Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Yong Wang | 4306 | 85.07% | 2 | 5.00% |
Tomoya Morinaga | 607 | 11.99% | 13 | 32.50% |
Vaibhav Gupta | 27 | 0.53% | 1 | 2.50% |
Russell King | 17 | 0.34% | 4 | 10.00% |
Dave Jiang | 15 | 0.30% | 1 | 2.50% |
Allen Pais | 13 | 0.26% | 1 | 2.50% |
Dzianis Kahanovich | 10 | 0.20% | 1 | 2.50% |
Vinod Koul | 9 | 0.18% | 2 | 5.00% |
Romain Perier | 9 | 0.18% | 1 | 2.50% |
Ben Hutchings | 7 | 0.14% | 1 | 2.50% |
Wei Yongjun | 7 | 0.14% | 2 | 5.00% |
Alexander Stein | 6 | 0.12% | 1 | 2.50% |
Jingoo Han | 6 | 0.12% | 1 | 2.50% |
Alexey Khoroshilov | 5 | 0.10% | 1 | 2.50% |
Alex Bounine | 4 | 0.08% | 1 | 2.50% |
Christophe Jaillet | 4 | 0.08% | 1 | 2.50% |
Maxime Ripard | 3 | 0.06% | 1 | 2.50% |
Thomas Gleixner | 2 | 0.04% | 1 | 2.50% |
Liu Yuan | 2 | 0.04% | 1 | 2.50% |
Michele Curti | 1 | 0.02% | 1 | 2.50% |
Lars-Peter Clausen | 1 | 0.02% | 1 | 2.50% |
Andy Shevchenko | 1 | 0.02% | 1 | 2.50% |
Total | 5062 | 40 |
// SPDX-License-Identifier: GPL-2.0-only /* * Topcliff PCH DMA controller driver * Copyright (c) 2010 Intel Corporation * Copyright (C) 2011 LAPIS Semiconductor Co., Ltd. */ #include <linux/dmaengine.h> #include <linux/dma-mapping.h> #include <linux/init.h> #include <linux/pci.h> #include <linux/slab.h> #include <linux/interrupt.h> #include <linux/module.h> #include <linux/pch_dma.h> #include "dmaengine.h" #define DRV_NAME "pch-dma" #define DMA_CTL0_DISABLE 0x0 #define DMA_CTL0_SG 0x1 #define DMA_CTL0_ONESHOT 0x2 #define DMA_CTL0_MODE_MASK_BITS 0x3 #define DMA_CTL0_DIR_SHIFT_BITS 2 #define DMA_CTL0_BITS_PER_CH 4 #define DMA_CTL2_START_SHIFT_BITS 8 #define DMA_CTL2_IRQ_ENABLE_MASK ((1UL << DMA_CTL2_START_SHIFT_BITS) - 1) #define DMA_STATUS_IDLE 0x0 #define DMA_STATUS_DESC_READ 0x1 #define DMA_STATUS_WAIT 0x2 #define DMA_STATUS_ACCESS 0x3 #define DMA_STATUS_BITS_PER_CH 2 #define DMA_STATUS_MASK_BITS 0x3 #define DMA_STATUS_SHIFT_BITS 16 #define DMA_STATUS_IRQ(x) (0x1 << (x)) #define DMA_STATUS0_ERR(x) (0x1 << ((x) + 8)) #define DMA_STATUS2_ERR(x) (0x1 << (x)) #define DMA_DESC_WIDTH_SHIFT_BITS 12 #define DMA_DESC_WIDTH_1_BYTE (0x3 << DMA_DESC_WIDTH_SHIFT_BITS) #define DMA_DESC_WIDTH_2_BYTES (0x2 << DMA_DESC_WIDTH_SHIFT_BITS) #define DMA_DESC_WIDTH_4_BYTES (0x0 << DMA_DESC_WIDTH_SHIFT_BITS) #define DMA_DESC_MAX_COUNT_1_BYTE 0x3FF #define DMA_DESC_MAX_COUNT_2_BYTES 0x3FF #define DMA_DESC_MAX_COUNT_4_BYTES 0x7FF #define DMA_DESC_END_WITHOUT_IRQ 0x0 #define DMA_DESC_END_WITH_IRQ 0x1 #define DMA_DESC_FOLLOW_WITHOUT_IRQ 0x2 #define DMA_DESC_FOLLOW_WITH_IRQ 0x3 #define MAX_CHAN_NR 12 #define DMA_MASK_CTL0_MODE 0x33333333 #define DMA_MASK_CTL2_MODE 0x00003333 static unsigned int init_nr_desc_per_channel = 64; module_param(init_nr_desc_per_channel, uint, 0644); MODULE_PARM_DESC(init_nr_desc_per_channel, "initial descriptors per channel (default: 64)"); struct pch_dma_desc_regs { u32 dev_addr; u32 mem_addr; u32 size; u32 next; }; struct pch_dma_regs { u32 dma_ctl0; u32 dma_ctl1; u32 dma_ctl2; u32 dma_ctl3; u32 dma_sts0; u32 dma_sts1; u32 dma_sts2; u32 reserved3; struct pch_dma_desc_regs desc[MAX_CHAN_NR]; }; struct pch_dma_desc { struct pch_dma_desc_regs regs; struct dma_async_tx_descriptor