Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Mukul Joshi | 1483 | 22.23% | 17 | 9.29% |
Oded Gabbay | 1201 | 18.00% | 10 | 5.46% |
Alex Deucher | 719 | 10.78% | 5 | 2.73% |
Graham Sider | 622 | 9.32% | 14 | 7.65% |
Felix Kuhling | 539 | 8.08% | 21 | 11.48% |
Guchun Chen | 325 | 4.87% | 1 | 0.55% |
Yong Zhao | 185 | 2.77% | 12 | 6.56% |
Jonathan Kim | 135 | 2.02% | 7 | 3.83% |
Philip Yang | 127 | 1.90% | 8 | 4.37% |
Lijo Lazar | 114 | 1.71% | 7 | 3.83% |
Jay Cornwall | 110 | 1.65% | 4 | 2.19% |
Shaoyun Liu | 103 | 1.54% | 5 | 2.73% |
Amber Lin | 101 | 1.51% | 6 | 3.28% |
Harish Kasiviswanathan | 91 | 1.36% | 2 | 1.09% |
Andrew Lewycky | 73 | 1.09% | 3 | 1.64% |
Joseph Greathouse | 67 | 1.00% | 2 | 1.09% |
Lang Yu | 54 | 0.81% | 3 | 1.64% |
Ben Goz | 53 | 0.79% | 2 | 1.09% |
Eric Huang | 51 | 0.76% | 4 | 2.19% |
Hawking Zhang | 46 | 0.69% | 2 | 1.09% |
Sreekant Somasekharan | 42 | 0.63% | 1 | 0.55% |
Huang Rui | 42 | 0.63% | 4 | 2.19% |
David Belanger | 37 | 0.55% | 1 | 0.55% |
Mario Limonciello | 34 | 0.51% | 1 | 0.55% |
Christophe Jaillet | 33 | 0.49% | 2 | 1.09% |
Philip Cox | 33 | 0.49% | 1 | 0.55% |
Oak Zeng | 30 | 0.45% | 5 | 2.73% |
Lan Xiao | 27 | 0.40% | 1 | 0.55% |
Rajneesh Bhardwaj | 26 | 0.39% | 2 | 1.09% |
Prike Liang | 22 | 0.33% | 2 | 1.09% |
Yifan Zhang | 21 | 0.31% | 2 | 1.09% |
Jesse Zhang | 21 | 0.31% | 1 | 0.55% |
Kent Russell | 18 | 0.27% | 2 | 1.09% |
Xihan Zhang | 14 | 0.21% | 1 | 0.55% |
Laura Abbott | 10 | 0.15% | 1 | 0.55% |
Christian König | 10 | 0.15% | 1 | 0.55% |
Divya Shikre | 8 | 0.12% | 2 | 1.09% |
Jack Xiao | 7 | 0.10% | 2 | 1.09% |
tianci yin | 6 | 0.09% | 1 | 0.55% |
Chengming Gui | 5 | 0.07% | 3 | 1.64% |
Tao Zhou | 4 | 0.06% | 1 | 0.55% |
Evgeny Pinchuk | 4 | 0.06% | 1 | 0.55% |
Andres Rodriguez | 3 | 0.04% | 1 | 0.55% |
Moses Reuben | 3 | 0.04% | 1 | 0.55% |
Dave Airlie | 2 | 0.03% | 1 | 0.55% |
Yair Shachar | 2 | 0.03% | 1 | 0.55% |
Chen Gong | 2 | 0.03% | 1 | 0.55% |
Jack Zhang | 2 | 0.03% | 1 | 0.55% |
Aaron Liu | 2 | 0.03% | 1 | 0.55% |
Alex Sierra | 1 | 0.01% | 1 | 0.55% |
Srinivasan S | 1 | 0.01% | 1 | 0.55% |
James Zhu | 1 | 0.01% | 1 | 0.55% |
Total | 6672 | 183 |
// SPDX-License-Identifier: GPL-2.0 OR MIT /* * Copyright 2014-2022 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include <linux/bsearch.h> #include <linux/pci.h> #include <linux/slab.h> #include "kfd_priv.h" #include "kfd_device_queue_manager.h" #include "kfd_pm4_headers_vi.h" #include "kfd_pm4_headers_aldebaran.h" #include "cwsr_trap_handler.h" #include "amdgpu_amdkfd.h" #include "kfd_smi_events.h" #include "kfd_svm.h" #include "kfd_migrate.h" #include "amdgpu.h" #include "amdgpu_xcp.h" #define MQD_SIZE_ALIGNED 768 /* * kfd_locked is used to lock the kfd driver during suspend or reset * once locked, kfd driver will stop any further GPU execution. * create process (open) will return -EAGAIN. */ static int kfd_locked; #ifdef CONFIG_DRM_AMDGPU_CIK extern const struct kfd2kgd_calls gfx_v7_kfd2kgd; #endif extern const struct kfd2kgd_calls gfx_v8_kfd2kgd; extern const struct kfd2kgd_calls gfx_v9_kfd2kgd; extern const struct kfd2kgd_calls arcturus_kfd2kgd; extern const struct kfd2kgd_calls aldebaran_kfd2kgd; extern const struct kfd2kgd_calls gc_9_4_3_kfd2kgd; extern const struct kfd2kgd_calls gfx_v10_kfd2kgd; extern const struct kfd2kgd_calls gfx_v10_3_kfd2kgd; extern const struct kfd2kgd_calls gfx_v11_kfd2kgd; static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size, unsigned int chunk_size); static void kfd_gtt_sa_fini(struct kfd_dev *kfd); static int kfd_resume(struct kfd_node *kfd); static void kfd_device_info_set_sdma_info(struct kfd_dev *kfd) { uint32_t sdma_version = amdgpu_ip_version(kfd->adev, SDMA0_HWIP, 0); switch (sdma_version) { case IP_VERSION(4, 0, 0):/* VEGA10 */ case IP_VERSION(4, 0, 1):/* VEGA12 */ case IP_VERSION(4, 1, 0):/* RAVEN */ case IP_VERSION(4, 1, 1):/* RAVEN */ case IP_VERSION(4, 1, 2):/* RENOIR */ case IP_VERSION(5, 2, 1):/* VANGOGH */ case IP_VERSION(5, 2, 3):/* YELLOW_CARP */ case IP_VERSION(5, 2, 6):/* GC 10.3.6 */ case IP_VERSION(5, 2, 7):/* GC 10.3.7 */ kfd->device_info.num_sdma_queues_per_engine = 2; break; case IP_VERSION(4, 2, 0):/* VEGA20 */ case IP_VERSION(4, 2, 2):/* ARCTURUS */ case IP_VERSION(4, 4, 0):/* ALDEBARAN */ case IP_VERSION(4, 4, 2): case IP_VERSION(5, 0, 0):/* NAVI10 */ case IP_VERSION(5, 0, 1):/* CYAN_SKILLFISH */ case IP_VERSION(5, 0, 2):/* NAVI14 */ case IP_VERSION(5, 0, 5):/* NAVI12 */ case IP_VERSION(5, 2, 0):/* SIENNA_CICHLID */ case IP_VERSION(5, 2, 2):/* NAVY_FLOUNDER */ case IP_VERSION(5, 2, 4):/* DIMGREY_CAVEFISH */ case IP_VERSION(5, 2, 5):/* BEIGE_GOBY */ case IP_VERSION(6, 0, 0): case IP_VERSION(6, 0, 1): case IP_VERSION(6, 0, 2): case IP_VERSION(6, 0, 3): case IP_VERSION(6, 1, 0): kfd->device_info.num_sdma_queues_per_engine = 8; break; default: dev_warn(kfd_device, "Default sdma queue per engine(8) is set due to mismatch of sdma ip block(SDMA_HWIP:0x%x).\n", sdma_version); kfd->device_info.num_sdma_queues_per_engine = 8; } bitmap_zero(kfd->device_info.reserved_sdma_queues_bitmap, KFD_MAX_SDMA_QUEUES); switch (sdma_version) { case IP_VERSION(6, 0, 0): case IP_VERSION(6, 0, 1): case IP_VERSION(6, 0, 2): case IP_VERSION(6, 0, 3): case IP_VERSION(6, 1, 0): /* Reserve 1 for paging and 1 for gfx */ kfd->device_info.num_reserved_sdma_queues_per_engine = 2; /* BIT(0)=engine-0 queue-0; BIT(1)=engine-1 queue-0; BIT(2)=engine-0 queue-1; ... */ bitmap_set(kfd->device_info.reserved_sdma_queues_bitmap, 0, kfd->adev->sdma.num_instances * kfd->device_info.num_reserved_sdma_queues_per_engine); break; default: break; } } static void kfd_device_info_set_event_interrupt_class(struct kfd_dev *kfd) { uint32_t gc_version = KFD_GC_VERSION(kfd); switch (gc_version) { case IP_VERSION(9, 0, 1): /* VEGA10 */ case IP_VERSION(9, 1, 0): /* RAVEN */ case IP_VERSION(9, 2, 1): /* VEGA12 */ case IP_VERSION(9, 2, 2): /* RAVEN */ case IP_VERSION(9, 3, 0): /* RENOIR */ case IP_VERSION(9, 4, 0): /* VEGA20 */ case IP_VERSION(9, 4, 1): /* ARCTURUS */ case IP_VERSION(9, 4, 2): /* ALDEBARAN */ kfd->device_info.event_interrupt_class = &event_interrupt_class_v9; break; case IP_VERSION(9, 4, 3): /* GC 9.4.3 */ kfd->device_info.event_interrupt_class = &event_interrupt_class_v9_4_3; break; case IP_VERSION(10, 3, 1): /* VANGOGH */ case IP_VERSION(10, 3, 3): /* YELLOW_CARP */ case IP_VERSION(10, 3, 6): /* GC 10.3.6 */ case IP_VERSION(10, 3, 7): /* GC 10.3.7 */ case IP_VERSION(10, 1, 3): /* CYAN_SKILLFISH */ case IP_VERSION(10, 1, 4): case IP_VERSION(10, 1, 10): /* NAVI10 */ case IP_VERSION(10, 1, 2): /* NAVI12 */ case IP_VERSION(10, 1, 1): /* NAVI14 */ case IP_VERSION(10, 3, 0): /* SIENNA_CICHLID */ case IP_VERSION(10, 3, 2): /* NAVY_FLOUNDER */ case IP_VERSION(10, 3, 4): /* DIMGREY_CAVEFISH */ case IP_VERSION(10, 3, 5): /* BEIGE_GOBY */ kfd->device_info.event_interrupt_class = &event_interrupt_class_v10; break; case IP_VERSION(11, 0, 0): case IP_VERSION(11, 0, 1): case IP_VERSION(11, 0, 2): case IP_VERSION(11, 0, 3): case IP_VERSION(11, 0, 4): case IP_VERSION(11, 5, 0): kfd->device_info.event_interrupt_class = &event_interrupt_class_v11; break; default: dev_warn(kfd_device, "v9 event interrupt handler is set due to " "mismatch of gc ip block(GC_HWIP:0x%x).\n", gc_version); kfd->device_info.event_interrupt_class = &event_interrupt_class_v9; } } static void kfd_device_info_init(struct kfd_dev *kfd, bool vf, uint32_t gfx_target_version) { uint32_t gc_version = KFD_GC_VERSION(kfd); uint32_t asic_type = kfd->adev->asic_type; kfd->device_info.max_pasid_bits = 16; kfd->device_info.max_no_of_hqd = 24; kfd->device_info.num_of_watch_points = 4; kfd->device_info.mqd_size_aligned = MQD_SIZE_ALIGNED; kfd->device_info.gfx_target_version = gfx_target_version; if (KFD_IS_SOC15(kfd)) { kfd->device_info.doorbell_size = 8; kfd->device_info.ih_ring_entry_size = 8 * sizeof(uint32_t); kfd->device_info.supports_cwsr = true; kfd_device_info_set_sdma_info(kfd); kfd_device_info_set_event_interrupt_class(kfd); if (gc_version < IP_VERSION(11, 0, 0)) { /* Navi2x+, Navi1x+ */ if (gc_version == IP_VERSION(10, 3, 6)) kfd->device_info.no_atomic_fw_version = 14; else if (gc_version == IP_VERSION(10, 3, 7)) kfd->device_info.no_atomic_fw_version = 3; else if (gc_version >= IP_VERSION(10, 3, 0)) kfd->device_info.no_atomic_fw_version = 92; else if (gc_version >= IP_VERSION(10, 1, 1)) kfd->device_info.no_atomic_fw_version = 145; /* Navi1x+ */ if (gc_version >= IP_VERSION(10, 1, 1)) kfd->device_info.needs_pci_atomics = true; } else if (gc_version < IP_VERSION(12, 0, 0)) { /* * PCIe atomics support acknowledgment in GFX11 RS64 CPFW requires * MEC version >= 509. Prior RS64 CPFW versions (and all F32) require * PCIe atomics support. */ kfd->device_info.needs_pci_atomics = true; kfd->device_info.no_atomic_fw_version = kfd->adev->gfx.rs64_enable ? 