Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Shubhrajyoti Datta | 4621 | 100.00% | 2 | 100.00% |
Total | 4621 | 2 |
// SPDX-License-Identifier: GPL-2.0 /* * Xilinx Versal memory controller driver * Copyright (C) 2023 Advanced Micro Devices, Inc. */ #include <linux/bitfield.h> #include <linux/edac.h> #include <linux/interrupt.h> #include <linux/module.h> #include <linux/of.h> #include <linux/of_address.h> #include <linux/of_device.h> #include <linux/platform_device.h> #include <linux/sizes.h> #include <linux/firmware/xlnx-zynqmp.h> #include <linux/firmware/xlnx-event-manager.h> #include "edac_module.h" /* Granularity of reported error in bytes */ #define XDDR_EDAC_ERR_GRAIN 1 #define XDDR_EDAC_MSG_SIZE 256 #define EVENT 2 #define XDDR_PCSR_OFFSET 0xC #define XDDR_ISR_OFFSET 0x14 #define XDDR_IRQ_EN_OFFSET 0x20 #define XDDR_IRQ1_EN_OFFSET 0x2C #define XDDR_IRQ_DIS_OFFSET 0x24 #define XDDR_IRQ_CE_MASK GENMASK(18, 15) #define XDDR_IRQ_UE_MASK GENMASK(14, 11) #define XDDR_REG_CONFIG0_OFFSET 0x258 #define XDDR_REG_CONFIG0_BUS_WIDTH_MASK GENMASK(19, 18) #define XDDR_REG_CONFIG0_NUM_CHANS_MASK BIT(17) #define XDDR_REG_CONFIG0_NUM_RANKS_MASK GENMASK(15, 14) #define XDDR_REG_CONFIG0_SIZE_MASK GENMASK(10, 8) #define XDDR_REG_PINOUT_OFFSET 0x25C #define XDDR_REG_PINOUT_ECC_EN_MASK GENMASK(7, 5) #define ECCW0_FLIP_CTRL 0x109C #define ECCW0_FLIP0_OFFSET 0x10A0 #define ECCW1_FLIP_CTRL 0x10AC #define ECCW1_FLIP0_OFFSET 0x10B0 #define ECCR0_CERR_STAT_OFFSET 0x10BC #define ECCR0_CE_ADDR_LO_OFFSET 0x10C0 #define ECCR0_CE_ADDR_HI_OFFSET 0x10C4 #define ECCR0_CE_DATA_LO_OFFSET 0x10C8 #define ECCR0_CE_DATA_HI_OFFSET 0x10CC #define ECCR0_CE_DATA_PAR_OFFSET 0x10D0 #define ECCR0_UERR_STAT_OFFSET 0x10D4 #define ECCR0_UE_ADDR_LO_OFFSET 0x10D8 #define ECCR0_UE_ADDR_HI_OFFSET 0x10DC #define ECCR0_UE_DATA_LO_OFFSET 0x10E0 #define ECCR0_UE_DATA_HI_OFFSET 0x10E4 #define ECCR0_UE_DATA_PAR_OFFSET 0x10E8 #define ECCR1_CERR_STAT_OFFSET 0x10F4 #define ECCR1_CE_ADDR_LO_OFFSET 0x10F8 #define ECCR1_CE_ADDR_HI_OFFSET 0x10FC #define ECCR1_CE_DATA_LO_OFFSET 0x1100 #define ECCR1_CE_DATA_HI_OFFSET 0x110C #define ECCR1_CE_DATA_PAR_OFFSET 0x1108 #define ECCR1_UERR_STAT_OFFSET 0x110C #define ECCR1_UE_ADDR_LO_OFFSET 0x1110 #define ECCR1_UE_ADDR_HI_OFFSET 0x1114 #define ECCR1_UE_DATA_LO_OFFSET 0x1118 #define ECCR1_UE_DATA_HI_OFFSET 0x111C #define ECCR1_UE_DATA_PAR_OFFSET 0x1120 #define XDDR_NOC_REG_ADEC4_OFFSET 0x44 #define RANK_1_MASK GENMASK(11, 6) #define LRANK_0_MASK GENMASK(17, 12) #define LRANK_1_MASK GENMASK(23, 18) #define MASK_24 GENMASK(29, 24) #define XDDR_NOC_REG_ADEC5_OFFSET 0x48 #define XDDR_NOC_REG_ADEC6_OFFSET 0x4C #define XDDR_NOC_REG_ADEC7_OFFSET 0x50 #define XDDR_NOC_REG_ADEC8_OFFSET 0x54 #define XDDR_NOC_REG_ADEC9_OFFSET 0x58 #define XDDR_NOC_REG_ADEC10_OFFSET 0x5C #define XDDR_NOC_REG_ADEC11_OFFSET 0x60 #define MASK_0 GENMASK(5, 0) #define GRP_0_MASK GENMASK(11, 6) #define GRP_1_MASK GENMASK(17, 12) #define CH_0_MASK GENMASK(23, 18) #define XDDR_NOC_REG_ADEC12_OFFSET 0x71C #define XDDR_NOC_REG_ADEC13_OFFSET 0x720 #define XDDR_NOC_REG_ADEC14_OFFSET 0x724 #define XDDR_NOC_ROW_MATCH_MASK GENMASK(17, 0) #define XDDR_NOC_COL_MATCH_MASK GENMASK(27, 18) #define XDDR_NOC_BANK_MATCH_MASK GENMASK(29, 28) #define XDDR_NOC_GRP_MATCH_MASK GENMASK(31, 30) #define XDDR_NOC_REG_ADEC15_OFFSET 0x728 #define XDDR_NOC_RANK_MATCH_MASK GENMASK(1, 0) #define XDDR_NOC_LRANK_MATCH_MASK GENMASK(4, 2) #define XDDR_NOC_CH_MATCH_MASK