Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Arthur Jones | 3928 | 73.68% | 5 | 15.62% |
Niklas Söderlund | 601 | 11.27% | 5 | 15.62% |
Nils Carlson | 550 | 10.32% | 3 | 9.38% |
Mauro Carvalho Chehab | 194 | 3.64% | 8 | 25.00% |
Robert Richter | 25 | 0.47% | 2 | 6.25% |
Borislav Petkov | 17 | 0.32% | 3 | 9.38% |
Jingoo Han | 6 | 0.11% | 1 | 3.12% |
Dinghao Liu | 4 | 0.08% | 1 | 3.12% |
Joe Perches | 3 | 0.06% | 1 | 3.12% |
Wei Yongjun | 1 | 0.02% | 1 | 3.12% |
Geliang Tang | 1 | 0.02% | 1 | 3.12% |
Jongwoo Han | 1 | 0.02% | 1 | 3.12% |
Total | 5331 | 32 |
/* * Intel 5100 Memory Controllers kernel module * * This file may be distributed under the terms of the * GNU General Public License. * * This module is based on the following document: * * Intel 5100X Chipset Memory Controller Hub (MCH) - Datasheet * http://download.intel.com/design/chipsets/datashts/318378.pdf * * The intel 5100 has two independent channels. EDAC core currently * can not reflect this configuration so instead the chip-select * rows for each respective channel are laid out one after another, * the first half belonging to channel 0, the second half belonging * to channel 1. * * This driver is for DDR2 DIMMs, and it uses chip select to select among the * several ranks. However, instead of showing memories as ranks, it outputs * them as DIMM's. An internal table creates the association between ranks * and DIMM's. */ #include <linux/module.h> #include <linux/init.h> #include <linux/pci.h> #include <linux/pci_ids.h> #include <linux/edac.h> #include <linux/delay.h> #include <linux/mmzone.h> #include <linux/debugfs.h> #include "edac_module.h" /* register addresses */ /* device 16, func 1 */ #define I5100_MC 0x40 /* Memory Control Register */ #define I5100_MC_SCRBEN_MASK (1 << 7) #define I5100_MC_SCRBDONE_MASK (1 << 4) #define I5100_MS 0x44 /* Memory Status Register */ #define I5100_SPDDATA 0x48 /* Serial Presence Detect Status Reg */ #define I5100_SPDCMD 0x4c /* Serial Presence Detect Command Reg */ #define I5100_TOLM 0x6c /* Top of Low Memory */ #define I5100_MIR0 0x80 /* Memory Interleave Range 0 */ #define I5100_MIR1 0x84 /* Memory Interleave Range 1 */ #define I5100_AMIR_0 0x8c /* Adjusted Memory Interleave Range 0 */ #define I5100_AMIR_1 0x90 /* Adjusted Memory Interleave Range 1 */ #define I5100_FERR_NF_MEM 0xa0 /* MC First Non Fatal Errors */ #define I5100_FERR_NF_MEM_M16ERR_MASK (1 << 16) #define I5100_FERR_NF_MEM_M15ERR_MASK (1 << 15) #define I5100_FERR_NF_MEM_M14ERR_MASK (1 << 14) #define I5100_FERR_NF_MEM_M12ERR_MASK (1 << 12) #define I5100_FERR_NF_MEM_M11ERR_MASK (1 << 11) #define I5100_FERR_NF_MEM_M10ERR_MASK (1 << 10) #define I5100_FERR_NF_MEM_M6ERR_MASK (1 << 6) #define I5100_FERR_NF_MEM_M5ERR_MASK (1 << 5) #define I5100_FERR_NF_MEM_M4ERR_MASK (1 << 4) #define I5100_FERR_NF_MEM_M1ERR_MASK (1 << 1) #define I5100_FERR_NF_MEM_ANY_MASK \ (I5100_FERR_NF_MEM_M16ERR_MASK | \ I5100_FERR_NF_MEM_M15ERR_MASK | \ I5100_FERR_NF_MEM_M14ERR_MASK | \ I5100_FERR_NF_MEM_M12ERR_MASK | \ I5100_FERR_NF_MEM_M11ERR_MASK | \ I5100_FERR_NF_MEM_M10ERR_MASK | \ I5100_FERR_NF_MEM_M6ERR_MASK | \ I5100_FERR_NF_MEM_M5ERR_MASK | \ I5100_FERR_NF_MEM_M4ERR_MASK | \ I5100_FERR_NF_MEM_M1ERR_MASK) #define I5100_NERR_NF_MEM 0xa4 /* MC Next Non-Fatal Errors */ #define I5100_EMASK_MEM 0xa8 /* MC Error Mask Register */ #define I5100_MEM0EINJMSK0 0x200 /* Injection Mask0 Register Channel 0 */ #define I5100_MEM1EINJMSK0 0x208 /* Injection Mask0 Register Channel 1 */ #define I5100_MEMXEINJMSK0_EINJEN (1 << 27) #define I5100_MEM0EINJMSK1 0x204 /* Injection Mask1 Register Channel 0 */ #define I5100_MEM1EINJMSK1 0x206 /* Injection Mask1 Register Channel 1 */ /* Device 19, Function 0 */ #define