txd; struct list_head desc_node; struct list_head tx_list; }; struct pch_dma_chan { struct dma_chan chan; void __iomem *membase; enum dma_transfer_direction dir; struct tasklet_struct tasklet; unsigned long err_status; spinlock_t lock; struct list_head active_list; struct list_head queue; struct list_head free_list; unsigned int descs_allocated; }; #define PDC_DEV_ADDR 0x00 #define PDC_MEM_ADDR 0x04 #define PDC_SIZE 0x08 #define PDC_NEXT 0x0C #define channel_readl(pdc, name) \ readl((pdc)->membase + PDC_##name) #define channel_writel(pdc, name, val) \ writel((val), (pdc)->membase + PDC_##name) struct pch_dma { struct dma_device dma; void __iomem *membase; struct dma_pool *pool; struct pch_dma_regs regs; struct pch_dma_desc_regs ch_regs[MAX_CHAN_NR]; struct pch_dma_chan channels[MAX_CHAN_NR]; }; #define PCH_DMA_CTL0 0x00 #define PCH_DMA_CTL1 0x04 #define PCH_DMA_CTL2 0x08 #define PCH_DMA_CTL3 0x0C #define PCH_DMA_STS0 0x10 #define PCH_DMA_STS1 0x14 #define PCH_DMA_STS2 0x18 #define dma_readl(pd, name) \ readl((pd)->membase + PCH_DMA_##name) #define dma_writel(pd, name, val) \ writel((val), (pd)->membase + PCH_DMA_##name) static inline struct pch_dma_desc *to_pd_desc(struct dma_async_tx_descriptor *txd) { return container_of(txd, struct pch_dma_desc, txd); } static inline struct pch_dma_chan *to_pd_chan(struct dma_chan *chan) { return container_of(chan, struct pch_dma_chan, chan); } static inline struct pch_dma *to_pd(struct dma_device *ddev) { return container_of(ddev, struct pch_dma, dma); } static inline struct device *chan2dev(struct dma_chan *chan) { return &chan->dev->device; } static inline struct device *chan2parent(struct dma_chan *chan) { return chan->dev->device.parent; } static inline struct pch_dma_desc *pdc_first_active(struct pch_dma_chan *pd_chan) { return list_first_entry(&pd_chan->active_list, struct pch_dma_desc, desc_node); } static inline struct pch_dma_desc *pdc_first_queued(struct pch_dma_chan *pd_chan) { return list_first_entry(&pd_chan->queue, struct pch_dma_desc, desc_node); } static void pdc_enable_irq(struct dma_chan *chan, int enable) { struct pch_dma *pd = to_pd(chan->device); u32 val; int pos; if (chan->chan_id < 8) pos = chan->chan_id; else pos = chan->chan_id + 8; val = dma_readl(pd, CTL2); if (enable) val |= 0x1 << pos; else val &= ~(0x1 << pos); dma_writel(pd, CTL2, val); dev_dbg(chan2dev(chan), "pdc_enable_irq: chan %d -> %x\n", chan->chan_id, val); } static void pdc_set_dir(struct dma_chan *chan) { struct pch_dma_chan *pd_chan = to_pd_chan(chan); struct pch_dma *pd = to_pd(chan->device); u32 val; u32 mask_mode; u32 mask_ctl; if (chan->chan_id < 8) { val = dma_readl(pd, CTL0); mask_mode = DMA_CTL0_MODE_MASK_BITS << (DMA_CTL0_BITS_PER_CH * chan->chan_id); mask_ctl = DMA_MASK_CTL0_MODE & ~(DMA_CTL0_MODE_MASK_BITS << (DMA_CTL0_BITS_PER_CH * chan->chan_id)); val &= mask_mode; if (pd_chan->dir == DMA_MEM_TO_DEV) val |= 0x1 << (DMA_CTL0_BITS_PER_CH * chan->chan_id + DMA_CTL0_DIR_SHIFT_BITS); else val &= ~(0x1 << (DMA_CTL0_BITS_PER_CH * chan->chan_id + DMA_CTL0_DIR_SHIFT_BITS)); val |= mask_ctl; dma_writel(pd, CTL0, val); } else { int ch = chan->chan_id - 8; /* ch8-->0 ch9-->1 ... ch11->3 */ val = dma_readl(pd, CTL3); mask_mode = DMA_CTL0_MODE_MASK_BITS << (DMA_CTL0_BITS_PER_CH * ch); mask_ctl = DMA_MASK_CTL2_MODE & ~(DMA_CTL0_MODE_MASK_BITS << (DMA_CTL0_BITS_PER_CH * ch)); val &= mask_mode; if (pd_chan->dir == DMA_MEM_TO_DEV) val |= 0x1 << (DMA_CTL0_BITS_PER_CH * ch + DMA_CTL0_DIR_SHIFT_BITS); else val &= ~(0x1 << (DMA_CTL0_BITS_PER_CH * ch + DMA_CTL0_DIR_SHIFT_BITS)); val |= mask_ctl; dma_writel(pd, CTL3, val); } dev_dbg(chan2dev(chan), "pdc_set_dir: chan %d -> %x\n", chan->chan_id, val); } static void pdc_set_mode(struct dma_chan *chan, u32 mode) { struct pch_dma *pd = to_pd(chan->device); u32 val; u32 mask_ctl; u32 mask_dir; if (chan->chan_id < 8) { mask_ctl = DMA_MASK_CTL0_MODE & ~(DMA_CTL0_MODE_MASK_BITS << (DMA_CTL0_BITS_PER_CH * chan->chan_id)); mask_dir = 1 << (DMA_CTL0_BITS_PER_CH * chan->chan_id +\ DMA_CTL0_DIR_SHIFT_BITS); val = dma_readl(pd, CTL0); val &= mask_dir; val |= mode << (DMA_CTL0_BITS_PER_CH * chan->chan_id); val |= mask_ctl; dma_writel(pd, CTL0, val); } else { int ch = chan->chan_id - 8; /* ch8-->0 ch9-->1 ... ch11->3 */ mask_ctl = DMA_MASK_CTL2_MODE & ~(DMA_CTL0_MODE_MASK_BITS << (DMA_CTL0_BITS_PER_CH * ch)); mask_dir = 1 << (DMA_CTL0_BITS_PER_CH * ch +\ DMA_CTL0_DIR_SHIFT_BITS); val = dma_readl(pd, CTL3); val &= mask_dir; val |= mode << (DMA_CTL0_BITS_PER_CH * ch); val |= mask_ctl; dma_writel(pd, CTL3, val); } dev_dbg(chan2dev(chan), "pdc_set_mode: chan %d -> %x\n", chan->chan_id, val); } static u32 pdc_get_status0(struct pch_dma_chan *pd_chan) { struct pch_dma *pd = to_pd(pd_chan->chan.device); u32 val; val = dma_readl(pd, STS0); return DMA_STATUS_MASK_BITS & (val >> (DMA_STATUS_SHIFT_BITS + DMA_STATUS_BITS_PER_CH * pd_chan->chan.chan_id)); } static u32 pdc_get_status2(struct pch_dma_chan *pd_chan) { struct pch_dma *pd = to_pd(pd_chan->chan.device); u32 val; val = dma_readl(pd, STS2); return DMA_STATUS_MASK_BITS & (val >> (DMA_STATUS_SHIFT_BITS + DMA_STATUS_BITS_PER_CH * (pd_chan->chan.chan_id - 8))); } static bool pdc_is_idle(struct pch_dma_chan *pd_chan) { u32 sts; if (pd_chan->chan.chan_id < 8) sts = pdc_get_status0(pd_chan); else sts = pdc_get_status2(pd_chan); if (sts == DMA_STATUS_IDLE) return true; else return false; } static void pdc_dostart(struct pch_dma_chan *pd_chan, struct pch_dma_desc* desc) { if (!pdc_is_idle(pd_chan)) { dev_err(chan2dev(&pd_chan->chan), "BUG: Attempt to start non-idle channel\n"); return; } dev_dbg(chan2dev(&pd_chan->chan), "chan %d -> dev_addr: %x\n", pd_chan->chan.chan_id, desc->regs.dev_addr); dev_dbg(chan2dev(&pd_chan->chan), "chan %d -> mem_addr: %x\n", pd_chan->chan.chan_id, desc->regs.mem_addr); dev_dbg(chan2dev(&pd_chan->chan), "chan %d -> size: %x\n", pd_chan->chan.chan_id, desc->regs.size); dev_dbg(chan2dev(&pd_chan->chan), "chan %d -> next: %x\n", pd_chan->chan.chan_id, desc->regs.next); if (list_empty(&desc->tx_list)) { channel_writel(pd_chan, DEV_ADDR, desc->regs.dev_addr); channel_writel(pd_chan, MEM_ADDR, desc->regs.mem_addr); channel_writel(pd_chan, SIZE, desc->regs.size); channel_writel(pd_chan, NEXT, desc->regs.next); pdc_set_mode(&pd_chan->chan, DMA_CTL0_ONESHOT); } else { channel_writel(pd_chan, NEXT, desc->txd.phys); pdc_set_mode(&pd_chan->chan, DMA_CTL0_SG); } } static