509 : 0; } } else { kfd->device_info.doorbell_size = 4; kfd->device_info.ih_ring_entry_size = 4 * sizeof(uint32_t); kfd->device_info.event_interrupt_class = &event_interrupt_class_cik; kfd->device_info.num_sdma_queues_per_engine = 2; if (asic_type != CHIP_KAVERI && asic_type != CHIP_HAWAII && asic_type != CHIP_TONGA) kfd->device_info.supports_cwsr = true; if (asic_type != CHIP_HAWAII && !vf) kfd->device_info.needs_pci_atomics = true; } } struct kfd_dev *kgd2kfd_probe(struct amdgpu_device *adev, bool vf) { struct kfd_dev *kfd = NULL; const struct kfd2kgd_calls *f2g = NULL; uint32_t gfx_target_version = 0; switch (adev->asic_type) { #ifdef CONFIG_DRM_AMDGPU_CIK case CHIP_KAVERI: gfx_target_version = 70000; if (!vf) f2g = &gfx_v7_kfd2kgd; break; #endif case CHIP_CARRIZO: gfx_target_version = 80001; if (!vf) f2g = &gfx_v8_kfd2kgd; break; #ifdef CONFIG_DRM_AMDGPU_CIK case CHIP_HAWAII: gfx_target_version = 70001; if (!amdgpu_exp_hw_support) pr_info( "KFD support on Hawaii is experimental. See modparam exp_hw_support\n" ); else if (!vf) f2g = &gfx_v7_kfd2kgd; break; #endif case CHIP_TONGA: gfx_target_version = 80002; if (!vf) f2g = &gfx_v8_kfd2kgd; break; case CHIP_FIJI: case CHIP_POLARIS10: gfx_target_version = 80003; f2g = &gfx_v8_kfd2kgd; break; case CHIP_POLARIS11: case CHIP_POLARIS12: case CHIP_VEGAM: gfx_target_version = 80003; if (!vf) f2g = &gfx_v8_kfd2kgd; break; default: switch (amdgpu_ip_version(adev, GC_HWIP, 0)) { /* Vega 10 */ case IP_VERSION(9, 0, 1): gfx_target_version = 90000; f2g = &gfx_v9_kfd2kgd; break; /* Raven */ case IP_VERSION(9, 1, 0): case IP_VERSION(9, 2, 2): gfx_target_version = 90002; if (!vf) f2g = &gfx_v9_kfd2kgd; break; /* Vega12 */ case IP_VERSION(9, 2, 1): gfx_target_version = 90004; if (!vf) f2g = &gfx_v9_kfd2kgd; break; /* Renoir */ case IP_VERSION(9, 3, 0): gfx_target_version = 90012; if (!vf) f2g = &gfx_v9_kfd2kgd; break; /* Vega20 */ case IP_VERSION(9, 4, 0): gfx_target_version = 90006; if (!vf) f2g = &gfx_v9_kfd2kgd; break; /* Arcturus */ case IP_VERSION(9, 4, 1): gfx_target_version = 90008; f2g = &arcturus_kfd2kgd; break; /* Aldebaran */ case IP_VERSION(9, 4, 2): gfx_target_version = 90010; f2g = &aldebaran_kfd2kgd; break; case IP_VERSION(9, 4, 3): gfx_target_version = adev->rev_id >= 1 ? 90402 : adev->flags & AMD_IS_APU ? 90400 : 90401; f2g = &gc_9_4_3_kfd2kgd; break; /* Navi10 */ case IP_VERSION(10, 1, 10): gfx_target_version = 100100; if (!vf) f2g = &gfx_v10_kfd2kgd; break; /* Navi12 */ case IP_VERSION(10, 1, 2): gfx_target_version = 100101; f2g = &gfx_v10_kfd2kgd; break; /* Navi14 */ case IP_VERSION(10, 1, 1): gfx_target_version = 100102; if (!vf) f2g = &gfx_v10_kfd2kgd; break; /* Cyan Skillfish */ case IP_VERSION(10, 1, 3): case IP_VERSION(10, 1, 4): gfx_target_version = 100103; if (!vf) f2g = &gfx_v10_kfd2kgd; break; /* Sienna Cichlid */ case IP_VERSION(10, 3, 0): gfx_target_version = 100300; f2g = &gfx_v10_3_kfd2kgd; break; /* Navy Flounder */ case IP_VERSION(10, 3, 2): gfx_target_version = 100301; f2g = &gfx_v10_3_kfd2kgd; break; /* Van Gogh */ case IP_VERSION(10, 3, 1): gfx_target_version = 100303; if (!vf) f2g = &gfx_v10_3_kfd2kgd; break; /* Dimgrey Cavefish */ case IP_VERSION(10, 3, 4): gfx_target_version = 100302; f2g = &gfx_v10_3_kfd2kgd; break; /* Beige Goby */ case IP_VERSION(10, 3, 5): gfx_target_version = 100304; f2g = &gfx_v10_3_kfd2kgd; break; /* Yellow Carp */ case IP_VERSION(10, 3, 3): gfx_target_version = 100305; if (!vf) f2g = &gfx_v10_3_kfd2kgd; break; case IP_VERSION(10, 3, 6): case IP_VERSION(10, 3, 7): gfx_target_version = 100306; if (!vf) f2g = &gfx_v10_3_kfd2kgd; break; case IP_VERSION(11, 0, 0): gfx_target_version = 110000; f2g = &gfx_v11_kfd2kgd; break; case IP_VERSION(11, 