I5100_DINJ0 0x9a /* device 21 and 22, func 0 */ #define I5100_MTR_0 0x154 /* Memory Technology Registers 0-3 */ #define I5100_DMIR 0x15c /* DIMM Interleave Range */ #define I5100_VALIDLOG 0x18c /* Valid Log Markers */ #define I5100_NRECMEMA 0x190 /* Non-Recoverable Memory Error Log Reg A */ #define I5100_NRECMEMB 0x194 /* Non-Recoverable Memory Error Log Reg B */ #define I5100_REDMEMA 0x198 /* Recoverable Memory Data Error Log Reg A */ #define I5100_REDMEMB 0x19c /* Recoverable Memory Data Error Log Reg B */ #define I5100_RECMEMA 0x1a0 /* Recoverable Memory Error Log Reg A */ #define I5100_RECMEMB 0x1a4 /* Recoverable Memory Error Log Reg B */ #define I5100_MTR_4 0x1b0 /* Memory Technology Registers 4,5 */ /* bit field accessors */ static inline u32 i5100_mc_scrben(u32 mc) { return mc >> 7 & 1; } static inline u32 i5100_mc_errdeten(u32 mc) { return mc >> 5 & 1; } static inline u32 i5100_mc_scrbdone(u32 mc) { return mc >> 4 & 1; } static inline u16 i5100_spddata_rdo(u16 a) { return a >> 15 & 1; } static inline u16 i5100_spddata_sbe(u16 a) { return a >> 13 & 1; } static inline u16 i5100_spddata_busy(u16 a) { return a >> 12 & 1; } static inline u16 i5100_spddata_data(u16 a) { return a & ((1 << 8) - 1); } static inline u32 i5100_spdcmd_create(u32 dti, u32 ckovrd, u32 sa, u32 ba, u32 data, u32 cmd) { return ((dti & ((1 << 4) - 1)) << 28) | ((ckovrd & 1) << 27) | ((sa & ((1 << 3) - 1)) << 24) | ((ba & ((1 << 8) - 1)) << 16) | ((data & ((1 << 8) - 1)) << 8) | (cmd & 1); } static inline u16 i5100_tolm_tolm(u16 a) { return a >> 12 & ((1 << 4) - 1); } static inline u16 i5100_mir_limit(u16 a) { return a >> 4 & ((1 << 12) - 1); } static inline u16 i5100_mir_way1(u16 a) { return a >> 1 & 1; } static inline u16 i5100_mir_way0(u16 a) { return a & 1; } static inline u32 i5100_ferr_nf_mem_chan_indx(u32 a) { return a >> 28 & 1; } static inline u32 i5100_ferr_nf_mem_any(u32 a) { return a & I5100_FERR_NF_MEM_ANY_MASK; } static inline u32 i5100_nerr_nf_mem_any(u32 a) { return i5100_ferr_nf_mem_any(a); } static inline u32 i5100_dmir_limit(u32 a) { return a >> 16 & ((1 << 11) - 1); } static inline u32 i5100_dmir_rank(u32 a, u32 i) { return a >> (4 * i) & ((1 << 2) - 1); } static inline u16 i5100_mtr_present(u16 a) { return a >> 10 & 1; } static inline u16 i5100_mtr_ethrottle(u16 a) { return a >> 9 & 1; } static inline u16 i5100_mtr_width(u16 a) { return a >> 8 & 1; } static inline u16 i5100_mtr_numbank(u16 a) { return a >> 6 & 1; } static inline u16 i5100_mtr_numrow(u16 a) { return a >> 2 & ((1 << 2) - 1); } static inline u16 i5100_mtr_numcol(u16 a) { return a & ((1 << 2) - 1); } static inline u32 i5100_validlog_redmemvalid(u32 a) { return a >> 2 & 1; } static inline u32 i5100_validlog_recmemvalid(u32 a) { return a >> 1 & 1; } static inline u32 i5100_validlog_nrecmemvalid(u32 a) { return a & 1; } static inline u32 i5100_nrecmema_merr(u32 a) { return a >> 15 & ((1 << 5) - 1); } static inline u32 i5100_nrecmema_bank(u32 a) { return a >> 12 & ((1 << 3) - 1); } static inline u32 i5100_nrecmema_rank(u32 a) { return a >> 8 & ((1 << 3) - 1); } static inline u32 i5100_nrecmemb_cas(u32 a) { return a >> 16 & ((1 << 13) - 1); } static inline u32 i5100_nrecmemb_ras(u32 a) { return a & ((1 << 16) - 1); } static inline u32 i5100_recmema_merr(u32 a) { return i5100_nrecmema_merr(a); } static inline u32 i5100_recmema_bank(u32 a) { return i5100_nrecmema_bank(a); } static inline u32 i5100_recmema_rank(u32 a) { return i5100_nrecmema_rank(a); } static inline u32 i5100_recmemb_cas(u32 a) { return i5100_nrecmemb_cas(a); } static inline u32 i5100_recmemb_ras(u32 a) { return i5100_nrecmemb_ras(a); } /* some generic limits */ #define I5100_MAX_RANKS_PER_CHAN 6 #define I5100_CHANNELS 