void pdc_chain_complete(struct pch_dma_chan *pd_chan, struct pch_dma_desc *desc) { struct dma_async_tx_descriptor *txd = &desc->txd; struct dmaengine_desc_callback cb; dmaengine_desc_get_callback(txd, &cb); list_splice_init(&desc->tx_list, &pd_chan->free_list); list_move(&desc->desc_node, &pd_chan->free_list); dmaengine_desc_callback_invoke(&cb, NULL); } static void pdc_complete_all(struct pch_dma_chan *pd_chan) { struct pch_dma_desc *desc, *_d; LIST_HEAD(list); BUG_ON(!pdc_is_idle(pd_chan)); if (!list_empty(&pd_chan->queue)) pdc_dostart(pd_chan, pdc_first_queued(pd_chan)); list_splice_init(&pd_chan->active_list, &list); list_splice_init(&pd_chan->queue, &pd_chan->active_list); list_for_each_entry_safe(desc, _d, &list, desc_node) pdc_chain_complete(pd_chan, desc); } static void pdc_handle_error(struct pch_dma_chan *pd_chan) { struct pch_dma_desc *bad_desc; bad_desc = pdc_first_active(pd_chan); list_del(&bad_desc->desc_node); list_splice_init(&pd_chan->queue, pd_chan->active_list.prev); if (!list_empty(&pd_chan->active_list)) pdc_dostart(pd_chan, pdc_first_active(pd_chan)); dev_crit(chan2dev(&pd_chan->chan), "Bad descriptor submitted\n"); dev_crit(chan2dev(&pd_chan->chan), "descriptor cookie: %d\n", bad_desc->txd.cookie); pdc_chain_complete(pd_chan, bad_desc); } static void pdc_advance_work(struct pch_dma_chan *pd_chan) { if (list_empty(&pd_chan->active_list) || list_is_singular(&pd_chan->active_list)) { pdc_complete_all(pd_chan); } else { pdc_chain_complete(pd_chan, pdc_first_active(pd_chan)); pdc_dostart(pd_chan, pdc_first_active(pd_chan)); } } static dma_cookie_t pd_tx_submit(struct dma_async_tx_descriptor *txd) { struct pch_dma_desc *desc = to_pd_desc(txd); struct pch_dma_chan *pd_chan = to_pd_chan(txd->chan); spin_lock(&pd_chan->lock); if (list_empty(&pd_chan->active_list)) { list_add_tail(&desc->desc_node, &pd_chan->active_list); pdc_dostart(pd_chan, desc); } else { list_add_tail(&desc->desc_node, &pd_chan->queue); } spin_unlock(&pd_chan->lock); return 0; } static struct pch_dma_desc *pdc_alloc_desc(struct dma_chan *chan, gfp_t flags) { struct pch_dma_desc *desc = NULL; struct pch_dma *pd = to_pd(chan->device); dma_addr_t addr; desc = dma_pool_zalloc(pd->pool, flags, &addr); if (desc) { INIT_LIST_HEAD(&desc->tx_list); dma_async_tx_descriptor_init(&desc->txd, chan); desc->txd.tx_submit = pd_tx_submit; desc->txd.flags = DMA_CTRL_ACK; desc->txd.phys = addr; } return desc; } static struct pch_dma_desc *pdc_desc_get(struct pch_dma_chan *pd_chan) { struct pch_dma_desc *desc, *_d; struct pch_dma_desc *ret = NULL; int i = 0; spin_lock(&pd_chan->lock); list_for_each_entry_safe(desc, _d, &pd_chan->free_list, desc_node) { i++; if (async_tx_test_ack(&desc->txd)) { list_del(&desc->desc_node); ret = desc; break; } dev_dbg(chan2dev(&pd_chan->chan), "desc %p not ACKed\n", desc); } spin_unlock(&pd_chan->lock); dev_dbg(chan2dev(&pd_chan->chan), "scanned %d descriptors\n", i); if (!ret) { ret = pdc_alloc_desc(&pd_chan->chan, GFP_ATOMIC); if (ret) { spin_lock(&pd_chan->lock); pd_chan->descs_allocated++; spin_unlock(&pd_chan->lock); } else { dev_err(chan2dev(&pd_chan->chan), "failed to alloc