BIT(5) #define XDDR_NOC_MOD_SEL_MASK BIT(6) #define XDDR_NOC_MATCH_EN_MASK BIT(8) #define ECCR_UE_CE_ADDR_HI_ROW_MASK GENMASK(7, 0) #define XDDR_EDAC_NR_CSROWS 1 #define XDDR_EDAC_NR_CHANS 1 #define XDDR_BUS_WIDTH_64 0 #define XDDR_BUS_WIDTH_32 1 #define XDDR_BUS_WIDTH_16 2 #define ECC_CEPOISON_MASK 0x1 #define ECC_UEPOISON_MASK 0x3 #define XDDR_MAX_ROW_CNT 18 #define XDDR_MAX_COL_CNT 10 #define XDDR_MAX_RANK_CNT 2 #define XDDR_MAX_LRANK_CNT 3 #define XDDR_MAX_BANK_CNT 2 #define XDDR_MAX_GRP_CNT 2 /* * Config and system registers are usually locked. This is the * code which unlocks them in order to accept writes. See * * https://docs.xilinx.com/r/en-US/am012-versal-register-reference/PCSR_LOCK-XRAM_SLCR-Register */ #define PCSR_UNLOCK_VAL 0xF9E8D7C6 #define XDDR_ERR_TYPE_CE 0 #define XDDR_ERR_TYPE_UE 1 #define XILINX_DRAM_SIZE_4G 0 #define XILINX_DRAM_SIZE_6G 1 #define XILINX_DRAM_SIZE_8G 2 #define XILINX_DRAM_SIZE_12G 3 #define XILINX_DRAM_SIZE_16G 4 #define XILINX_DRAM_SIZE_32G 5 /** * struct ecc_error_info - ECC error log information. * @burstpos: Burst position. * @lrank: Logical Rank number. * @rank: Rank number. * @group: Group number. * @bank: Bank number. * @col: Column number. * @row: Row number. * @rowhi: Row number higher bits. * @i: ECC error info. */ union ecc_error_info { struct { u32 burstpos:3; u32 lrank:3; u32 rank:2; u32 group:2; u32 bank:2; u32 col:10; u32 row:10; u32 rowhi; }; u64 i; } __packed; union edac_info { struct { u32 row0:6; u32 row1:6; u32 row2:6; u32 row3:6; u32 row4:6; u32 reserved:2; }; struct { u32 col1:6; u32 col2:6; u32 col3:6; u32 col4:6; u32 col5:6; u32 reservedcol:2; }; u32 i; } __packed; /** * struct ecc_status - ECC status information to report. * @ceinfo: Correctable error log information. * @ueinfo: Uncorrectable error log information. * @channel: Channel number. * @error_type: Error type information. */ struct ecc_status { union ecc_error_info ceinfo[2]; union ecc_error_info ueinfo[2]; u8 channel; u8 error_type; }; /** * struct edac_priv - DDR memory controller private instance data. * @ddrmc_baseaddr: Base address of the DDR controller. * @ddrmc_noc_baseaddr: Base address of the DDRMC NOC. * @message: Buffer for framing the event specific info. * @mc_id: Memory controller ID. * @ce_cnt: Correctable error count. * @ue_cnt: UnCorrectable error count. * @stat: ECC status information. * @lrank_bit: Bit shifts for lrank bit. * @rank_bit: Bit shifts for rank bit. * @row_bit: Bit shifts for row bit. * @col_bit: Bit shifts for column bit. * @bank_bit: Bit shifts for bank bit. * @grp_bit: Bit shifts for group bit. * @ch_bit: Bit shifts for channel bit. * @err_inject_addr: Data poison address. * @debugfs: Debugfs handle. */ struct edac_priv { void __iomem *ddrmc_baseaddr; void __iomem *ddrmc_noc_baseaddr; char message[XDDR_EDAC_MSG_SIZE]; u32 mc_id; u32 ce_cnt; u32 ue_cnt; struct ecc_status stat; u32 lrank_bit[3]; u32 rank_bit[2]; u32 row_bit[18]; u32 col_bit[10]; u32 bank_bit[2]; u32 grp_bit[2]; u32 ch_bit; #ifdef CONFIG_EDAC_DEBUG u64 err_inject_addr; struct dentry *debugfs; #endif }; static void get_ce_error_info(struct edac_priv *priv) { void __iomem *ddrmc_base; struct ecc_status *p; u32 regval; u64 reghi; ddrmc_base = priv->ddrmc_baseaddr; p = &priv->stat; p->error_type = XDDR_ERR_TYPE_CE; regval = readl(ddrmc_base + ECCR0_CE_ADDR_LO_OFFSET); reghi = regval & ECCR_UE_CE_ADDR_HI_ROW_MASK; p->ceinfo[0].i = regval | reghi << 32; regval = readl(ddrmc_base + ECCR0_CE_ADDR_HI_OFFSET); edac_dbg(2, "ERR DATA: 0x%08X%08X ERR DATA PARITY: 0x%08X\n", readl(ddrmc_base + ECCR0_CE_DATA_LO_OFFSET), readl(ddrmc_base + ECCR0_CE_DATA_HI_OFFSET), readl(ddrmc_base + ECCR0_CE_DATA_PAR_OFFSET)); regval = readl(ddrmc_base + ECCR1_CE_ADDR_LO_OFFSET); reghi = readl(ddrmc_base + ECCR1_CE_ADDR_HI_OFFSET); p->ceinfo[1].i = regval | reghi << 32; regval = readl(ddrmc_base + ECCR1_CE_ADDR_HI_OFFSET); edac_dbg(2, "ERR DATA: 0x%08X%08X ERR DATA PARITY: 0x%08X\n", readl(ddrmc_base + ECCR1_CE_DATA_LO_OFFSET), readl(ddrmc_base + ECCR1_CE_DATA_HI_OFFSET), readl(ddrmc_base + ECCR1_CE_DATA_PAR_OFFSET)); } static void get_ue_error_info(struct edac_priv *priv) { void __iomem *ddrmc_base; struct ecc_status *p; u32 regval; u64 reghi; ddrmc_base = priv->ddrmc_baseaddr; p = &priv->stat; p->error_type = XDDR_ERR_TYPE_UE; regval = readl(ddrmc_base + ECCR0_UE_ADDR_LO_OFFSET); reghi = readl(ddrmc_base + ECCR0_UE_ADDR_HI_OFFSET); p->ueinfo[0].i = regval | reghi << 32; regval = readl(ddrmc_base + ECCR0_UE_ADDR_HI_OFFSET); edac_dbg(2, "ERR DATA: 0x%08X%08X ERR DATA PARITY: 0x%08X\n", readl(ddrmc_base + ECCR0_UE_DATA_LO_OFFSET), readl(ddrmc_base + ECCR0_UE_DATA_HI_OFFSET), readl(ddrmc_base + ECCR0_UE_DATA_PAR_OFFSET)); regval = readl(ddrmc_base + ECCR1_UE_ADDR_LO_OFFSET); reghi = readl(ddrmc_base + ECCR1_UE_ADDR_HI_OFFSET); p->ueinfo[1].i = regval | reghi << 32; edac_dbg(2, "ERR DATA: 0x%08X%08X ERR DATA PARITY: 0x%08X\n", readl(ddrmc_base + ECCR1_UE_DATA_LO_OFFSET), readl(ddrmc_base + ECCR1_UE_DATA_HI_OFFSET), readl(ddrmc_base + ECCR1_UE_DATA_PAR_OFFSET)); } static bool get_error_info(struct edac_priv *priv) { u32 eccr0_ceval, eccr1_ceval, eccr0_ueval, eccr1_ueval; void __iomem *ddrmc_base; struct ecc_status *p; ddrmc_base = priv->ddrmc_baseaddr; p = &priv->stat; eccr0_ceval = readl(ddrmc_base + ECCR0_CERR_STAT_OFFSET); eccr1_ceval = readl(ddrmc_base + ECCR1_CERR_STAT_OFFSET); eccr0_ueval = readl(ddrmc_base + ECCR0_UERR_STAT_OFFSET); eccr1_ueval = readl(ddrmc_base + ECCR1_UERR_STAT_OFFSET); if (!eccr0_ceval && !eccr1_ceval && !eccr0_ueval && !eccr1_ueval) return 1; if (!eccr0_ceval) p->channel = 1; else p->channel = 0; if (eccr0_ceval || eccr1_ceval) get_ce_error_info(priv); if (eccr0_ueval || eccr1_ueval) { if (!eccr0_ueval) p->channel = 1; else p->channel = 0; get_ue_error_info(priv); } /* Unlock the PCSR registers */ writel(PCSR_UNLOCK_VAL, ddrmc_base + XDDR_PCSR_OFFSET); writel(0, ddrmc_base + ECCR0_CERR_STAT_OFFSET); writel(0, ddrmc_base + ECCR1_CERR_STAT_OFFSET); writel(0, ddrmc_base + ECCR0_UERR_STAT_OFFSET); writel(0, ddrmc_base + ECCR1_UERR_STAT_OFFSET); /* Lock the PCSR registers */ writel(1, ddrmc_base + XDDR_PCSR_OFFSET); return 0; } /** * convert_to_physical - Convert to physical address. * @priv: DDR memory controller private instance data. * @pinf: ECC error info structure. * * Return: Physical address of the DDR memory. */ static unsigned long convert_to_physical(struct edac_priv *priv, union ecc_error_info pinf) { unsigned long err_addr = 0; u32 index; u32 row; row = pinf.rowhi << 10 | pinf.row; for (index = 0; index < XDDR_MAX_ROW_CNT; index++) { err_addr |= (row & BIT(0)) << priv->row_bit[index]; row >>= 1; } for (index = 0; index < XDDR_MAX_COL_CNT; index++) { err_addr |= (pinf.col & BIT(0)) << priv->col_bit[index]; pinf.col >>= 1; } for (index = 0; index < XDDR_MAX_BANK_CNT; index++) { err_addr |= (pinf.bank & BIT(0)) << priv->bank_bit[index]; pinf.bank >>= 1; } for (index = 0; index < XDDR_MAX_GRP_CNT; index++) { err_addr |= (pinf.group & BIT(0)) << priv->grp_bit[index]; pinf.group >>= 1; } for (index = 0; index < XDDR_MAX_RANK_CNT; index++) { err_addr |= (pinf.rank & BIT(0)) << priv->rank_bit[index]; pinf.rank >>= 1; } for (index = 0; index < XDDR_MAX_LRANK_CNT; index++) { err_addr |= (pinf.lrank & BIT(0)) << priv->lrank_bit[index]; pinf.lrank >>= 1; } err_addr |= (priv->stat.channel & BIT(0)) << priv->ch_bit; return err_addr; } /** * handle_error - Handle Correctable and Uncorrectable errors. * @mci: EDAC memory controller instance. * @stat: ECC status structure. * * Handles ECC correctable and uncorrectable errors. */ static void handle_error(struct mem_ctl_info *mci, struct ecc_status *stat) { struct edac_priv *priv = mci->pvt_info; union ecc_error_info pinf; if (stat->error_type == XDDR_ERR_TYPE_CE) { priv->ce_cnt++; pinf = stat->ceinfo[stat->channel]; snprintf(priv->message, XDDR_EDAC_MSG_SIZE, "Error type:%s MC ID: %d Addr at %lx Burst Pos: %d\n", "CE", priv->mc_id, convert_to_physical(priv, pinf), pinf.burstpos); edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, priv->ce_cnt, 0, 0, 0, 0, 0, -1, priv->message, ""); } if (stat->error_type == XDDR_ERR_TYPE_UE) { priv->ue_cnt++; pinf = stat->ueinfo[stat->channel]; snprintf(priv->message, XDDR_EDAC_MSG_SIZE, "Error type:%s MC ID: %d Addr at %lx Burst Pos: %d\n", "UE", priv->mc_id, convert_to_physical(priv, pinf), pinf.burstpos); edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, priv->ue_cnt, 0, 0, 0, 0, 0, -1, priv->message, ""); } memset(stat, 0, sizeof(*stat)); } /** * err_callback - Handle Correctable and Uncorrectable errors. * @payload: payload data. * @data: mci controller data. * * Handles ECC correctable and uncorrectable errors. */ static void err_callback(const u32 *payload, void *data) { struct mem_ctl_info *mci = (struct mem_ctl_info *)data; struct edac_priv *priv; struct ecc_status *p; int regval; priv = mci->pvt_info; p = &priv->stat; regval = readl(priv->ddrmc_baseaddr + XDDR_ISR_OFFSET); if (payload[EVENT] == XPM_EVENT_ERROR_MASK_DDRMC_CR) p->error_type = XDDR_ERR_TYPE_CE; if (payload[EVENT] == XPM_EVENT_ERROR_MASK_DDRMC_NCR) p->error_type = XDDR_ERR_TYPE_UE; if (get_error_info(priv)) return; handle_error(mci, &priv->stat); /* Unlock the PCSR registers */ writel(PCSR_UNLOCK_VAL, priv->ddrmc_baseaddr + XDDR_PCSR_OFFSET); /* Clear the ISR */ writel(regval, priv->ddrmc_baseaddr + XDDR_ISR_OFFSET); /* Lock the PCSR registers */ writel(1, priv->ddrmc_baseaddr + XDDR_PCSR_OFFSET); edac_dbg(3, "Total error count CE %d UE %d\n", priv->ce_cnt, priv->ue_cnt); } /** * get_dwidth - Return the controller memory width. * @base: DDR memory controller base address. * * Get the EDAC device type width appropriate for the controller * configuration. * * Return: a device type width enumeration. */ static enum dev_type get_dwidth(const void __iomem *base) { enum dev_type dt; u32 regval; u32 width; regval = readl(base + XDDR_REG_CONFIG0_OFFSET); width = FIELD_GET(XDDR_REG_CONFIG0_BUS_WIDTH_MASK, regval); switch (width) { case XDDR_BUS_WIDTH_16: dt = DEV_X2; break; case XDDR_BUS_WIDTH_32: dt = DEV_X4; break; case XDDR_BUS_WIDTH_64: dt = DEV_X8; break; default: dt = DEV_UNKNOWN; } return dt; } /** * get_ecc_state - Return the controller ECC enable/disable status. * @base: DDR memory controller base address. * * Get the ECC enable/disable status for the