2 #define I5100_MAX_RANKS_PER_DIMM 4 #define I5100_DIMM_ADDR_LINES (6 - 3) /* 64 bits / 8 bits per byte */ #define I5100_MAX_DIMM_SLOTS_PER_CHAN 4 #define I5100_MAX_RANK_INTERLEAVE 4 #define I5100_MAX_DMIRS 5 #define I5100_SCRUB_REFRESH_RATE (5 * 60 * HZ) struct i5100_priv { /* ranks on each dimm -- 0 maps to not present -- obtained via SPD */ int dimm_numrank[I5100_CHANNELS][I5100_MAX_DIMM_SLOTS_PER_CHAN]; /* * mainboard chip select map -- maps i5100 chip selects to * DIMM slot chip selects. In the case of only 4 ranks per * channel, the mapping is fairly obvious but not unique. * we map -1 -> NC and assume both channels use the same * map... * */ int dimm_csmap[I5100_MAX_DIMM_SLOTS_PER_CHAN][I5100_MAX_RANKS_PER_DIMM]; /* memory interleave range */ struct { u64 limit; unsigned way[2]; } mir[I5100_CHANNELS]; /* adjusted memory interleave range register */ unsigned amir[I5100_CHANNELS]; /* dimm interleave range */ struct { unsigned rank[I5100_MAX_RANK_INTERLEAVE]; u64 limit; } dmir[I5100_CHANNELS][I5100_MAX_DMIRS]; /* memory technology registers... */ struct { unsigned present; /* 0 or 1 */ unsigned ethrottle; /* 0 or 1 */ unsigned width; /* 4 or 8 bits */ unsigned numbank; /* 2 or 3 lines */ unsigned numrow; /* 13 .. 16 lines */ unsigned numcol; /* 11 .. 12 lines */ } mtr[I5100_CHANNELS][I5100_MAX_RANKS_PER_CHAN]; u64 tolm; /* top of low memory in bytes */ unsigned ranksperchan; /* number of ranks per channel */ struct pci_dev *mc; /* device 16 func 1 */ struct pci_dev *einj; /* device 19 func 0 */ struct pci_dev *ch0mm; /* device 21 func 0 */ struct pci_dev *ch1mm; /* device 22 func 0 */ struct delayed_work i5100_scrubbing; int scrub_enable; /* Error injection */ u8 inject_channel; u8 inject_hlinesel; u8 inject_deviceptr1; u8 inject_deviceptr2; u16 inject_eccmask1; u16 inject_eccmask2; struct dentry *debugfs; }; static struct dentry *i5100_debugfs; /* map a rank/chan to a slot number on the mainboard */ static int i5100_rank_to_slot(const struct mem_ctl_info *mci, int chan, int rank) { const struct i5100_priv *priv = mci->pvt_info; int i; for (i = 0; i < I5100_MAX_DIMM_SLOTS_PER_CHAN; i++) { int j; const int numrank = priv->dimm_numrank[chan][i]; for (j = 0; j < numrank; j++) if (priv->dimm_csmap[i][j] == rank) return i * 2 + chan; } return -1; } static const char *i5100_err_msg(unsigned err) { static const char *merrs[] = { "unknown", /* 0 */ "uncorrectable data ECC on replay", /* 1 */ "unknown", /* 2 */ "unknown", /* 3 */ "aliased uncorrectable demand data ECC", /* 4 */ "aliased uncorrectable spare-copy data ECC", /* 5 */ "aliased uncorrectable patrol data ECC", /* 6 */ "unknown", /* 7 */ "unknown", /* 8 */ "unknown", /* 9 */ "non-aliased uncorrectable demand data ECC", /* 10 */ "non-aliased uncorrectable spare-copy data ECC", /* 11 */ "non-aliased uncorrectable patrol data ECC", /* 12 */ "unknown", /* 13 */ "correctable demand data ECC", /* 14 */ "correctable spare-copy data ECC", /* 15 */ "correctable patrol data ECC", /* 16 */ "unknown", /* 17 */ "SPD protocol error", /* 18 */ "unknown", /* 19 */ "spare copy initiated", /* 20 */ "spare copy completed", /* 21 */ }; unsigned i; for (i = 0; i < ARRAY_SIZE(merrs); i++) if (1 << i & err) return merrs[i]; return "none"; } /* convert csrow index into a rank (per channel -- 0..5) */ static unsigned int i5100_csrow_to_rank(const struct mem_ctl_info *mci, unsigned int csrow) { const struct i5100_priv *priv = mci->pvt_info; return csrow % priv->ranksperchan; } /* convert csrow index into a channel (0..1) */ static unsigned int i5100_csrow_to_chan(const struct mem_ctl_info *mci, unsigned int csrow) { const struct i5100_priv *priv = mci->pvt_info; return csrow / priv->ranksperchan; } static