desc\n"); } } return ret; } static void pdc_desc_put(struct pch_dma_chan *pd_chan, struct pch_dma_desc *desc) { if (desc) { spin_lock(&pd_chan->lock); list_splice_init(&desc->tx_list, &pd_chan->free_list); list_add(&desc->desc_node, &pd_chan->free_list); spin_unlock(&pd_chan->lock); } } static int pd_alloc_chan_resources(struct dma_chan *chan) { struct pch_dma_chan *pd_chan = to_pd_chan(chan); struct pch_dma_desc *desc; LIST_HEAD(tmp_list); int i; if (!pdc_is_idle(pd_chan)) { dev_dbg(chan2dev(chan), "DMA channel not idle ?\n"); return -EIO; } if (!list_empty(&pd_chan->free_list)) return pd_chan->descs_allocated; for (i = 0; i < init_nr_desc_per_channel; i++) { desc = pdc_alloc_desc(chan, GFP_KERNEL); if (!desc) { dev_warn(chan2dev(chan), "Only allocated %d initial descriptors\n", i); break; } list_add_tail(&desc->desc_node, &tmp_list); } spin_lock_irq(&pd_chan->lock); list_splice(&tmp_list, &pd_chan->free_list); pd_chan->descs_allocated = i; dma_cookie_init(chan); spin_unlock_irq(&pd_chan->lock); pdc_enable_irq(chan, 1); return pd_chan->descs_allocated; } static void pd_free_chan_resources(struct dma_chan *chan) { struct pch_dma_chan *pd_chan = to_pd_chan(chan); struct pch_dma *pd = to_pd(chan->device); struct pch_dma_desc *desc, *_d; LIST_HEAD(tmp_list); BUG_ON(!pdc_is_idle(pd_chan)); BUG_ON(!list_empty(&pd_chan->active_list)); BUG_ON(!list_empty(&pd_chan->queue)); spin_lock_irq(&pd_chan->lock); list_splice_init(&pd_chan->free_list, &tmp_list); pd_chan->descs_allocated = 0; spin_unlock_irq(&pd_chan->lock); list_for_each_entry_safe(desc, _d, &tmp_list, desc_node) dma_pool_free(pd->pool, desc, desc->txd.phys); pdc_enable_irq(chan, 0); } static enum dma_status pd_tx_status(struct dma_chan *chan, dma_cookie_t cookie, struct dma_tx_state *txstate) { return dma_cookie_status(chan, cookie, txstate); } static void pd_issue_pending(struct dma_chan *chan) { struct pch_dma_chan *pd_chan = to_pd_chan(chan); if (pdc_is_idle(pd_chan)) { spin_lock(&pd_chan->lock); pdc_advance_work(pd_chan); spin_unlock(&pd_chan->lock); } } static struct dma_async_tx_descriptor *pd_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len, enum dma_transfer_direction direction, unsigned long flags, void *context) { struct pch_dma_chan *pd_chan = to_pd_chan(chan); struct pch_dma_slave *pd_slave = chan->private; struct pch_dma_desc *first = NULL; struct pch_dma_desc *prev = NULL; struct pch_dma_desc *desc = NULL; struct scatterlist *sg; dma_addr_t reg; int i; if (unlikely(!sg_len)) { dev_info(chan2dev(chan), "prep_slave_sg: length is zero!\n"); return NULL; } if (direction == DMA_DEV_TO_MEM) reg = pd_slave->rx_reg; else if (direction == DMA_MEM_TO_DEV) reg = pd_slave->tx_reg; else return NULL; pd_chan->dir = direction; pdc_set_dir(chan); for_each_sg(sgl, sg, sg_len, i) { desc = pdc_desc_get(pd_chan); if (!desc) goto err_desc_get; desc->regs.dev_addr = reg; desc->regs.mem_addr = sg_dma_address(sg); desc->regs.size = sg_dma_len(sg); desc->regs.next = DMA_DESC_FOLLOW_WITHOUT_IRQ; switch (pd_slave->width) { case PCH_DMA_WIDTH_1_BYTE: if (desc->regs.size > DMA_DESC_MAX_COUNT_1_BYTE) goto err_desc_get; desc->regs.size |= DMA_DESC_WIDTH_1_BYTE; break; case