0, 1): case IP_VERSION(11, 0, 4): gfx_target_version = 110003; f2g = &gfx_v11_kfd2kgd; break; case IP_VERSION(11, 0, 2): gfx_target_version = 110002; f2g = &gfx_v11_kfd2kgd; break; case IP_VERSION(11, 0, 3): if ((adev->pdev->device == 0x7460 && adev->pdev->revision == 0x00) || (adev->pdev->device == 0x7461 && adev->pdev->revision == 0x00)) /* Note: Compiler version is 11.0.5 while HW version is 11.0.3 */ gfx_target_version = 110005; else /* Note: Compiler version is 11.0.1 while HW version is 11.0.3 */ gfx_target_version = 110001; f2g = &gfx_v11_kfd2kgd; break; case IP_VERSION(11, 5, 0): gfx_target_version = 110500; f2g = &gfx_v11_kfd2kgd; break; default: break; } break; } if (!f2g) { if (amdgpu_ip_version(adev, GC_HWIP, 0)) dev_err(kfd_device, "GC IP %06x %s not supported in kfd\n", amdgpu_ip_version(adev, GC_HWIP, 0), vf ? "VF" : ""); else dev_err(kfd_device, "%s %s not supported in kfd\n", amdgpu_asic_name[adev->asic_type], vf ? "VF" : ""); return NULL; } kfd = kzalloc(sizeof(*kfd), GFP_KERNEL); if (!kfd) return NULL; kfd->adev = adev; kfd_device_info_init(kfd, vf, gfx_target_version); kfd->init_complete = false; kfd->kfd2kgd = f2g; atomic_set(&kfd->compute_profile, 0); mutex_init(&kfd->doorbell_mutex); ida_init(&kfd->doorbell_ida); return kfd; } static void kfd_cwsr_init(struct kfd_dev *kfd) { if (cwsr_enable && kfd->device_info.supports_cwsr) { if (KFD_GC_VERSION(kfd) < IP_VERSION(9, 0, 1)) { BUILD_BUG_ON(sizeof(cwsr_trap_gfx8_hex) > PAGE_SIZE); kfd->cwsr_isa = cwsr_trap_gfx8_hex; kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx8_hex); } else if (KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 1)) { BUILD_BUG_ON(sizeof(cwsr_trap_arcturus_hex) > PAGE_SIZE); kfd->cwsr_isa = cwsr_trap_arcturus_hex; kfd->cwsr_isa_size = sizeof(cwsr_trap_arcturus_hex); } else if (KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 2)) { BUILD_BUG_ON(sizeof(cwsr_trap_aldebaran_hex) > PAGE_SIZE); kfd->cwsr_isa = cwsr_trap_aldebaran_hex; kfd->cwsr_isa_size = sizeof(cwsr_trap_aldebaran_hex); } else if (KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 3)) { BUILD_BUG_ON(sizeof(cwsr_trap_gfx9_4_3_hex) > PAGE_SIZE); kfd->cwsr_isa = cwsr_trap_gfx9_4_3_hex; kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx9_4_3_hex); } else if (KFD_GC_VERSION(kfd) < IP_VERSION(10, 1, 1)) { BUILD_BUG_ON(sizeof(cwsr_trap_gfx9_hex) > PAGE_SIZE); kfd->cwsr_isa = cwsr_trap_gfx9_hex; kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx9_hex); } else if (KFD_GC_VERSION(kfd) < IP_VERSION(10, 3, 0)) { BUILD_BUG_ON(sizeof(cwsr_trap_nv1x_hex) > PAGE_SIZE); kfd->cwsr_isa = cwsr_trap_nv1x_hex; kfd->cwsr_isa_size = sizeof(cwsr_trap_nv1x_hex); } else if (KFD_GC_VERSION(kfd) < IP_VERSION(11, 0, 0)) { BUILD_BUG_ON(sizeof(cwsr_trap_gfx10_hex) > PAGE_SIZE); kfd->cwsr_isa = cwsr_trap_gfx10_hex; kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx10_hex); } else { BUILD_BUG_ON(sizeof(cwsr_trap_gfx11_hex) > PAGE_SIZE); kfd->cwsr_isa = cwsr_trap_gfx11_hex; kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx11_hex); } kfd->cwsr_enabled = true; } } static int kfd_gws_init(struct kfd_node *node) { int ret = 0; struct kfd_dev *kfd = node->kfd; uint32_t mes_rev = node->adev->mes.sched_version & AMDGPU_MES_VERSION_MASK; if (node->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) return 0; if (hws_gws_support || (KFD_IS_SOC15(node) && ((KFD_GC_VERSION(node) == IP_VERSION(9, 0, 1) && kfd->mec2_fw_version >= 0x81b3) || (KFD_GC_VERSION(node) <= IP_VERSION(9, 4, 0) && kfd->mec2_fw_version >= 0x1b3) || (KFD_GC_VERSION(node) == IP_VERSION(9, 4, 1) && kfd->mec2_fw_version >= 0x30) || (KFD_GC_VERSION(node) == IP_VERSION(9, 4, 2) && kfd->mec2_fw_version >= 0x28) || (KFD_GC_VERSION(node) == IP_VERSION(9, 4, 3)) || (KFD_GC_VERSION(node) >= IP_VERSION(10, 3, 0) && KFD_GC_VERSION(node) < IP_VERSION(11, 0, 0) && kfd->mec2_fw_version >= 0x6b) || (KFD_GC_VERSION(node) >= IP_VERSION(11, 0, 0) && KFD_GC_VERSION(node) < IP_VERSION(12, 0, 0) && mes_rev >= 68)))) ret = amdgpu_amdkfd_alloc_gws(node->adev, node->adev->gds.gws_size, &node->gws); return ret; } static void kfd_smi_init(struct kfd_node *dev) { INIT_LIST_HEAD(&dev->smi_clients); spin_lock_init(&dev->smi_lock); } static