void i5100_handle_ce(struct mem_ctl_info *mci, int chan, unsigned bank, unsigned rank, unsigned long syndrome, unsigned cas, unsigned ras, const char *msg) { char detail[80]; /* Form out message */ snprintf(detail, sizeof(detail), "bank %u, cas %u, ras %u\n", bank, cas, ras); edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1, 0, 0, syndrome, chan, rank, -1, msg, detail); } static void i5100_handle_ue(struct mem_ctl_info *mci, int chan, unsigned bank, unsigned rank, unsigned long syndrome, unsigned cas, unsigned ras, const char *msg) { char detail[80]; /* Form out message */ snprintf(detail, sizeof(detail), "bank %u, cas %u, ras %u\n", bank, cas, ras); edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 1, 0, 0, syndrome, chan, rank, -1, msg, detail); } static void i5100_read_log(struct mem_ctl_info *mci, int chan, u32 ferr, u32 nerr) { struct i5100_priv *priv = mci->pvt_info; struct pci_dev *pdev = (chan) ? priv->ch1mm : priv->ch0mm; u32 dw; u32 dw2; unsigned syndrome = 0; unsigned merr; unsigned bank; unsigned rank; unsigned cas; unsigned ras; pci_read_config_dword(pdev, I5100_VALIDLOG, &dw); if (i5100_validlog_redmemvalid(dw)) { pci_read_config_dword(pdev, I5100_REDMEMA, &dw2); syndrome = dw2; pci_read_config_dword(pdev, I5100_REDMEMB, &dw2); } if (i5100_validlog_recmemvalid(dw)) { const char *msg; pci_read_config_dword(pdev, I5100_RECMEMA, &dw2); merr = i5100_recmema_merr(dw2); bank = i5100_recmema_bank(dw2); rank = i5100_recmema_rank(dw2); pci_read_config_dword(pdev, I5100_RECMEMB, &dw2); cas = i5100_recmemb_cas(dw2); ras = i5100_recmemb_ras(dw2); /* FIXME: not really sure if this is what merr is... */ if (!merr) msg = i5100_err_msg(ferr); else msg = i5100_err_msg(nerr); i5100_handle_ce(mci, chan, bank, rank, syndrome, cas, ras, msg); } if (i5100_validlog_nrecmemvalid(dw)) { const char *msg; pci_read_config_dword(pdev, I5100_NRECMEMA, &dw2); merr = i5100_nrecmema_merr(dw2); bank = i5100_nrecmema_bank(dw2); rank = i5100_nrecmema_rank(dw2); pci_read_config_dword(pdev, I5100_NRECMEMB, &dw2); cas = i5100_nrecmemb_cas(dw2); ras = i5100_nrecmemb_ras(dw2); /* FIXME: not really sure if this is what merr is... */ if (!merr) msg = i5100_err_msg(ferr); else msg = i5100_err_msg(nerr); i5100_handle_ue(mci, chan, bank, rank, syndrome, cas, ras, msg); } pci_write_config_dword(pdev, I5100_VALIDLOG, dw); } static void i5100_check_error(struct mem_ctl_info *mci) { struct i5100_priv *priv = mci->pvt_info; u32 dw, dw2; pci_read_config_dword(priv->mc, I5100_FERR_NF_MEM, &dw); if (i5100_ferr_nf_mem_any(dw)) { pci_read_config_dword(priv->mc, I5100_NERR_NF_MEM, &dw2); i5100_read_log(mci, i5100_ferr_nf_mem_chan_indx(dw), i5100_ferr_nf_mem_any(dw), i5100_nerr_nf_mem_any(dw2)); pci_write_config_dword(priv->mc, I5100_NERR_NF_MEM, dw2); } pci_write_config_dword(priv->mc, I5100_FERR_NF_MEM, dw); } /* The i5100 chipset will scrub the entire memory once, then * set a done bit. Continuous scrubbing is achieved by enqueing * delayed work to a workqueue, checking every few minutes if * the scrubbing has completed and if so reinitiating it. */ static void i5100_refresh_scrubbing(struct work_struct *work) { struct delayed_work *i5100_scrubbing = to_delayed_work(work); struct i5100_priv *priv = container_of(i5100_scrubbing, struct i5100_priv, i5100_scrubbing); u32 dw; pci_read_config_dword(priv->mc, I5100_MC, &dw); if (priv->scrub_enable) { pci_read_config_dword(priv->mc, I5100_MC, &dw); if (i5100_mc_scrbdone(dw)) { dw |= I5100_MC_SCRBEN_MASK; pci_write_config_dword(priv->mc, I5100_MC, dw); pci_read_config_dword(priv->mc, I5100_MC, &dw); } schedule_delayed_work(&(priv->i5100_scrubbing), I5100_SCRUB_REFRESH_RATE); } } /* * The bandwidth is based on