PCH_DMA_WIDTH_2_BYTES: if (desc->regs.size > DMA_DESC_MAX_COUNT_2_BYTES) goto err_desc_get; desc->regs.size |= DMA_DESC_WIDTH_2_BYTES; break; case PCH_DMA_WIDTH_4_BYTES: if (desc->regs.size > DMA_DESC_MAX_COUNT_4_BYTES) goto err_desc_get; desc->regs.size |= DMA_DESC_WIDTH_4_BYTES; break; default: goto err_desc_get; } if (!first) { first = desc; } else { prev->regs.next |= desc->txd.phys; list_add_tail(&desc->desc_node, &first->tx_list); } prev = desc; } if (flags & DMA_PREP_INTERRUPT) desc->regs.next = DMA_DESC_END_WITH_IRQ; else desc->regs.next = DMA_DESC_END_WITHOUT_IRQ; first->txd.cookie = -EBUSY; desc->txd.flags = flags; return &first->txd; err_desc_get: dev_err(chan2dev(chan), "failed to get desc or wrong parameters\n"); pdc_desc_put(pd_chan, first); return NULL; } static int pd_device_terminate_all(struct dma_chan *chan) { struct pch_dma_chan *pd_chan = to_pd_chan(chan); struct pch_dma_desc *desc, *_d; LIST_HEAD(list); spin_lock_irq(&pd_chan->lock); pdc_set_mode(&pd_chan->chan, DMA_CTL0_DISABLE); list_splice_init(&pd_chan->active_list, &list); list_splice_init(&pd_chan->queue, &list); list_for_each_entry_safe(desc, _d, &list, desc_node) pdc_chain_complete(pd_chan, desc); spin_unlock_irq(&pd_chan->lock); return 0; } static void pdc_tasklet(struct tasklet_struct *t) { struct pch_dma_chan *pd_chan = from_tasklet(pd_chan, t, tasklet); unsigned long flags; if (!pdc_is_idle(pd_chan)) { dev_err(chan2dev(&pd_chan->chan), "BUG: handle non-idle channel in tasklet\n"); return; } spin_lock_irqsave(&pd_chan->lock, flags); if (test_and_clear_bit(0, &pd_chan->err_status)) pdc_handle_error(pd_chan); else pdc_advance_work(pd_chan); spin_unlock_irqrestore(&pd_chan->lock, flags); } static irqreturn_t pd_irq(int irq, void *devid) { struct pch_dma *pd = (struct pch_dma *)devid; struct pch_dma_chan *pd_chan; u32 sts0; u32 sts2; int i; int ret0 = IRQ_NONE; int ret2 = IRQ_NONE; sts0 = dma_readl(pd, STS0); sts2 = dma_readl(pd, STS2); dev_dbg(pd->dma.dev, "pd_irq sts0: %x\n", sts0); for (i = 0; i < pd->dma.chancnt; i++) { pd_chan = &pd->channels[i]; if (i < 8) { if (sts0 & DMA_STATUS_IRQ(i)) { if (sts0 & DMA_STATUS0_ERR(i)) set_bit(0, &pd_chan->err_status); tasklet_schedule(&pd_chan->tasklet); ret0 = IRQ_HANDLED; } } else { if (sts2 & DMA_STATUS_IRQ(i - 8)) { if (sts2 & DMA_STATUS2_ERR(i)) set_bit(0, &pd_chan->err_status); tasklet_schedule(&pd_chan->tasklet); ret2 = IRQ_HANDLED; } } } /* clear interrupt bits in status register */ if (ret0) dma_writel(pd, STS0, sts0); if (ret2) dma_writel(pd, STS2, sts2); return ret0 | ret2; } static void __maybe_unused pch_dma_save_regs(struct pch_dma *pd) { struct pch_dma_chan *pd_chan; struct dma_chan *chan, *_c; int i = 0; pd->regs.dma_ctl0 = dma_readl(pd, CTL0); pd->regs.dma_ctl1 = dma_readl(pd, CTL1); pd->regs.dma_ctl2 = dma_readl(pd, CTL2); pd->regs.dma_ctl3 = dma_readl(pd, CTL3); list_for_each_entry_safe(chan, _c, &pd->dma.channels, device_node) { pd_chan = to_pd_chan(chan); pd->ch_regs[i].dev_addr = channel_readl(pd_chan, DEV_ADDR); pd->ch_regs[i].mem_addr = channel_readl(pd_chan, MEM_ADDR); pd->ch_regs[i].size = channel_readl(pd_chan, SIZE); pd->ch_regs[i].next = channel_readl(pd_chan, NEXT); i++; } } static