int kfd_init_node(struct kfd_node *node) { int err = -1; if (kfd_interrupt_init(node)) { dev_err(kfd_device, "Error initializing interrupts\n"); goto kfd_interrupt_error; } node->dqm = device_queue_manager_init(node); if (!node->dqm) { dev_err(kfd_device, "Error initializing queue manager\n"); goto device_queue_manager_error; } if (kfd_gws_init(node)) { dev_err(kfd_device, "Could not allocate %d gws\n", node->adev->gds.gws_size); goto gws_error; } if (kfd_resume(node)) goto kfd_resume_error; if (kfd_topology_add_device(node)) { dev_err(kfd_device, "Error adding device to topology\n"); goto kfd_topology_add_device_error; } kfd_smi_init(node); return 0; kfd_topology_add_device_error: kfd_resume_error: gws_error: device_queue_manager_uninit(node->dqm); device_queue_manager_error: kfd_interrupt_exit(node); kfd_interrupt_error: if (node->gws) amdgpu_amdkfd_free_gws(node->adev, node->gws); /* Cleanup the node memory here */ kfree(node); return err; } static void kfd_cleanup_nodes(struct kfd_dev *kfd, unsigned int num_nodes) { struct kfd_node *knode; unsigned int i; for (i = 0; i < num_nodes; i++) { knode = kfd->nodes[i]; device_queue_manager_uninit(knode->dqm); kfd_interrupt_exit(knode); kfd_topology_remove_device(knode); if (knode->gws) amdgpu_amdkfd_free_gws(knode->adev, knode->gws); kfree(knode); kfd->nodes[i] = NULL; } } static void kfd_setup_interrupt_bitmap(struct kfd_node *node, unsigned int kfd_node_idx) { struct amdgpu_device *adev = node->adev; uint32_t xcc_mask = node->xcc_mask; uint32_t xcc, mapped_xcc; /* * Interrupt bitmap is setup for processing interrupts from * different XCDs and AIDs. * Interrupt bitmap is defined as follows: * 1. Bits 0-15 - correspond to the NodeId field. * Each bit corresponds to NodeId number. For example, if * a KFD node has interrupt bitmap set to 0x7, then this * KFD node will process interrupts with NodeId = 0, 1 and 2 * in the IH cookie. * 2. Bits 16-31 - unused. * * Please note that the kfd_node_idx argument passed to this * function is not related to NodeId field received in the * IH cookie. * * In CPX mode, a KFD node will process an interrupt if: * - the Node Id matches the corresponding bit set in * Bits 0-15. * - AND VMID reported in the interrupt lies within the * VMID range of the node. */ for_each_inst(xcc, xcc_mask) { mapped_xcc = GET_INST(GC, xcc); node->interrupt_bitmap |= (mapped_xcc % 2 ? 5 : 3) << (4 * (mapped_xcc / 2)); } dev_info(kfd_device, "Node: %d, interrupt_bitmap: %x\n", kfd_node_idx, node->interrupt_bitmap); } bool kgd2kfd_device_init(struct kfd_dev *kfd, const struct kgd2kfd_shared_resources *gpu_resources) { unsigned int size, map_process_packet_size, i; struct kfd_node *node; uint32_t first_vmid_kfd, last_vmid_kfd, vmid_num_kfd; unsigned int max_proc_per_quantum; int partition_mode; int xcp_idx; kfd->mec_fw_version = amdgpu_amdkfd_get_fw_version(kfd->adev, KGD_ENGINE_MEC1); kfd->mec2_fw_version = amdgpu_amdkfd_get_fw_version(kfd->adev, KGD_ENGINE_MEC2); kfd->sdma_fw_version = amdgpu_amdkfd_get_fw_version(kfd->adev, KGD_ENGINE_SDMA1); kfd->shared_resources = *gpu_resources; kfd->num_nodes = amdgpu_xcp_get_num_xcp(kfd->adev->xcp_mgr); if (kfd->num_nodes == 0) { dev_err(kfd_device, "KFD num nodes cannot be 0, num_xcc_in_node: %d\n", kfd->adev->gfx.num_xcc_per_xcp); goto out; } /* Allow BIF to recode atomics to PCIe 3.0 AtomicOps. * 32 and 64-bit requests are possible and must be * supported. */ kfd->pci_atomic_requested = amdgpu_amdkfd_have_atomics_support(kfd->adev); if (!kfd->pci_atomic_requested && kfd->device_info.needs_pci_atomics && (!kfd->device_info.no_atomic_fw_version || kfd->mec_fw_version < kfd->device_info.no_atomic_fw_version)) { dev_info(kfd_device, "skipped device %x:%x, PCI rejects atomics %d<%d\n", kfd->adev->pdev->vendor, kfd->adev->pdev->device, kfd->mec_fw_version, kfd->device_info.no_atomic_fw_version); return false; } first_vmid_kfd = ffs(gpu_resources->compute_vmid_bitmap)-1; last_vmid_kfd = fls(gpu_resources->compute_vmid_bitmap)-1; vmid_num_kfd = last_vmid_kfd - first_vmid_kfd + 1; /* For GFX9.4.3, we need special handling for VMIDs depending on * partition mode. * In