c->work, dma_work); c->vchan.desc_free = dma_free_desc_resource; vchan_init(&c->vchan, &d->dma_dev); } static void ldma_dma_init_v3X(int i, struct ldma_dev *d) { struct ldma_chan *c; c = &d->chans[i]; c->data_endian = DMA_DFT_ENDIAN; c->desc_endian = DMA_DFT_ENDIAN; c->data_endian_en = false; c->desc_endian_en = false; c->desc_rx_np = false; c->flags |= DEVICE_ALLOC_DESC; c->onoff = DMA_CH_OFF; c->rst = DMA_CHAN_RST; c->abc_en = true; c->hdrm_csum = false; c->boff_len = 0; c->nr = i; c->vchan.desc_free = dma_free_desc_resource; vchan_init(&c->vchan, &d->dma_dev); } static int ldma_init_v22(struct ldma_dev *d, struct platform_device *pdev) { int ret; ret = device_property_read_u32(d->dev, "dma-channels", &d->chan_nrs); if (ret < 0) { dev_err(d->dev, "unable to read dma-channels property\n"); return ret; } d->irq = platform_get_irq(pdev, 0); if (d->irq < 0) return d->irq; ret = devm_request_irq(&pdev->dev, d->irq, dma_interrupt, 0, DRIVER_NAME, d); if (ret) return ret; d->wq = alloc_ordered_workqueue("dma_wq", WQ_MEM_RECLAIM | WQ_HIGHPRI); if (!d->wq) return -ENOMEM; return 0; } static void ldma_clk_disable(void *data) { struct ldma_dev *d = data; clk_disable_unprepare(d->core_clk); reset_control_assert(d->rst); } static const struct ldma_inst_data dma0 = { .name = "dma0", .chan_fc = false, .desc_fod = false, .desc_in_sram = false, .valid_desc_fetch_ack = false, }; static const struct ldma_inst_data dma2tx = { .name = "dma2tx", .type = DMA_TYPE_TX, .orrc = 16, .chan_fc = true, .desc_fod = true, .desc_in_sram = true, .valid_desc_fetch_ack = true, }; static const struct ldma_inst_data dma1rx = { .name = "dma1rx", .type = DMA_TYPE_RX, .orrc = 16, .chan_fc = false, .desc_fod = true, .desc_in_sram = true, .valid_desc_fetch_ack = false, }; static const struct ldma_inst_data dma1tx = { .name = "dma1tx", .type = DMA_TYPE_TX, .orrc = 16, .chan_fc = true, .desc_fod = true, .desc_in_sram = true, .valid_desc_fetch_ack = true, }; static const struct ldma_inst_data dma0tx = { .name = "dma0tx", .type = DMA_TYPE_TX, .orrc = 16, .chan_fc = true, .desc_fod = true, .desc_in_sram = true, .valid_desc_fetch_ack = true, }; static const struct ldma_inst_data dma3 = { .name = "dma3", .type = DMA_TYPE_MCPY, .orrc = 16, .chan_fc = false, .desc_fod = false, .desc_in_sram = true, .valid_desc_fetch_ack = false, }; static const struct ldma_inst_data toe_dma30 = { .name = "toe_dma30", .type = DMA_TYPE_MCPY, .orrc = 16, .chan_fc = false, .desc_fod = false, .desc_in_sram = true, .valid_desc_fetch_ack = true, }; static const struct ldma_inst_data toe_dma31 = { .name = "toe_dma31", .type = DMA_TYPE_MCPY, .orrc = 16, .chan_fc = false, .desc_fod = false, .desc_in_sram = true, .valid_desc_fetch_ack = true, }; static const struct of_device_id intel_ldma_match[] = { { .compatible = "intel,lgm-cdma", .data = &dma0}, { .compatible = "intel,lgm-dma2tx", .data = &dma2tx}, { .compatible = "intel,lgm-dma1rx", .data = &dma1rx}, { .compatible = "intel,lgm-dma1tx", .data = &dma1tx}, { .compatible = "intel,lgm-dma0tx", .data = &dma0tx}, { .compatible = "intel,lgm-dma3", .data = &dma3}, { .compatible = "intel,lgm-toe-dma30", .data = &toe_dma30}, { .compatible = "intel,lgm-toe-dma31", .data = &toe_dma31}, {} }; static int intel_ldma_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct dma_device *dma_dev; unsigned long ch_mask; struct ldma_chan *c; struct ldma_port *p; struct ldma_dev *d; u32 id, bitn = 32, j; int i, ret; d = devm_kzalloc(dev, sizeof(*d), GFP_KERNEL); if (!d) return -ENOMEM; /* Link controller to platform device */ d->dev = &pdev->dev; d->inst = device_get_match_data(dev); if (!d->inst) { dev_err(dev, "No device match found\n"); return -ENODEV; } d->base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(d->base)) return