Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Jonas Jensen | 2852 | 97.40% | 1 | 7.69% |
Vinod Koul | 24 | 0.82% | 1 | 7.69% |
Kees Cook | 15 | 0.51% | 2 | 15.38% |
Peter Ujfalusi | 12 | 0.41% | 1 | 7.69% |
Maxime Ripard | 8 | 0.27% | 1 | 7.69% |
Luis de Bethencourt | 7 | 0.24% | 1 | 7.69% |
Thomas Gleixner | 2 | 0.07% | 1 | 7.69% |
Barry Song | 2 | 0.07% | 1 | 7.69% |
Tudor-Dan Ambarus | 2 | 0.07% | 1 | 7.69% |
Uwe Kleine-König | 2 | 0.07% | 1 | 7.69% |
Gustavo A. R. Silva | 1 | 0.03% | 1 | 7.69% |
Arnd Bergmann | 1 | 0.03% | 1 | 7.69% |
Total | 2928 | 13 |
// SPDX-License-Identifier: GPL-2.0-only /* * MOXA ART SoCs DMA Engine support. * * Copyright (C) 2013 Jonas Jensen * * Jonas Jensen <jonas.jensen@gmail.com> */ #include <linux/dmaengine.h> #include <linux/dma-mapping.h> #include <linux/err.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/list.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/slab.h> #include <linux/spinlock.h> #include <linux/of_address.h> #include <linux/of_irq.h> #include <linux/of_dma.h> #include <linux/bitops.h> #include <asm/cacheflush.h> #include "dmaengine.h" #include "virt-dma.h" #define APB_DMA_MAX_CHANNEL 4 #define REG_OFF_ADDRESS_SOURCE 0 #define REG_OFF_ADDRESS_DEST 4 #define REG_OFF_CYCLES 8 #define REG_OFF_CTRL 12 #define REG_OFF_CHAN_SIZE 16 #define APB_DMA_ENABLE BIT(0) #define APB_DMA_FIN_INT_STS BIT(1) #define APB_DMA_FIN_INT_EN BIT(2) #define APB_DMA_BURST_MODE BIT(3) #define APB_DMA_ERR_INT_STS BIT(4) #define APB_DMA_ERR_INT_EN BIT(5) /* * Unset: APB * Set: AHB */ #define APB_DMA_SOURCE_SELECT 0x40 #define APB_DMA_DEST_SELECT 0x80 #define APB_DMA_SOURCE 0x100 #define APB_DMA_DEST 0x1000 #define APB_DMA_SOURCE_MASK 0x700 #define APB_DMA_DEST_MASK 0x7000 /* * 000: No increment * 001: +1 (Burst=0), +4 (Burst=1) * 010: +2 (Burst=0), +8 (Burst=1) * 011: +4 (Burst=0), +16 (Burst=1) * 101: -1 (Burst=0), -4 (Burst=1) * 110: -2 (Burst=0), -8 (Burst=1) * 111: -4 (Burst=0), -16 (Burst=1) */ #define APB_DMA_SOURCE_INC_0 0 #define APB_DMA_SOURCE_INC_1_4 0x100 #define APB_DMA_SOURCE_INC_2_8 0x200 #define APB_DMA_SOURCE_INC_4_16 0x300 #define APB_DMA_SOURCE_DEC_1_4 0x500 #define APB_DMA_SOURCE_DEC_2_8 0x600 #define APB_DMA_SOURCE_DEC_4_16 0x700 #define APB_DMA_DEST_INC_0 0 #define APB_DMA_DEST_INC_1_4 0x1000 #define APB_DMA_DEST_INC_2_8 0x2000 #define APB_DMA_DEST_INC_4_16 0x3000 #define APB_DMA_DEST_DEC_1_4 0x5000 #define APB_DMA_DEST_DEC_2_8 0x6000 #define APB_DMA_DEST_DEC_4_16 0x7000 /* * Request signal select source/destination address for DMA hardware handshake. * * The request line number is a property of the DMA controller itself, * e.g. MMC must always request channels where dma_slave_config->slave_id is 5. * * 0: No request / Grant signal * 1-15: Request / Grant signal */ #define APB_DMA_SOURCE_REQ_NO 0x1000000 #define APB_DMA_SOURCE_REQ_NO_MASK 0xf000000 #define APB_DMA_DEST_REQ_NO 0x10000 #define APB_DMA_DEST_REQ_NO_MASK 0xf0000 #define APB_DMA_DATA_WIDTH 0x100000 #define APB_DMA_DATA_WIDTH_MASK 0x300000 /* * Data width of transfer: * * 00: Word * 01: Half * 10: Byte */ #define APB_DMA_DATA_WIDTH_4 0 #define APB_DMA_DATA_WIDTH_2 0x100000 #define APB_DMA_DATA_WIDTH_1 