CPX mode, the VMID range needs to be shared between XCDs. * Additionally, there are 13 VMIDs (3-15) available for KFD. To * divide them equally, we change starting VMID to 4 and not use * VMID 3. * If the VMID range changes for GFX9.4.3, then this code MUST be * revisited. */ if (kfd->adev->xcp_mgr) { partition_mode = amdgpu_xcp_query_partition_mode(kfd->adev->xcp_mgr, AMDGPU_XCP_FL_LOCKED); if (partition_mode == AMDGPU_CPX_PARTITION_MODE && kfd->num_nodes != 1) { vmid_num_kfd /= 2; first_vmid_kfd = last_vmid_kfd + 1 - vmid_num_kfd*2; } } /* Verify module parameters regarding mapped process number*/ if (hws_max_conc_proc >= 0) max_proc_per_quantum = min((u32)hws_max_conc_proc, vmid_num_kfd); else max_proc_per_quantum = vmid_num_kfd; /* calculate max size of mqds needed for queues */ size = max_num_of_queues_per_device * kfd->device_info.mqd_size_aligned; /* * calculate max size of runlist packet. * There can be only 2 packets at once */ map_process_packet_size = KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 2) ? sizeof(struct pm4_mes_map_process_aldebaran) : sizeof(struct pm4_mes_map_process); size += (KFD_MAX_NUM_OF_PROCESSES * map_process_packet_size + max_num_of_queues_per_device * sizeof(struct pm4_mes_map_queues) + sizeof(struct pm4_mes_runlist)) * 2; /* Add size of HIQ & DIQ */ size += KFD_KERNEL_QUEUE_SIZE * 2; /* add another 512KB for all other allocations on gart (HPD, fences) */ size += 512 * 1024; if (amdgpu_amdkfd_alloc_gtt_mem( kfd->adev, size, &kfd->gtt_mem, &kfd->gtt_start_gpu_addr, &kfd->gtt_start_cpu_ptr, false)) { dev_err(kfd_device, "Could not allocate %d bytes\n", size); goto alloc_gtt_mem_failure; } dev_info(kfd_device, "Allocated %d bytes on gart\n", size); /* Initialize GTT sa with 512 byte chunk size */ if (kfd_gtt_sa_init(kfd, size, 512) != 0) { dev_err(kfd_device, "Error initializing gtt sub-allocator\n"); goto kfd_gtt_sa_init_error; } if (kfd_doorbell_init(kfd)) { dev_err(kfd_device, "Error initializing doorbell aperture\n"); goto kfd_doorbell_error; } if (amdgpu_use_xgmi_p2p) kfd->hive_id = kfd->adev->gmc.xgmi.hive_id; /* * For GFX9.4.3, the KFD abstracts all partitions within a socket as * xGMI connected in the topology so assign a unique hive id per * device based on the pci device location if device is in PCIe mode. */ if (!kfd->hive_id && (KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 3)) && kfd->num_nodes > 1) kfd->hive_id = pci_dev_id(kfd->adev->pdev); kfd->noretry = kfd->adev->gmc.noretry; kfd_cwsr_init(kfd); dev_info(kfd_device, "Total number of KFD nodes to be created: %d\n", kfd->num_nodes); /* Allocate the KFD nodes */ for (i = 0, xcp_idx = 0; i < kfd->num_nodes; i++) { node = kzalloc(sizeof(struct kfd_node), GFP_KERNEL); if (!node) goto node_alloc_error; node->node_id = i; node->adev = kfd->adev; node->kfd = kfd; node->kfd2kgd = kfd->kfd2kgd; node->vm_info.vmid_num_kfd = vmid_num_kfd; node->xcp = amdgpu_get_next_xcp(kfd->adev->xcp_mgr, &xcp_idx); /* TODO : Check if error handling is needed */ if (node->xcp) { amdgpu_xcp_get_inst_details(node->xcp, AMDGPU_XCP_GFX, &node->xcc_mask); ++xcp_idx; } else { node->xcc_mask = (1U << NUM_XCC(kfd->adev->gfx.xcc_mask)) - 1; } if (node->xcp) { dev_info(kfd_device, "KFD node %d partition %d size %lldM\n", node->node_id, node->xcp->mem_id, KFD_XCP_MEMORY_SIZE(node->adev, node->node_id) >> 20); } if (KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 3) && partition_mode == AMDGPU_CPX_PARTITION_MODE && kfd->num_nodes != 1) { /* For GFX9.4.3 and CPX mode, first XCD gets VMID range * 4-9 and second XCD gets VMID range 10-15. */ node->vm_info.first_vmid_kfd = (i%2 == 0) ? first_vmid_kfd : first_vmid_kfd+vmid_num_kfd; node->vm_info.last_vmid_kfd = (i%2 == 0) ? last_vmid_kfd-vmid_num_kfd : last_vmid_kfd; node->compute_vmid_bitmap = ((0x1 << (node->vm_info.last_vmid_kfd + 1)) - 1) - ((0x1 << (node->vm_info.first_vmid_kfd)) - 1); } else { node->vm_info.first_vmid_kfd = first_vmid_kfd; node->vm_info.last_vmid_kfd = last_vmid_kfd; node->compute_vmid_bitmap = gpu_resources->compute_vmid_bitmap; } node->max_proc_per_quantum = max_proc_per_quantum; atomic_set(&node->sram_ecc_flag, 