void __maybe_unused pch_dma_restore_regs(struct pch_dma *pd) { struct pch_dma_chan *pd_chan; struct dma_chan *chan, *_c; int i = 0; dma_writel(pd, CTL0, pd->regs.dma_ctl0); dma_writel(pd, CTL1, pd->regs.dma_ctl1); dma_writel(pd, CTL2, pd->regs.dma_ctl2); dma_writel(pd, CTL3, pd->regs.dma_ctl3); list_for_each_entry_safe(chan, _c, &pd->dma.channels, device_node) { pd_chan = to_pd_chan(chan); channel_writel(pd_chan, DEV_ADDR, pd->ch_regs[i].dev_addr); channel_writel(pd_chan, MEM_ADDR, pd->ch_regs[i].mem_addr); channel_writel(pd_chan, SIZE, pd->ch_regs[i].size); channel_writel(pd_chan, NEXT, pd->ch_regs[i].next); i++; } } static int __maybe_unused pch_dma_suspend(struct device *dev) { struct pch_dma *pd = dev_get_drvdata(dev); if (pd) pch_dma_save_regs(pd); return 0; } static int __maybe_unused pch_dma_resume(struct device *dev) { struct pch_dma *pd = dev_get_drvdata(dev); if (pd) pch_dma_restore_regs(pd); return 0; } static int pch_dma_probe(struct pci_dev *pdev, const struct pci_device_id *id) { struct pch_dma *pd; struct pch_dma_regs *regs; unsigned int nr_channels; int err; int i; nr_channels = id->driver_data; pd = kzalloc(sizeof(*pd), GFP_KERNEL); if (!pd) return -ENOMEM; pci_set_drvdata(pdev, pd); err = pci_enable_device(pdev); if (err) { dev_err(&pdev->dev, "Cannot enable PCI device\n"); goto err_free_mem; } if (!(pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) { dev_err(&pdev->dev, "Cannot find proper base address\n"); err = -ENODEV; goto err_disable_pdev; } err = pci_request_regions(pdev, DRV_NAME); if (err) { dev_err(&pdev->dev, "Cannot obtain PCI resources\n"); goto err_disable_pdev; } err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)); if (err) { dev_err(&pdev->dev, "Cannot set proper DMA config\n"); goto err_free_res; } regs = pd->membase = pci_iomap(pdev, 1, 0); if (!pd->membase) { dev_err(&pdev->dev, "Cannot map MMIO registers\n"); err = -ENOMEM; goto err_free_res; } pci_set_master(pdev); pd->dma.dev = &pdev->dev; err = request_irq(pdev->irq, pd_irq, IRQF_SHARED, DRV_NAME, pd); if (err) { dev_err(&pdev->dev, "Failed to request IRQ\n"); goto err_iounmap; } pd->pool = dma_pool_create("pch_dma_desc_pool", &pdev->dev, sizeof(struct pch_dma_desc), 4, 0); if (!pd->pool) { dev_err(&pdev->dev, "Failed to alloc DMA descriptors\n"); err = -ENOMEM; goto err_free_irq; } INIT_LIST_HEAD(&pd->dma.channels); for (i = 0; i < nr_channels; i++) { struct pch_dma_chan *pd_chan = &pd->channels[i]; pd_chan->chan.device = &pd->dma; dma_cookie_init(&pd_chan->chan); pd_chan->membase = ®s->desc[i]; spin_lock_init(&pd_chan->lock); INIT_LIST_HEAD(&pd_chan->active_list); INIT_LIST_HEAD(&pd_chan->queue); INIT_LIST_HEAD(&pd_chan->free_list); tasklet_setup(&pd_chan->tasklet, pdc_tasklet); list_add_tail(&pd_chan->chan.device_node, &pd->dma.channels); } dma_cap_zero(pd->dma.cap_mask); dma_cap_set(DMA_PRIVATE, pd->dma.cap_mask); dma_cap_set(DMA_SLAVE, pd->dma.cap_mask); pd->dma.device_alloc_chan_resources = pd_alloc_chan_resources; pd->dma.device_free_chan_resources = pd_free_chan_resources; pd->dma.device_tx_status = pd_tx_status; pd->dma.device_issue_pending = pd_issue_pending; pd->dma.device_prep_slave_sg = pd_prep_slave_sg; pd->dma.device_terminate_all = pd_device_terminate_all; err = dma_async_device_register(&pd->dma); if (err) { dev_err(&pdev->dev, "Failed to register DMA device\n"); goto err_free_pool; } return 0; err_free_pool: dma_pool_destroy(pd->pool); err_free_irq: free_irq(pdev->irq, pd); err_iounmap: pci_iounmap(pdev, pd->membase); err_free_res: pci_release_regions(pdev); err_disable_pdev: pci_disable_device(pdev); err_free_mem: kfree(pd); return err; } static void pch_dma_remove(struct pci_dev *pdev) { struct pch_dma *pd = pci_get_drvdata(pdev); struct pch_dma_chan *pd_chan; struct dma_chan *chan, *_c; if (pd) { dma_async_device_unregister(&pd->dma); free_irq(pdev->irq, pd); list_for_each_entry_safe(chan, _c, &pd->dma.channels, device_node) { pd_chan = to_pd_chan(chan); tasklet_kill(&pd_chan->tasklet); } dma_pool_destroy(pd->pool); pci_iounmap(pdev, pd->membase); pci_release_regions(pdev); pci_disable_device(pdev); kfree(pd); } } /* PCI Device ID of DMA device */ #define PCI_DEVICE_ID_EG20T_PCH_DMA_8CH 0x8810 #define PCI_DEVICE_ID_EG20T_PCH_DMA_4CH 0x8815 #define PCI_DEVICE_ID_ML7213_DMA1_8CH 0x8026 #define PCI_DEVICE_ID_ML7213_DMA2_8CH 0x802B #define PCI_DEVICE_ID_ML7213_DMA3_4CH 0x8034 #define PCI_DEVICE_ID_ML7213_DMA4_12CH 0x8032 #define PCI_DEVICE_ID_ML7223_DMA1_4CH 0x800B #define PCI_DEVICE_ID_ML7223_DMA2_4CH 0x800E #define PCI_DEVICE_ID_ML7223_DMA3_4CH 0x8017 #define PCI_DEVICE_ID_ML7223_DMA4_4CH 0x803B #define PCI_DEVICE_ID_ML7831_DMA1_8CH 0x8810 #define PCI_DEVICE_ID_ML7831_DMA2_4CH 0x8815 static const struct pci_device_id pch_dma_id_table[] = { { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_EG20T_PCH_DMA_8CH), 8 }, { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_EG20T_PCH_DMA_4CH), 4 }, { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7213_DMA1_8CH), 8}, /* UART Video */ { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7213_DMA2_8CH), 8}, /* PCMIF SPI */ { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7213_DMA3_4CH), 4}, /* FPGA */ { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7213_DMA4_12CH), 12}, /* I2S */ { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7223_DMA1_4CH), 4}, /* UART */ { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7223_DMA2_4CH), 4}, /* Video SPI */ { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7223_DMA3_4CH), 4}, /* Security */ { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7223_DMA4_4CH), 4}, /* FPGA */ { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7831_DMA1_8CH), 8}, /* UART */ { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7831_DMA2_4CH), 4}, /* SPI */ { 0, }, }; static SIMPLE_DEV_PM_OPS(pch_dma_pm_ops, pch_dma_suspend, pch_dma_resume); static struct pci_driver pch_dma_driver = { .name = DRV_NAME, .id_table = pch_dma_id_table, .probe = pch_dma_probe, .remove = pch_dma_remove, .driver.pm = &pch_dma_pm_ops, }; module_pci_driver(pch_dma_driver); MODULE_DESCRIPTION("Intel EG20T PCH / LAPIS Semicon ML7213/ML7223/ML7831 IOH " "DMA controller driver"); MODULE_AUTHOR("Yong Wang <yong.y.wang@intel.com>"); MODULE_LICENSE("GPL v2"); MODULE_DEVICE_TABLE(pci, pch_dma_id_table);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1