controller. * * Return: a ECC status boolean i.e true/false - enabled/disabled. */ static bool get_ecc_state(void __iomem *base) { enum dev_type dt; u32 ecctype; dt = get_dwidth(base); if (dt == DEV_UNKNOWN) return false; ecctype = readl(base + XDDR_REG_PINOUT_OFFSET); ecctype &= XDDR_REG_PINOUT_ECC_EN_MASK; return !!ecctype; } /** * get_memsize - Get the size of the attached memory device. * @priv: DDR memory controller private instance data. * * Return: the memory size in bytes. */ static u64 get_memsize(struct edac_priv *priv) { u32 regval; u64 size; regval = readl(priv->ddrmc_baseaddr + XDDR_REG_CONFIG0_OFFSET); regval = FIELD_GET(XDDR_REG_CONFIG0_SIZE_MASK, regval); switch (regval) { case XILINX_DRAM_SIZE_4G: size = 4U; break; case XILINX_DRAM_SIZE_6G: size = 6U; break; case XILINX_DRAM_SIZE_8G: size = 8U; break; case XILINX_DRAM_SIZE_12G: size = 12U; break; case XILINX_DRAM_SIZE_16G: size = 16U; break; case XILINX_DRAM_SIZE_32G: size = 32U; break; /* Invalid configuration */ default: size = 0; break; } size *= SZ_1G; return size; } /** * init_csrows - Initialize the csrow data. * @mci: EDAC memory controller instance. * * Initialize the chip select rows associated with the EDAC memory * controller instance. */ static void init_csrows(struct mem_ctl_info *mci) { struct edac_priv *priv = mci->pvt_info; struct csrow_info *csi; struct dimm_info *dimm; unsigned long size; u32 row; int ch; size = get_memsize(priv); for (row = 0; row < mci->nr_csrows; row++) { csi = mci->csrows[row]; for (ch = 0; ch < csi->nr_channels; ch++) { dimm = csi->channels[ch]->dimm; dimm->edac_mode = EDAC_SECDED; dimm->mtype = MEM_DDR4; dimm->nr_pages = (size >> PAGE_SHIFT) / csi->nr_channels; dimm->grain = XDDR_EDAC_ERR_GRAIN; dimm->dtype = get_dwidth(priv->ddrmc_baseaddr); } } } /** * mc_init - Initialize one driver instance. * @mci: EDAC memory controller instance. * @pdev: platform device. * * Perform initialization of the EDAC memory controller instance and * related driver-private data associated with the memory controller the * instance is bound to. */ static void mc_init(struct mem_ctl_info *mci, struct platform_device *pdev) { mci->pdev = &pdev->dev; platform_set_drvdata(pdev, mci); /* Initialize controller capabilities and configuration */ mci->mtype_cap = MEM_FLAG_DDR4; mci->edac_ctl_cap = EDAC_FLAG_NONE | EDAC_FLAG_SECDED; mci->scrub_cap = SCRUB_HW_SRC; mci->scrub_mode = SCRUB_NONE; mci->edac_cap = EDAC_FLAG_SECDED; mci->ctl_name = "xlnx_ddr_controller"; mci->dev_name = dev_name(&pdev->dev); mci->mod_name = "xlnx_edac"; edac_op_state = EDAC_OPSTATE_INT; init_csrows(mci); } static void enable_intr(struct edac_priv *priv) { /* Unlock the PCSR registers */ writel(PCSR_UNLOCK_VAL, priv->ddrmc_baseaddr + XDDR_PCSR_OFFSET); /* Enable UE and CE Interrupts to support the interrupt case */ writel(XDDR_IRQ_CE_MASK | XDDR_IRQ_UE_MASK, priv->ddrmc_baseaddr + XDDR_IRQ_EN_OFFSET); writel(XDDR_IRQ_UE_MASK, priv->ddrmc_baseaddr + XDDR_IRQ1_EN_OFFSET); /* Lock the PCSR registers */ writel(1, priv->ddrmc_baseaddr + XDDR_PCSR_OFFSET); } static void disable_intr(struct edac_priv *priv) { /* Unlock the PCSR registers */ writel(PCSR_UNLOCK_VAL, priv->ddrmc_baseaddr + XDDR_PCSR_OFFSET); /* Disable UE/CE Interrupts */ writel(XDDR_IRQ_CE_MASK | XDDR_IRQ_UE_MASK, priv->ddrmc_baseaddr + XDDR_IRQ_DIS_OFFSET); /* Lock the PCSR registers */ writel(1, priv->ddrmc_baseaddr + XDDR_PCSR_OFFSET); } #define to_mci(k) container_of(k, struct