PTR_ERR(d->base); /* Power up and reset the dma engine, some DMAs always on?? */ d->core_clk = devm_clk_get_optional(dev, NULL); if (IS_ERR(d->core_clk)) return PTR_ERR(d->core_clk); d->rst = devm_reset_control_get_optional(dev, NULL); if (IS_ERR(d->rst)) return PTR_ERR(d->rst); clk_prepare_enable(d->core_clk); reset_control_deassert(d->rst); ret = devm_add_action_or_reset(dev, ldma_clk_disable, d); if (ret) { dev_err(dev, "Failed to devm_add_action_or_reset, %d\n", ret); return ret; } id = readl(d->base + DMA_ID); d->chan_nrs = FIELD_GET(DMA_ID_CHNR, id); d->port_nrs = FIELD_GET(DMA_ID_PNR, id); d->ver = FIELD_GET(DMA_ID_REV, id); if (id & DMA_ID_AW_36B) d->flags |= DMA_ADDR_36BIT; if (IS_ENABLED(CONFIG_64BIT) && (id & DMA_ID_AW_36B)) bitn = 36; if (id & DMA_ID_DW_128B) d->flags |= DMA_DATA_128BIT; ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(bitn)); if (ret) { dev_err(dev, "No usable DMA configuration\n"); return ret; } if (d->ver == DMA_VER22) { ret = ldma_init_v22(d, pdev); if (ret) return ret; } ret = device_property_read_u32(dev, "dma-channel-mask", &d->channels_mask); if (ret < 0) d->channels_mask = GENMASK(d->chan_nrs - 1, 0); dma_dev = &d->dma_dev; dma_cap_zero(dma_dev->cap_mask); dma_cap_set(DMA_SLAVE, dma_dev->cap_mask); /* Channel initializations */ INIT_LIST_HEAD(&dma_dev->channels); /* Port Initializations */ d->ports = devm_kcalloc(dev, d->port_nrs, sizeof(*p), GFP_KERNEL); if (!d->ports) return -ENOMEM; /* Channels Initializations */ d->chans = devm_kcalloc(d->dev, d->chan_nrs, sizeof(*c), GFP_KERNEL); if (!d->chans) return -ENOMEM; for (i = 0; i < d->port_nrs; i++) { p = &d->ports[i]; p->portid = i; p->ldev = d; } dma_dev->dev = &pdev->dev; ch_mask = (unsigned long)d->channels_mask; for_each_set_bit(j, &ch_mask, d->chan_nrs) { if (d->ver == DMA_VER22) ldma_dma_init_v22(j, d); else ldma_dma_init_v3X(j, d); } ret = ldma_parse_dt(d); if (ret) return ret; dma_dev->device_alloc_chan_resources = ldma_alloc_chan_resources; dma_dev->device_free_chan_resources = ldma_free_chan_resources; dma_dev->device_terminate_all = ldma_terminate_all; dma_dev->device_issue_pending = ldma_issue_pending; dma_dev->device_tx_status = ldma_tx_status; dma_dev->device_resume = ldma_resume_chan; dma_dev->device_pause = ldma_pause_chan; dma_dev->device_prep_slave_sg = ldma_prep_slave_sg; if (d->ver == DMA_VER22) { dma_dev->device_config = ldma_slave_config; dma_dev->device_synchronize = ldma_synchronize; dma_dev->src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_4_BYTES); dma_dev->dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_4_BYTES); dma_dev->directions = BIT(DMA_MEM_TO_DEV) | BIT(DMA_DEV_TO_MEM); dma_dev->residue_granularity = DMA_RESIDUE_GRANULARITY_DESCRIPTOR; } platform_set_drvdata(pdev, d); ldma_dev_init(d); ret = dma_async_device_register(dma_dev); if (ret) { dev_err(dev, "Failed to register slave DMA engine device\n"); return ret; } ret = of_dma_controller_register(pdev->dev.of_node, ldma_xlate, d); if (ret) { dev_err(dev, "Failed to register of DMA controller\n"); dma_async_device_unregister(dma_dev); return ret; } dev_info(dev, "Init done - rev: %x, ports: %d channels: %d\n", d->ver, d->port_nrs, d->chan_nrs); return 0; } static struct platform_driver intel_ldma_driver = { .probe = intel_ldma_probe, .driver = { .name = DRIVER_NAME, .of_match_table = intel_ldma_match, }, }; /* * Perform this driver as device_initcall to make sure initialization happens * before its DMA clients of some are platform specific and also to provide * registered DMA channels and DMA capabilities to clients before their * initialization. */ builtin_platform_driver(intel_ldma_driver);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1