experimentation, feel free to refine it. */ static int i5100_set_scrub_rate(struct mem_ctl_info *mci, u32 bandwidth) { struct i5100_priv *priv = mci->pvt_info; u32 dw; pci_read_config_dword(priv->mc, I5100_MC, &dw); if (bandwidth) { priv->scrub_enable = 1; dw |= I5100_MC_SCRBEN_MASK; schedule_delayed_work(&(priv->i5100_scrubbing), I5100_SCRUB_REFRESH_RATE); } else { priv->scrub_enable = 0; dw &= ~I5100_MC_SCRBEN_MASK; cancel_delayed_work(&(priv->i5100_scrubbing)); } pci_write_config_dword(priv->mc, I5100_MC, dw); pci_read_config_dword(priv->mc, I5100_MC, &dw); bandwidth = 5900000 * i5100_mc_scrben(dw); return bandwidth; } static int i5100_get_scrub_rate(struct mem_ctl_info *mci) { struct i5100_priv *priv = mci->pvt_info; u32 dw; pci_read_config_dword(priv->mc, I5100_MC, &dw); return 5900000 * i5100_mc_scrben(dw); } static struct pci_dev *pci_get_device_func(unsigned vendor, unsigned device, unsigned func) { struct pci_dev *ret = NULL; while (1) { ret = pci_get_device(vendor, device, ret); if (!ret) break; if (PCI_FUNC(ret->devfn) == func) break; } return ret; } static unsigned long i5100_npages(struct mem_ctl_info *mci, unsigned int csrow) { struct i5100_priv *priv = mci->pvt_info; const unsigned int chan_rank = i5100_csrow_to_rank(mci, csrow); const unsigned int chan = i5100_csrow_to_chan(mci, csrow); unsigned addr_lines; /* dimm present? */ if (!priv->mtr[chan][chan_rank].present) return 0ULL; addr_lines = I5100_DIMM_ADDR_LINES + priv->mtr[chan][chan_rank].numcol + priv->mtr[chan][chan_rank].numrow + priv->mtr[chan][chan_rank].numbank; return (unsigned long) ((unsigned long long) (1ULL << addr_lines) / PAGE_SIZE); } static void i5100_init_mtr(struct mem_ctl_info *mci) { struct i5100_priv *priv = mci->pvt_info; struct pci_dev *mms[2] = { priv->ch0mm, priv->ch1mm }; int i; for (i = 0; i < I5100_CHANNELS; i++) { int j; struct pci_dev *pdev = mms[i]; for (j = 0; j < I5100_MAX_RANKS_PER_CHAN; j++) { const unsigned addr = (j < 4) ? I5100_MTR_0 + j * 2 : I5100_MTR_4 + (j - 4) * 2; u16 w; pci_read_config_word(pdev, addr, &w); priv->mtr[i][j].present = i5100_mtr_present(w); priv->mtr[i][j].ethrottle = i5100_mtr_ethrottle(w); priv->mtr[i][j].width = 4 + 4 * i5100_mtr_width(w); priv->mtr[i][j].numbank = 2 + i5100_mtr_numbank(w); priv->mtr[i][j].numrow = 13 + i5100_mtr_numrow(w); priv->mtr[i][j].numcol = 10 + i5100_mtr_numcol(w); } } } /* * FIXME: make this into a real i2c adapter (so that dimm-decode * will work)? */ static int i5100_read_spd_byte(const struct mem_ctl_info *mci, u8 ch, u8 slot, u8 addr, u8 *byte) { struct i5100_priv *priv = mci->pvt_info; u16 w; pci_read_config_word(priv->mc, I5100_SPDDATA, &w); if (i5100_spddata_busy(w)) return -1; pci_write_config_dword(priv->mc, I5100_SPDCMD, i5100_spdcmd_create(0xa, 1, ch * 4 + slot, addr, 0, 0)); /* wait up to 100ms */ udelay(100); while (1) { pci_read_config_word(priv->mc, I5100_SPDDATA, &w); if (!i5100_spddata_busy(w)) break; udelay(100); } if (!i5100_spddata_rdo(w) || i5100_spddata_sbe(w)) return -1; *byte = i5100_spddata_data(w); return 0; } /* * fill dimm chip select map * * FIXME: * o not the only way to may chip selects to dimm slots * o investigate if there is some way to obtain this map from the bios */ static void i5100_init_dimm_csmap(struct mem_ctl_info *mci) { struct i5100_priv *priv = mci->pvt_info; int i; for (i = 0; i < I5100_MAX_DIMM_SLOTS_PER_CHAN; i++) { int j; for (j = 0; j < I5100_MAX_RANKS_PER_DIMM; j++) priv->dimm_csmap[i][j] = -1; /* default NC */ } /* only 2 chip selects per slot... */ if (priv->ranksperchan == 4) { priv->dimm_csmap[0][0] = 0; priv->dimm_csmap[0][1] = 3; priv->dimm_csmap[1][0] = 1; priv->dimm_csmap[1][1] = 2; priv->dimm_csmap[2][0] = 