mem_ctl_info, dev) #ifdef CONFIG_EDAC_DEBUG /** * poison_setup - Update poison registers. * @priv: DDR memory controller private instance data. * * Update poison registers as per DDR mapping upon write of the address * location the fault is injected. * Return: none. */ static void poison_setup(struct edac_priv *priv) { u32 col = 0, row = 0, bank = 0, grp = 0, rank = 0, lrank = 0, ch = 0; u32 index, regval; for (index = 0; index < XDDR_MAX_ROW_CNT; index++) { row |= (((priv->err_inject_addr >> priv->row_bit[index]) & BIT(0)) << index); } for (index = 0; index < XDDR_MAX_COL_CNT; index++) { col |= (((priv->err_inject_addr >> priv->col_bit[index]) & BIT(0)) << index); } for (index = 0; index < XDDR_MAX_BANK_CNT; index++) { bank |= (((priv->err_inject_addr >> priv->bank_bit[index]) & BIT(0)) << index); } for (index = 0; index < XDDR_MAX_GRP_CNT; index++) { grp |= (((priv->err_inject_addr >> priv->grp_bit[index]) & BIT(0)) << index); } for (index = 0; index < XDDR_MAX_RANK_CNT; index++) { rank |= (((priv->err_inject_addr >> priv->rank_bit[index]) & BIT(0)) << index); } for (index = 0; index < XDDR_MAX_LRANK_CNT; index++) { lrank |= (((priv->err_inject_addr >> priv->lrank_bit[index]) & BIT(0)) << index); } ch = (priv->err_inject_addr >> priv->ch_bit) & BIT(0); if (ch) writel(0xFF, priv->ddrmc_baseaddr + ECCW1_FLIP_CTRL); else writel(0xFF, priv->ddrmc_baseaddr + ECCW0_FLIP_CTRL); writel(0, priv->ddrmc_noc_baseaddr + XDDR_NOC_REG_ADEC12_OFFSET); writel(0, priv->ddrmc_noc_baseaddr + XDDR_NOC_REG_ADEC13_OFFSET); regval = row & XDDR_NOC_ROW_MATCH_MASK; regval |= FIELD_PREP(XDDR_NOC_COL_MATCH_MASK, col); regval |= FIELD_PREP(XDDR_NOC_BANK_MATCH_MASK, bank); regval |= FIELD_PREP(XDDR_NOC_GRP_MATCH_MASK, grp); writel(regval, priv->ddrmc_noc_baseaddr + XDDR_NOC_REG_ADEC14_OFFSET); regval = rank & XDDR_NOC_RANK_MATCH_MASK; regval |= FIELD_PREP(XDDR_NOC_LRANK_MATCH_MASK, lrank); regval |= FIELD_PREP(XDDR_NOC_CH_MATCH_MASK, ch); regval |= (XDDR_NOC_MOD_SEL_MASK | XDDR_NOC_MATCH_EN_MASK); writel(regval, priv->ddrmc_noc_baseaddr + XDDR_NOC_REG_ADEC15_OFFSET); } static ssize_t xddr_inject_data_poison_store(struct mem_ctl_info *mci, const char __user *data) { struct edac_priv *priv = mci->pvt_info; writel(0, priv->ddrmc_baseaddr + ECCW0_FLIP0_OFFSET); writel(0, priv->ddrmc_baseaddr + ECCW1_FLIP0_OFFSET); if (strncmp(data, "CE", 2) == 0) { writel(ECC_CEPOISON_MASK, priv->ddrmc_baseaddr + ECCW0_FLIP0_OFFSET); writel(ECC_CEPOISON_MASK, priv->ddrmc_baseaddr + ECCW1_FLIP0_OFFSET); } else { writel(ECC_UEPOISON_MASK, priv->ddrmc_baseaddr + ECCW0_FLIP0_OFFSET); writel(ECC_UEPOISON_MASK, priv->ddrmc_baseaddr + ECCW1_FLIP0_OFFSET); } /* Lock the PCSR registers */ writel(1, priv->ddrmc_baseaddr + XDDR_PCSR_OFFSET); return 0; } static ssize_t inject_data_poison_store(struct file *file, const char __user *data, size_t count, loff_t *ppos) { struct device *dev = file->private_data; struct mem_ctl_info *mci = to_mci(dev); struct edac_priv *priv = mci->pvt_info; /* Unlock the PCSR registers */ writel(PCSR_UNLOCK_VAL, priv->ddrmc_baseaddr + XDDR_PCSR_OFFSET); writel(PCSR_UNLOCK_VAL, priv->ddrmc_noc_baseaddr + XDDR_PCSR_OFFSET); poison_setup(priv); /* Lock the PCSR registers */ writel(1, priv->ddrmc_noc_baseaddr + XDDR_PCSR_OFFSET); xddr_inject_data_poison_store(mci, data); return count; } static const struct file_operations xddr_inject_enable_fops = { .open = simple_open, .write = inject_data_poison_store, .llseek = generic_file_llseek, }; static void create_debugfs_attributes(struct mem_ctl_info *mci) { struct edac_priv *priv = mci->pvt_info; priv->debugfs = edac_debugfs_create_dir(mci->dev_name); if (!priv->debugfs) return; edac_debugfs_create_file("inject_error", 0200, priv->debugfs, &mci->dev, &xddr_inject_enable_fops); debugfs_create_x64("address", 0600, priv->debugfs, &priv->err_inject_addr); mci->debugfs = priv->debugfs; } static inline void process_bit(struct edac_priv *priv, unsigned int start, u32 regval) { union edac_info rows; rows.i = regval; priv->row_bit[start] = rows.row0; priv->row_bit[start + 1] = rows.row1; priv->row_bit[start + 2] = rows.row2; priv->row_bit[start + 3] = rows.row3; priv->row_bit[start + 4] = rows.row4; } static void setup_row_address_map(struct edac_priv *priv) { u32 regval; union edac_info rows; regval = readl(priv->ddrmc_noc_baseaddr + XDDR_NOC_REG_ADEC5_OFFSET); process_bit(priv, 0, regval); regval = readl(priv->ddrmc_noc_baseaddr + XDDR_NOC_REG_ADEC6_OFFSET); process_bit(priv, 5, regval); regval = readl(priv->ddrmc_noc_baseaddr + XDDR_NOC_REG_ADEC7_OFFSET); process_bit(priv, 10, regval); regval = readl(priv->ddrmc_noc_baseaddr + XDDR_NOC_REG_ADEC8_OFFSET); rows.i = regval; priv->row_bit[15] = rows.row0; priv->row_bit[16] = rows.row1; priv->row_bit[17] = rows.row2; } static void setup_column_address_map(struct edac_priv *priv) { u32 regval; union edac_info cols; regval = readl(priv->ddrmc_noc_baseaddr + XDDR_NOC_REG_ADEC8_OFFSET); priv->col_bit[0] = FIELD_GET(MASK_24, regval); regval = readl(priv->ddrmc_noc_baseaddr + XDDR_NOC_REG_ADEC9_OFFSET); cols.i = regval; priv->col_bit[1] = cols.col1; priv->col_bit[2] = cols.col2; priv->col_bit[3] = cols.col3; priv->col_bit[4] = cols.col4; priv->col_bit[5] = cols.col5; regval = readl(priv->ddrmc_noc_baseaddr + XDDR_NOC_REG_ADEC10_OFFSET); cols.i = regval; priv->col_bit[6] = cols.col1; priv->col_bit[7] = cols.col2; priv->col_bit[8] = cols.col3; priv->col_bit[9] = cols.col4; } static void setup_bank_grp_ch_address_map(struct edac_priv *priv) { u32 regval; regval = readl(priv->ddrmc_noc_baseaddr + XDDR_NOC_REG_ADEC10_OFFSET); priv->bank_bit[0] = FIELD_GET(MASK_24, regval); regval = readl(priv->ddrmc_noc_baseaddr + XDDR_NOC_REG_ADEC11_OFFSET); priv->bank_bit[1] = (regval & MASK_0); priv->grp_bit[0] = FIELD_GET(GRP_0_MASK, regval); priv->grp_bit[1] = FIELD_GET(GRP_1_MASK, regval); priv->ch_bit = FIELD_GET(CH_0_MASK, regval); } static void setup_rank_lrank_address_map(struct edac_priv *priv) { u32 regval; regval = readl(priv->ddrmc_noc_baseaddr + XDDR_NOC_REG_ADEC4_OFFSET); priv->rank_bit[0] = (regval & MASK_0); priv->rank_bit[1] = FIELD_GET(RANK_1_MASK, regval); priv->lrank_bit[0] = FIELD_GET(LRANK_0_MASK, regval); priv->lrank_bit[1] = FIELD_GET(LRANK_1_MASK, regval); priv->lrank_bit[2] = FIELD_GET(MASK_24, regval); } /** * setup_address_map - Set Address Map by querying ADDRMAP registers. * @priv: DDR memory controller private instance data. * * Set Address Map by querying ADDRMAP registers. * * Return: none. */ static void setup_address_map(struct edac_priv *priv) { setup_row_address_map(priv); setup_column_address_map(priv); setup_bank_grp_ch_address_map(priv); setup_rank_lrank_address_map(priv); } #endif /* CONFIG_EDAC_DEBUG */ static const struct of_device_id xlnx_edac_match[] = { { .compatible = "xlnx,versal-ddrmc", }, { /* end of table */ } }; MODULE_DEVICE_TABLE(of, xlnx_edac_match); static u32 emif_get_id(struct