0x200000 #define APB_DMA_CYCLES_MASK 0x00ffffff #define MOXART_DMA_DATA_TYPE_S8 0x00 #define MOXART_DMA_DATA_TYPE_S16 0x01 #define MOXART_DMA_DATA_TYPE_S32 0x02 struct moxart_sg { dma_addr_t addr; uint32_t len; }; struct moxart_desc { enum dma_transfer_direction dma_dir; dma_addr_t dev_addr; unsigned int sglen; unsigned int dma_cycles; struct virt_dma_desc vd; uint8_t es; struct moxart_sg sg[] __counted_by(sglen); }; struct moxart_chan { struct virt_dma_chan vc; void __iomem *base; struct moxart_desc *desc; struct dma_slave_config cfg; bool allocated; bool error; int ch_num; unsigned int line_reqno; unsigned int sgidx; }; struct moxart_dmadev { struct dma_device dma_slave; struct moxart_chan slave_chans[APB_DMA_MAX_CHANNEL]; unsigned int irq; }; struct moxart_filter_data { struct moxart_dmadev *mdc; struct of_phandle_args *dma_spec; }; static const unsigned int es_bytes[] = { [MOXART_DMA_DATA_TYPE_S8] = 1, [MOXART_DMA_DATA_TYPE_S16] = 2, [MOXART_DMA_DATA_TYPE_S32] = 4, }; static struct device *chan2dev(struct dma_chan *chan) { return &chan->dev->device; } static inline struct moxart_chan *to_moxart_dma_chan(struct dma_chan *c) { return container_of(c, struct moxart_chan, vc.chan); } static inline struct moxart_desc *to_moxart_dma_desc( struct dma_async_tx_descriptor *t) { return container_of(t, struct moxart_desc, vd.tx); } static void moxart_dma_desc_free(struct virt_dma_desc *vd) { kfree(container_of(vd, struct moxart_desc, vd)); } static int moxart_terminate_all(struct dma_chan *chan) { struct moxart_chan *ch = to_moxart_dma_chan(chan); unsigned long flags; LIST_HEAD(head); u32 ctrl; dev_dbg(chan2dev(chan), "%s: ch=%p\n", __func__, ch); spin_lock_irqsave(&ch->vc.lock, flags); if (ch->desc) { moxart_dma_desc_free(&ch->desc->vd); ch->desc = NULL; } ctrl = readl(ch->base + REG_OFF_CTRL); ctrl &= ~(APB_DMA_ENABLE | APB_DMA_FIN_INT_EN | APB_DMA_ERR_INT_EN); writel(ctrl, ch->base + REG_OFF_CTRL); vchan_get_all_descriptors(&ch->vc, &head); spin_unlock_irqrestore(&ch->vc.lock, flags); vchan_dma_desc_free_list(&ch->vc, &head); return 0; } static int moxart_slave_config(struct dma_chan *chan, struct dma_slave_config *cfg) { struct moxart_chan *ch = to_moxart_dma_chan(chan); u32 ctrl; ch->cfg = *cfg; ctrl = readl(ch->base + REG_OFF_CTRL); ctrl |= APB_DMA_BURST_MODE; ctrl &= ~(APB_DMA_DEST_MASK | APB_DMA_SOURCE_MASK); ctrl &= ~(APB_DMA_DEST_REQ_NO_MASK | APB_DMA_SOURCE_REQ_NO_MASK); switch (ch->cfg.src_addr_width) { case DMA_SLAVE_BUSWIDTH_1_BYTE: ctrl |= APB_DMA_DATA_WIDTH_1; if (ch->cfg.direction != DMA_MEM_TO_DEV) ctrl |= APB_DMA_DEST_INC_1_4; else ctrl |= APB_DMA_SOURCE_INC_1_4; break; case DMA_SLAVE_BUSWIDTH_2_BYTES: ctrl |= APB_DMA_DATA_WIDTH_2; if (ch->cfg.direction != DMA_MEM_TO_DEV) ctrl |= APB_DMA_DEST_INC_2_8; else ctrl |= APB_DMA_SOURCE_INC_2_8; break; case DMA_SLAVE_BUSWIDTH_4_BYTES: ctrl &= ~APB_DMA_DATA_WIDTH; if (ch->cfg.direction != DMA_MEM_TO_DEV) ctrl |= APB_DMA_DEST_INC_4_16; else ctrl |= APB_DMA_SOURCE_INC_4_16; break; default: return -EINVAL; } if (ch->cfg.direction == DMA_MEM_TO_DEV) { ctrl &= ~APB_DMA_DEST_SELECT; ctrl |= APB_DMA_SOURCE_SELECT; ctrl |= (ch->line_reqno << 16 & APB_DMA_DEST_REQ_NO_MASK); } else { ctrl |= APB_DMA_DEST_SELECT; ctrl &= ~APB_DMA_SOURCE_SELECT; ctrl |= (ch->line_reqno << 24 & APB_DMA_SOURCE_REQ_NO_MASK); } writel(ctrl, ch->base + REG_OFF_CTRL); return 0; } static struct dma_async_tx_descriptor *moxart_prep_slave_sg( struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len, enum dma_transfer_direction dir, unsigned long tx_flags, void *context) { struct moxart_chan *ch = to_moxart_dma_chan(chan); struct moxart_desc *d; enum dma_slave_buswidth dev_width; dma_addr_t dev_addr; struct scatterlist *sgent; unsigned int es; unsigned int i; if (!is_slave_direction(dir)) { dev_err(chan2dev(chan), "%s: invalid DMA direction\n", __func__); return NULL; } if (dir == DMA_DEV_TO_MEM) { dev_addr = ch->cfg.src_addr; dev_width = ch->cfg.src_addr_width; } else { dev_addr = ch->cfg.dst_addr; dev_width = ch->cfg.dst_addr_width; } switch (dev_width) { case DMA_SLAVE_BUSWIDTH_1_BYTE: es = MOXART_DMA_DATA_TYPE_S8; break; case DMA_SLAVE_BUSWIDTH_2_BYTES: es = MOXART_DMA_DATA_TYPE_S16; break; case DMA_SLAVE_BUSWIDTH_4_BYTES: es = MOXART_DMA_DATA_TYPE_S32; break; default: dev_err(chan2dev(chan), "%s: unsupported data width (%u)\n", __func__, dev_width); return NULL; } d = kzalloc(struct_size(d, sg, sg_len), GFP_ATOMIC); if (!d) return NULL; d->sglen = sg_len; d->dma_dir = dir; d->dev_addr = dev_addr; d->es = es; for_each_sg(sgl, sgent, sg_len, i) { d->sg[i].addr = sg_dma_address(sgent); d->sg[i].len = sg_dma_len(sgent); } ch->error = 0; return vchan_tx_prep(&ch->vc, &d->vd, tx_flags); } static struct dma_chan *moxart_of_xlate(struct of_phandle_args *dma_spec, struct of_dma *ofdma) { struct moxart_dmadev *mdc = ofdma->of_dma_data; struct dma_chan *chan; struct moxart_chan *ch; chan = dma_get_any_slave_channel(&mdc->dma_slave); if (!chan) return NULL; ch = to_moxart_dma_chan(chan); ch->line_reqno = dma_spec->args[0]; return chan; } static int moxart_alloc_chan_resources(struct dma_chan *chan) { struct moxart_chan *ch = to_moxart_dma_chan(chan); dev_dbg(chan2dev(chan), "%s: allocating channel #%u\n", __func__, ch->ch_num); ch->allocated = 1; return 0; } static void moxart_free_chan_resources(struct dma_chan *chan) { struct moxart_chan *ch = to_moxart_dma_chan(chan); vchan_free_chan_resources(&ch->vc); dev_dbg(chan2dev(chan), "%s: freeing channel #%u\n", __func__, ch->ch_num); ch->allocated = 0; } static void moxart_dma_set_params(struct moxart_chan *ch, dma_addr_t src_addr, dma_addr_t dst_addr) { writel(src_addr, ch->base + REG_OFF_ADDRESS_SOURCE); writel(dst_addr, ch->base + REG_OFF_ADDRESS_DEST); } static void moxart_set_transfer_params(struct moxart_chan *ch, unsigned int len) { struct moxart_desc *d = ch->desc; unsigned int sglen_div = es_bytes[d->es]; d->dma_cycles = len >> sglen_div; /* * There are 4 cycles on 64 bytes copied, i.e. one cycle copies 16 * bytes ( when width is APB_DMAB_DATA_WIDTH_4 ). */ writel(d->dma_cycles, ch->base + REG_OFF_CYCLES); dev_dbg(chan2dev(&ch->vc.chan), "%s: set %u DMA cycles (len=%u)\n", __func__, d->dma_cycles, len); } static void moxart_start_dma(struct moxart_chan *ch) { u32 ctrl; ctrl = readl(ch->base + REG_OFF_CTRL); ctrl |= (APB_DMA_ENABLE | APB_DMA_FIN_INT_EN | APB_DMA_ERR_INT_EN); writel(ctrl, ch->base + REG_OFF_CTRL); } static void moxart_dma_start_sg(struct moxart_chan *ch, unsigned int idx) { struct moxart_desc *d = ch->desc; struct moxart_sg *sg = ch->desc->sg + idx; if (ch->desc->dma_dir == DMA_MEM_TO_DEV) moxart_dma_set_params(ch, sg->addr, d->dev_addr); else if (ch->desc->dma_dir == DMA_DEV_TO_MEM) moxart_dma_set_params(ch, d->dev_addr, sg->addr); moxart_set_transfer_params(ch, sg->len); moxart_start_dma(ch); } static void moxart_dma_start_desc(struct dma_chan *chan) { struct moxart_chan *ch = to_moxart_dma_chan(chan); struct virt_dma_desc *vd; vd = vchan_next_desc(&ch->vc); if (!vd) { ch->desc = NULL; return; } list_del(&vd->node); ch->desc = to_moxart_dma_desc(&vd->tx); ch->sgidx = 0; moxart_dma_start_sg(ch, 0); } static void moxart_issue_pending(struct dma_chan *chan) { struct moxart_chan *ch = to_moxart_dma_chan(chan); unsigned long flags; spin_lock_irqsave(&ch->vc.lock, flags); if (vchan_issue_pending(&ch->vc) && !ch->desc) moxart_dma_start_desc(chan); spin_unlock_irqrestore(&ch->vc.lock, flags); } static size_t moxart_dma_desc_size(struct moxart_desc *d, unsigned int completed_sgs) { unsigned int i; size_t size; for (size = i = completed_sgs; i < d->sglen; i++) size += d->sg[i].len; return size; } static size_t moxart_dma_desc_size_in_flight(struct moxart_chan *ch) { size_t size; unsigned int completed_cycles, cycles; size = moxart_dma_desc_size(ch->desc, ch->sgidx); cycles = readl(ch->base + REG_OFF_CYCLES); completed_cycles = (ch->desc->dma_cycles - cycles); size -= completed_cycles << es_bytes[ch->desc->es]; dev_dbg(chan2dev(&ch->vc.chan), "%s: size=%zu\n", __func__, size); return size; } static enum dma_status moxart_tx_status(struct dma_chan *chan, dma_cookie_t cookie, struct dma_tx_state *txstate) { struct moxart_chan *ch = to_moxart_dma_chan(chan); struct virt_dma_desc *vd; struct moxart_desc *d; enum dma_status ret; unsigned long flags; /* * dma_cookie_status() assigns initial residue value. */ ret = dma_cookie_status(chan, cookie, txstate); spin_lock_irqsave(&ch->vc.lock, flags); vd = vchan_find_desc(&ch->vc, cookie); if (vd) { d = to_moxart_dma_desc(&vd->tx); txstate->residue = moxart_dma_desc_size(d, 0); } else if (ch->desc && ch->desc->vd.tx.cookie == cookie) { txstate->residue = moxart_dma_desc_size_in_flight(ch); } spin_unlock_irqrestore(&ch->vc.lock, flags); if (ch->error) return DMA_ERROR; return ret; } static void moxart_dma_init(struct dma_device *dma, struct device *dev) { dma->device_prep_slave_sg = moxart_prep_slave_sg; dma->device_alloc_chan_resources = moxart_alloc_chan_resources; dma->device_free_chan_resources = moxart_free_chan_resources; dma->device_issue_pending = moxart_issue_pending; dma->device_tx_status = moxart_tx_status; dma->device_config = moxart_slave_config; dma->device_terminate_all = moxart_terminate_all; dma->dev = dev; INIT_LIST_HEAD(&dma->channels); } static irqreturn_t moxart_dma_interrupt(int irq, void *devid) { struct moxart_dmadev *mc = devid; struct moxart_chan *ch = &mc->slave_chans[0]; unsigned int i; u32 ctrl; dev_dbg(chan2dev(&ch->vc.chan), "%s\n", __func__); for (i = 0; i < APB_DMA_MAX_CHANNEL; i++, ch++) { if (!ch->allocated) continue; ctrl = readl(ch->base + REG_OFF_CTRL); dev_dbg(chan2dev(&ch->vc.chan), "%s: ch=%p ch->base=%p ctrl=%x\n", __func__, ch, ch->base, ctrl); if (ctrl & APB_DMA_FIN_INT_STS) { ctrl &= ~APB_DMA_FIN_INT_STS; if (ch->desc) { spin_lock(&ch->vc.lock); if (++ch->sgidx < ch->desc->sglen) { moxart_dma_start_sg(ch, ch->sgidx); } else { vchan_cookie_complete(&ch->desc->vd); moxart_dma_start_desc(&ch->vc.chan); } spin_unlock(&ch->vc.lock); } } if (ctrl & APB_DMA_ERR_INT_STS) { ctrl &= ~APB_DMA_ERR_INT_STS; ch->error = 1; } writel(ctrl, ch->base + REG_OFF_CTRL); } return IRQ_HANDLED; } static int moxart_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct device_node *node = dev->of_node; void __iomem *dma_base_addr; int ret, i; unsigned int irq; struct moxart_chan *ch; struct moxart_dmadev *mdc; mdc = devm_kzalloc(dev, sizeof(*mdc), GFP_KERNEL); if (!mdc) return -ENOMEM; irq = irq_of_parse_and_map(node, 0); if (!irq) { dev_err(dev, "no IRQ resource\n"); return -EINVAL; } dma_base_addr = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(dma_base_addr)) return PTR_ERR(dma_base_addr); dma_cap_zero(mdc->dma_slave.cap_mask); dma_cap_set(DMA_SLAVE, mdc->dma_slave.cap_mask); dma_cap_set(DMA_PRIVATE, mdc->dma_slave.cap_mask); moxart_dma_init(&mdc->dma_slave, dev); ch = &mdc->slave_chans[0]; for (i = 0; i < APB_DMA_MAX_CHANNEL; i++, ch++) { ch->ch_num = i; ch->base = dma_base_addr + i * REG_OFF_CHAN_SIZE; ch->allocated = 0; ch->vc.desc_free = moxart_dma_desc_free; vchan_init(&ch->vc, &mdc->dma_slave); dev_dbg(dev, "%s: chs[%d]: ch->ch_num=%u ch->base=%p\n", __func__, i, ch->ch_num, ch->base); } platform_set_drvdata(pdev, mdc); ret = devm_request_irq(dev, irq, moxart_dma_interrupt, 0, "moxart-dma-engine", mdc); if (ret) { dev_err(dev, "devm_request_irq failed\n"); return ret; } mdc->irq = irq; ret = dma_async_device_register(&mdc->dma_slave); if (ret) { dev_err(dev, "dma_async_device_register failed\n"); return ret; } ret = of_dma_controller_register(node, moxart_of_xlate, mdc); if (ret) { dev_err(dev, "of_dma_controller_register failed\n"); dma_async_device_unregister(&mdc->dma_slave); return ret; } dev_dbg(dev, "%s: IRQ=%u\n", __func__, irq); return 0; } static void moxart_remove(struct platform_device *pdev) { struct moxart_dmadev *m = platform_get_drvdata(pdev); devm_free_irq(&pdev->dev, m->irq, m); dma_async_device_unregister(&m->dma_slave); if (pdev->dev.of_node) of_dma_controller_free(pdev->dev.of_node); } static const struct of_device_id moxart_dma_match[] = { { .compatible = "moxa,moxart-dma" }, { } }; MODULE_DEVICE_TABLE(of, moxart_dma_match); static struct platform_driver moxart_driver = { .probe = moxart_probe, .remove_new = moxart_remove, .driver = { .name = "moxart-dma-engine", .of_match_table = moxart_dma_match, }, }; static int moxart_init(void) { return platform_driver_register(&moxart_driver); } subsys_initcall(moxart_init); static void __exit moxart_exit(void) { platform_driver_unregister(&moxart_driver); } module_exit(moxart_exit); MODULE_AUTHOR("Jonas Jensen <jonas.jensen@gmail.com>"); MODULE_DESCRIPTION("MOXART DMA engine driver"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1