2; priv->dimm_csmap[3][0] = 3; } else { priv->dimm_csmap[0][0] = 0; priv->dimm_csmap[0][1] = 1; priv->dimm_csmap[1][0] = 2; priv->dimm_csmap[1][1] = 3; priv->dimm_csmap[2][0] = 4; priv->dimm_csmap[2][1] = 5; } } static void i5100_init_dimm_layout(struct pci_dev *pdev, struct mem_ctl_info *mci) { struct i5100_priv *priv = mci->pvt_info; int i; for (i = 0; i < I5100_CHANNELS; i++) { int j; for (j = 0; j < I5100_MAX_DIMM_SLOTS_PER_CHAN; j++) { u8 rank; if (i5100_read_spd_byte(mci, i, j, 5, &rank) < 0) priv->dimm_numrank[i][j] = 0; else priv->dimm_numrank[i][j] = (rank & 3) + 1; } } i5100_init_dimm_csmap(mci); } static void i5100_init_interleaving(struct pci_dev *pdev, struct mem_ctl_info *mci) { u16 w; u32 dw; struct i5100_priv *priv = mci->pvt_info; struct pci_dev *mms[2] = { priv->ch0mm, priv->ch1mm }; int i; pci_read_config_word(pdev, I5100_TOLM, &w); priv->tolm = (u64) i5100_tolm_tolm(w) * 256 * 1024 * 1024; pci_read_config_word(pdev, I5100_MIR0, &w); priv->mir[0].limit = (u64) i5100_mir_limit(w) << 28; priv->mir[0].way[1] = i5100_mir_way1(w); priv->mir[0].way[0] = i5100_mir_way0(w); pci_read_config_word(pdev, I5100_MIR1, &w); priv->mir[1].limit = (u64) i5100_mir_limit(w) << 28; priv->mir[1].way[1] = i5100_mir_way1(w); priv->mir[1].way[0] = i5100_mir_way0(w); pci_read_config_word(pdev, I5100_AMIR_0, &w); priv->amir[0] = w; pci_read_config_word(pdev, I5100_AMIR_1, &w); priv->amir[1] = w; for (i = 0; i < I5100_CHANNELS; i++) { int j; for (j = 0; j < 5; j++) { int k; pci_read_config_dword(mms[i], I5100_DMIR + j * 4, &dw); priv->dmir[i][j].limit = (u64) i5100_dmir_limit(dw) << 28; for (k = 0; k < I5100_MAX_RANKS_PER_DIMM; k++) priv->dmir[i][j].rank[k] = i5100_dmir_rank(dw, k); } } i5100_init_mtr(mci); } static void i5100_init_csrows(struct mem_ctl_info *mci) { struct i5100_priv *priv = mci->pvt_info; struct dimm_info *dimm; mci_for_each_dimm(mci, dimm) { const unsigned long npages = i5100_npages(mci, dimm->idx); const unsigned int chan = i5100_csrow_to_chan(mci, dimm->idx); const unsigned int rank = i5100_csrow_to_rank(mci, dimm->idx); if (!npages) continue; dimm->nr_pages = npages; dimm->grain = 32; dimm->dtype = (priv->mtr[chan][rank].width == 4) ? DEV_X4 : DEV_X8; dimm->mtype = MEM_RDDR2; dimm->edac_mode = EDAC_SECDED; snprintf(dimm->label, sizeof(dimm->label), "DIMM%u", i5100_rank_to_slot(mci, chan, rank)); edac_dbg(2, "dimm channel %d, rank %d, size %ld\n", chan, rank, (long)PAGES_TO_MiB(npages)); } } /**************************************************************************** * Error injection routines ****************************************************************************/ static void i5100_do_inject(struct mem_ctl_info *mci) { struct i5100_priv *priv = mci->pvt_info; u32 mask0; u16 mask1; /* MEM[1:0]EINJMSK0 * 31 - ADDRMATCHEN * 29:28 - HLINESEL * 00 Reserved * 01 Lower half of cache line * 10 Upper half of cache line * 11 Both upper and lower parts of cache line * 27 - EINJEN * 25:19 - XORMASK1 for deviceptr1 * 9:5 - SEC2RAM for deviceptr2 * 4:0 - FIR2RAM for deviceptr1 */ mask0 = ((priv->inject_hlinesel & 0x3) << 28) | I5100_MEMXEINJMSK0_EINJEN | ((priv->inject_eccmask1 & 0xffff) << 10) | ((priv->inject_deviceptr2 & 0x1f) << 5) | (priv->inject_deviceptr1 & 0x1f); /* MEM[1:0]EINJMSK1 * 15:0 - XORMASK2 for deviceptr2 */ mask1 = priv->inject_eccmask2; if (priv->inject_channel == 0) { pci_write_config_dword(priv->mc, I5100_MEM0EINJMSK0, mask0); pci_write_config_word(priv->mc, I5100_MEM0EINJMSK1, mask1); } else { pci_write_config_dword(priv->mc, I5100_MEM1EINJMSK0, mask0); pci_write_config_word(priv->mc, I5100_MEM1EINJMSK1, mask1); } /* Error Injection Response Function * Intel 5100 Memory Controller Hub Chipset (318378) datasheet * hints