device_node *node) { u32 addr, my_addr, my_id = 0; struct device_node *np; const __be32 *addrp; addrp = of_get_address(node, 0, NULL, NULL); my_addr = (u32)of_translate_address(node, addrp); for_each_matching_node(np, xlnx_edac_match) { if (np == node) continue; addrp = of_get_address(np, 0, NULL, NULL); addr = (u32)of_translate_address(np, addrp); edac_printk(KERN_INFO, EDAC_MC, "addr=%x, my_addr=%x\n", addr, my_addr); if (addr < my_addr) my_id++; } return my_id; } static int mc_probe(struct platform_device *pdev) { void __iomem *ddrmc_baseaddr, *ddrmc_noc_baseaddr; struct edac_mc_layer layers[2]; struct mem_ctl_info *mci; u8 num_chans, num_csrows; struct edac_priv *priv; u32 edac_mc_id, regval; int rc; ddrmc_baseaddr = devm_platform_ioremap_resource_byname(pdev, "base"); if (IS_ERR(ddrmc_baseaddr)) return PTR_ERR(ddrmc_baseaddr); ddrmc_noc_baseaddr = devm_platform_ioremap_resource_byname(pdev, "noc"); if (IS_ERR(ddrmc_noc_baseaddr)) return PTR_ERR(ddrmc_noc_baseaddr); if (!get_ecc_state(ddrmc_baseaddr)) return -ENXIO; /* Allocate ID number for the EMIF controller */ edac_mc_id = emif_get_id(pdev->dev.of_node); regval = readl(ddrmc_baseaddr + XDDR_REG_CONFIG0_OFFSET); num_chans = FIELD_GET(XDDR_REG_CONFIG0_NUM_CHANS_MASK, regval); num_chans++; num_csrows = FIELD_GET(XDDR_REG_CONFIG0_NUM_RANKS_MASK, regval); num_csrows *= 2; if (!num_csrows) num_csrows = 1; layers[0].type = EDAC_MC_LAYER_CHIP_SELECT; layers[0].size = num_csrows; layers[0].is_virt_csrow = true; layers[1].type = EDAC_MC_LAYER_CHANNEL; layers[1].size = num_chans; layers[1].is_virt_csrow = false; mci = edac_mc_alloc(edac_mc_id, ARRAY_SIZE(layers), layers, sizeof(struct edac_priv)); if (!mci) { edac_printk(KERN_ERR, EDAC_MC, "Failed memory allocation for mc instance\n"); return -ENOMEM; } priv = mci->pvt_info; priv->ddrmc_baseaddr = ddrmc_baseaddr; priv->ddrmc_noc_baseaddr = ddrmc_noc_baseaddr; priv->ce_cnt = 0; priv->ue_cnt = 0; priv->mc_id = edac_mc_id; mc_init(mci, pdev); rc = edac_mc_add_mc(mci); if (rc) { edac_printk(KERN_ERR, EDAC_MC, "Failed to register with EDAC core\n"); goto free_edac_mc; } rc = xlnx_register_event(PM_NOTIFY_CB, EVENT_ERROR_PMC_ERR1, XPM_EVENT_ERROR_MASK_DDRMC_CR | XPM_EVENT_ERROR_MASK_DDRMC_NCR | XPM_EVENT_ERROR_MASK_NOC_CR | XPM_EVENT_ERROR_MASK_NOC_NCR, false, err_callback, mci); if (rc) { if (rc == -EACCES) rc = -EPROBE_DEFER; goto del_mc; } #ifdef CONFIG_EDAC_DEBUG create_debugfs_attributes(mci); setup_address_map(priv); #endif enable_intr(priv); return rc; del_mc: edac_mc_del_mc(&pdev->dev); free_edac_mc: edac_mc_free(mci); return rc; } static int mc_remove(struct platform_device *pdev) { struct mem_ctl_info *mci = platform_get_drvdata(pdev); struct edac_priv *priv = mci->pvt_info; disable_intr(priv); #ifdef CONFIG_EDAC_DEBUG debugfs_remove_recursive(priv->debugfs); #endif xlnx_unregister_event(PM_NOTIFY_CB, EVENT_ERROR_PMC_ERR1, XPM_EVENT_ERROR_MASK_DDRMC_CR | XPM_EVENT_ERROR_MASK_NOC_CR | XPM_EVENT_ERROR_MASK_NOC_NCR | XPM_EVENT_ERROR_MASK_DDRMC_NCR, err_callback, mci); edac_mc_del_mc(&pdev->dev); edac_mc_free(mci); return 0; } static struct platform_driver xilinx_ddr_edac_mc_driver = { .driver = { .name = "xilinx-ddrmc-edac", .of_match_table = xlnx_edac_match, }, .probe = mc_probe, .remove = mc_remove, }; module_platform_driver(xilinx_ddr_edac_mc_driver); MODULE_AUTHOR("AMD Inc"); MODULE_DESCRIPTION("Xilinx DDRMC ECC driver"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1