about this register but carry no data about them. All * data regarding device 19 is based on experimentation and the * Intel 7300 Chipset Memory Controller Hub (318082) datasheet * which appears to be accurate for the i5100 in this area. * * The injection code don't work without setting this register. * The register needs to be flipped off then on else the hardware * will only perform the first injection. * * Stop condition bits 7:4 * 1010 - Stop after one injection * 1011 - Never stop injecting faults * * Start condition bits 3:0 * 1010 - Never start * 1011 - Start immediately */ pci_write_config_byte(priv->einj, I5100_DINJ0, 0xaa); pci_write_config_byte(priv->einj, I5100_DINJ0, 0xab); } #define to_mci(k) container_of(k, struct mem_ctl_info, dev) static ssize_t inject_enable_write(struct file *file, const char __user *data, size_t count, loff_t *ppos) { struct device *dev = file->private_data; struct mem_ctl_info *mci = to_mci(dev); i5100_do_inject(mci); return count; } static const struct file_operations i5100_inject_enable_fops = { .open = simple_open, .write = inject_enable_write, .llseek = generic_file_llseek, }; static int i5100_setup_debugfs(struct mem_ctl_info *mci) { struct i5100_priv *priv = mci->pvt_info; if (!i5100_debugfs) return -ENODEV; priv->debugfs = edac_debugfs_create_dir_at(mci->bus->name, i5100_debugfs); if (!priv->debugfs) return -ENOMEM; edac_debugfs_create_x8("inject_channel", S_IRUGO | S_IWUSR, priv->debugfs, &priv->inject_channel); edac_debugfs_create_x8("inject_hlinesel", S_IRUGO | S_IWUSR, priv->debugfs, &priv->inject_hlinesel); edac_debugfs_create_x8("inject_deviceptr1", S_IRUGO | S_IWUSR, priv->debugfs, &priv->inject_deviceptr1); edac_debugfs_create_x8("inject_deviceptr2", S_IRUGO | S_IWUSR, priv->debugfs, &priv->inject_deviceptr2); edac_debugfs_create_x16("inject_eccmask1", S_IRUGO | S_IWUSR, priv->debugfs, &priv->inject_eccmask1); edac_debugfs_create_x16("inject_eccmask2", S_IRUGO | S_IWUSR, priv->debugfs, &priv->inject_eccmask2); edac_debugfs_create_file("inject_enable", S_IWUSR, priv->debugfs, &mci->dev, &i5100_inject_enable_fops); return 0; } static int i5100_init_one(struct pci_dev *pdev, const struct pci_device_id *id) { int rc; struct mem_ctl_info *mci; struct edac_mc_layer layers[2]; struct i5100_priv *priv; struct pci_dev *ch0mm, *ch1mm, *einj; int ret = 0; u32 dw; int ranksperch; if (PCI_FUNC(pdev->devfn) != 1) return -ENODEV; rc = pci_enable_device(pdev); if (rc < 0) { ret = rc; goto bail; } /* ECC enabled? */ pci_read_config_dword(pdev, I5100_MC, &dw); if (!i5100_mc_errdeten(dw)) { printk(KERN_INFO "i5100_edac: ECC not enabled.\n"); ret = -ENODEV; goto bail_pdev; } /* figure out how many ranks, from strapped state of 48GB_Mode input */ pci_read_config_dword(pdev, I5100_MS, &dw); ranksperch = !!(dw & (1 << 8)) * 2 + 4; /* enable error reporting... */ pci_read_config_dword(pdev, I5100_EMASK_MEM, &dw); dw &= ~I5100_FERR_NF_MEM_ANY_MASK; pci_write_config_dword(pdev, I5100_EMASK_MEM, dw); /* device 21, func 0, Channel 0 Memory Map, Error Flag/Mask, etc... */ ch0mm = pci_get_device_func(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_5100_21, 0); if (!ch0mm) { ret = -ENODEV; goto bail_pdev; } rc = pci_enable_device(ch0mm); if (rc < 0) { ret = rc; goto bail_ch0; } /* device 22, func 0, Channel 1 Memory Map, Error Flag/Mask, etc... */ ch1mm = pci_get_device_func(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_5100_22, 0); if (!ch1mm) { ret = -ENODEV; goto bail_disable_ch0; } rc = pci_enable_device(ch1mm); if (rc < 0) { ret = rc; goto bail_ch1; } layers[0].type = EDAC_MC_LAYER_CHANNEL; layers[0].size = 2; layers[0].is_virt_csrow = false; layers[1].type = EDAC_MC_LAYER_SLOT; layers[1].size = ranksperch; layers[1].is_virt_csrow = true; mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers, sizeof(*priv)); if (!mci) { ret = -ENOMEM; goto bail_disable_ch1; } /* device 19, func 0, Error injection */ einj = pci_get_device_func(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_5100_19, 0); if (!einj) { ret = -ENODEV; goto bail_mc_free; } rc = pci_enable_device(einj); if (rc < 0) { ret = rc; goto bail_einj; } mci->pdev = &pdev->dev; priv = mci->pvt_info; priv->ranksperchan = ranksperch; priv->mc = pdev; priv->ch0mm = ch0mm; priv->ch1mm = ch1mm; priv->einj = einj; INIT_DELAYED_WORK(&(priv->i5100_scrubbing), i5100_refresh_scrubbing); /* If scrubbing was already enabled by the bios, start maintaining it */ pci_read_config_dword(pdev, I5100_MC, &dw); if (i5100_mc_scrben(dw)) { priv->scrub_enable = 1; schedule_delayed_work(&(priv->i5100_scrubbing), I5100_SCRUB_REFRESH_RATE); } i5100_init_dimm_layout(pdev, mci); i5100_init_interleaving(pdev, mci); mci->mtype_cap = MEM_FLAG_FB_DDR2; mci->edac_ctl_cap = EDAC_FLAG_SECDED; mci->edac_cap = EDAC_FLAG_SECDED; mci->mod_name = "i5100_edac.c"; mci->ctl_name = "i5100"; mci->dev_name = pci_name(pdev); mci->ctl_page_to_phys = NULL; mci->edac_check = i5100_check_error; mci->set_sdram_scrub_rate = i5100_set_scrub_rate; mci->get_sdram_scrub_rate = i5100_get_scrub_rate; priv->inject_channel = 0; priv->inject_hlinesel = 0; priv->inject_deviceptr1 = 0; priv->inject_deviceptr2 = 0; priv->inject_eccmask1 = 0; priv->inject_eccmask2 = 0; i5100_init_csrows(mci); /* this strange construction seems to be in every driver, dunno why */ switch (edac_op_state) { case EDAC_OPSTATE_POLL: case EDAC_OPSTATE_NMI: break; default: edac_op_state = EDAC_OPSTATE_POLL; break; } if (edac_mc_add_mc(mci)) { ret = -ENODEV; goto bail_scrub; } i5100_setup_debugfs(mci); return ret; bail_scrub: priv->scrub_enable = 0; cancel_delayed_work_sync(&(priv->i5100_scrubbing)); pci_disable_device(einj); bail_einj: pci_dev_put(einj); bail_mc_free: edac_mc_free(mci); bail_disable_ch1: pci_disable_device(ch1mm); bail_ch1: pci_dev_put(ch1mm); bail_disable_ch0: pci_disable_device(ch0mm); bail_ch0: pci_dev_put(ch0mm); bail_pdev: pci_disable_device(pdev); bail: return ret; } static void i5100_remove_one(struct pci_dev *pdev) { struct mem_ctl_info *mci; struct i5100_priv *priv; mci = edac_mc_del_mc(&pdev->dev); if (!mci) return; priv = mci->pvt_info; edac_debugfs_remove_recursive(priv->debugfs); priv->scrub_enable = 0; cancel_delayed_work_sync(&(priv->i5100_scrubbing)); pci_disable_device(pdev); pci_disable_device(priv->ch0mm); pci_disable_device(priv->ch1mm); pci_disable_device(priv->einj); pci_dev_put(priv->ch0mm); pci_dev_put(priv->ch1mm); pci_dev_put(priv->einj); edac_mc_free(mci); } static const struct pci_device_id i5100_pci_tbl[] = { /* Device 16, Function 0, Channel 0 Memory Map, Error Flag/Mask, ... */ { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_5100_16) }, { 0, } }; MODULE_DEVICE_TABLE(pci, i5100_pci_tbl); static struct pci_driver i5100_driver = { .name = KBUILD_BASENAME, .probe = i5100_init_one, .remove = i5100_remove_one, .id_table = i5100_pci_tbl, }; static int __init i5100_init(void) { int pci_rc; i5100_debugfs = edac_debugfs_create_dir_at("i5100_edac", NULL); pci_rc = pci_register_driver(&i5100_driver); return (pci_rc < 0) ? pci_rc : 0; } static void __exit i5100_exit(void) { edac_debugfs_remove(i5100_debugfs); pci_unregister_driver(&i5100_driver); } module_init(i5100_init); module_exit(i5100_exit); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Arthur Jones <ajones@riverbed.com>"); MODULE_DESCRIPTION("MC Driver for Intel I5100 memory controllers");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1