0); amdgpu_amdkfd_get_local_mem_info(kfd->adev, &node->local_mem_info, node->xcp); if (KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 3)) kfd_setup_interrupt_bitmap(node, i); /* Initialize the KFD node */ if (kfd_init_node(node)) { dev_err(kfd_device, "Error initializing KFD node\n"); goto node_init_error; } kfd->nodes[i] = node; } svm_range_set_max_pages(kfd->adev); spin_lock_init(&kfd->watch_points_lock); kfd->init_complete = true; dev_info(kfd_device, "added device %x:%x\n", kfd->adev->pdev->vendor, kfd->adev->pdev->device); pr_debug("Starting kfd with the following scheduling policy %d\n", node->dqm->sched_policy); goto out; node_init_error: node_alloc_error: kfd_cleanup_nodes(kfd, i); kfd_doorbell_fini(kfd); kfd_doorbell_error: kfd_gtt_sa_fini(kfd); kfd_gtt_sa_init_error: amdgpu_amdkfd_free_gtt_mem(kfd->adev, kfd->gtt_mem); alloc_gtt_mem_failure: dev_err(kfd_device, "device %x:%x NOT added due to errors\n", kfd->adev->pdev->vendor, kfd->adev->pdev->device); out: return kfd->init_complete; } void kgd2kfd_device_exit(struct kfd_dev *kfd) { if (kfd->init_complete) { /* Cleanup KFD nodes */ kfd_cleanup_nodes(kfd, kfd->num_nodes); /* Cleanup common/shared resources */ kfd_doorbell_fini(kfd); ida_destroy(&kfd->doorbell_ida); kfd_gtt_sa_fini(kfd); amdgpu_amdkfd_free_gtt_mem(kfd->adev, kfd->gtt_mem); } kfree(kfd); } int kgd2kfd_pre_reset(struct kfd_dev *kfd) { struct kfd_node *node; int i; if (!kfd->init_complete) return 0; for (i = 0; i < kfd->num_nodes; i++) { node = kfd->nodes[i]; kfd_smi_event_update_gpu_reset(node, false); node->dqm->ops.pre_reset(node->dqm); } kgd2kfd_suspend(kfd, false); for (i = 0; i < kfd->num_nodes; i++) kfd_signal_reset_event(kfd->nodes[i]); return 0; } /* * Fix me. KFD won't be able to resume existing process for now. * We will keep all existing process in a evicted state and * wait the process to be terminated. */ int kgd2kfd_post_reset(struct kfd_dev *kfd) { int ret; struct kfd_node *node; int i; if (!kfd->init_complete) return 0; for (i = 0; i < kfd->num_nodes; i++) { ret = kfd_resume(kfd->nodes[i]); if (ret) return ret; } mutex_lock(&kfd_processes_mutex); --kfd_locked; mutex_unlock(&kfd_processes_mutex); for (i = 0; i < kfd->num_nodes; i++) { node = kfd->nodes[i]; atomic_set(&node->sram_ecc_flag, 0); kfd_smi_event_update_gpu_reset(node, true); } return 0; } bool kfd_is_locked(void) { lockdep_assert_held(&kfd_processes_mutex); return (kfd_locked > 0); } void kgd2kfd_suspend(struct kfd_dev *kfd, bool run_pm) { struct kfd_node *node; int i; int count; if (!kfd->init_complete) return; /* for runtime suspend, skip locking kfd */ if (!run_pm) { mutex_lock(&kfd_processes_mutex); count = ++kfd_locked; mutex_unlock(&kfd_processes_mutex); /* For first KFD device suspend all the KFD processes */ if (count == 1) kfd_suspend_all_processes(); } for (i = 0; i < kfd->num_nodes; i++) { node = kfd->nodes[i]; node->dqm->ops.stop(node->dqm); } } int kgd2kfd_resume(struct kfd_dev *kfd, bool run_pm) { int ret, count, i; if (!kfd->init_complete) return 0; for (i = 0; i < kfd->num_nodes; i++) { ret = kfd_resume(kfd->nodes[i]); if (ret) return ret; } /* for runtime resume, skip unlocking kfd */ if (!run_pm) { mutex_lock(&kfd_processes_mutex); count = --kfd_locked; mutex_unlock(&kfd_processes_mutex); WARN_ONCE(count < 0, "KFD suspend / resume ref. error"); if (count == 0) ret = kfd_resume_all_processes(); } return ret; } static int kfd_resume(struct kfd_node *node) { int err = 0; err = node->dqm->ops.start(node->dqm); if (err) dev_err(kfd_device, "Error starting queue manager for device %x:%x\n", node->adev->pdev->vendor, node->adev->pdev->device); return err; } static inline void kfd_queue_work(struct workqueue_struct *wq, struct work_struct *work) { int cpu, new_cpu; cpu = new_cpu = smp_processor_id(); do { new_cpu = cpumask_next(new_cpu, cpu_online_mask) % nr_cpu_ids; if (cpu_to_node(new_cpu) == numa_node_id()) break; } while (cpu != new_cpu); queue_work_on(new_cpu, wq, work); } /* This is called directly from KGD at ISR. */ void kgd2kfd_interrupt(struct kfd_dev *kfd, const void *ih_ring_entry) { uint32_t patched_ihre[KFD_MAX_RING_ENTRY_SIZE], i; bool is_patched = false; unsigned long flags; struct kfd_node *node; if (!kfd->init_complete) return; if (kfd->device_info.ih_ring_entry_size > sizeof(patched_ihre)) { dev_err_once(kfd_device, "Ring entry too small\n"); return; } for (i = 0; i < kfd->num_nodes; i++) { node = kfd->nodes[i]; spin_lock_irqsave(&node->interrupt_lock, flags); if (node->interrupts_active && interrupt_is_wanted(node, ih_ring_entry, patched_ihre, &is_patched) && enqueue_ih_ring_entry(node, is_patched ? patched_ihre : ih_ring_entry)) { kfd_queue_work(node->ih_wq, &node->interrupt_work); spin_unlock_irqrestore(&node->interrupt_lock, flags); return; } spin_unlock_irqrestore(&node->interrupt_lock, flags); } } int kgd2kfd_quiesce_mm(struct mm_struct *mm, uint32_t trigger) { struct kfd_process *p; int r; /* Because we are called from arbitrary context (workqueue) as opposed * to process context, kfd_process could attempt to exit while we are * running so the lookup function increments the process ref count. */ p = kfd_lookup_process_by_mm(mm); if (!p) return -ESRCH; WARN(debug_evictions, "Evicting pid %d", p->lead_thread->pid); r = kfd_process_evict_queues(p, trigger); kfd_unref_process(p); return r; } int kgd2kfd_resume_mm(struct mm_struct *mm) { struct kfd_process *p; int r; /* Because we are called from arbitrary context (workqueue) as opposed * to process context, kfd_process could attempt to exit while we are * running so the lookup function increments the process ref count. */ p = kfd_lookup_process_by_mm(mm); if (!p) return -ESRCH; r = kfd_process_restore_queues(p); kfd_unref_process(p); return r; } /** kgd2kfd_schedule_evict_and_restore_process - Schedules work queue that will * prepare for safe eviction of KFD BOs that belong to the specified * process. * * @mm: mm_struct that identifies the specified KFD process * @fence: eviction fence attached to KFD process BOs * */ int kgd2kfd_schedule_evict_and_restore_process(struct mm_struct *mm, struct dma_fence *fence) { struct kfd_process *p; unsigned long active_time; unsigned long delay_jiffies = msecs_to_jiffies(PROCESS_ACTIVE_TIME_MS); if (!fence) return -EINVAL; if (dma_fence_is_signaled(fence)) return 0; p = kfd_lookup_process_by_mm(mm); if (!p) return -ENODEV; if (fence->seqno == p->last_eviction_seqno) goto out; p->last_eviction_seqno = fence->seqno; /* Avoid KFD process starvation. Wait for at least * PROCESS_ACTIVE_TIME_MS before evicting the process again */ active_time = get_jiffies_64() - p->last_restore_timestamp; if (delay_jiffies > active_time) delay_jiffies -= active_time; else delay_jiffies = 0; /* During process initialization eviction_work.dwork is initialized * to kfd_evict_bo_worker */ WARN(debug_evictions, "Scheduling eviction of pid %d in %ld jiffies", p->lead_thread->pid, delay_jiffies); schedule_delayed_work(&p->eviction_work, delay_jiffies); out: kfd_unref_process(p); return 0; } static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size, unsigned int chunk_size) { if (WARN_ON(buf_size < chunk_size)) return -EINVAL; if (WARN_ON(buf_size == 0)) return -EINVAL; if (WARN_ON(chunk_size == 0)) return -EINVAL; kfd->gtt_sa_chunk_size = chunk_size; kfd->gtt_sa_num_of_chunks = buf_size / chunk_size; kfd->gtt_sa_bitmap = bitmap_zalloc(kfd->gtt_sa_num_of_chunks, GFP_KERNEL); if (!kfd->gtt_sa_bitmap) return -ENOMEM; pr_debug("gtt_sa_num_of_chunks = %d, gtt_sa_bitmap = %p\n", kfd->gtt_sa_num_of_chunks, kfd->gtt_sa_bitmap); mutex_init(&kfd->gtt_sa_lock); return 0; } static void kfd_gtt_sa_fini(struct kfd_dev *kfd) { mutex_destroy(&kfd->gtt_sa_lock); bitmap_free(kfd->gtt_sa_bitmap); } static inline uint64_t kfd_gtt_sa_calc_gpu_addr(uint64_t start_addr, unsigned int bit_num, unsigned int chunk_size) { return start_addr + bit_num * chunk_size; } static inline uint32_t *kfd_gtt_sa_calc_cpu_addr(void *start_addr, unsigned int bit_num, unsigned int chunk_size) { return (uint32_t *) ((uint64_t) start_addr + bit_num * chunk_size); } int kfd_gtt_sa_allocate(struct kfd_node *node, unsigned int size, struct kfd_mem_obj **mem_obj) { unsigned int found, start_search, cur_size; struct kfd_dev *kfd = node->kfd; if (size == 0) return -EINVAL; if (size > kfd->gtt_sa_num_of_chunks * kfd->gtt_sa_chunk_size) return -ENOMEM; *mem_obj = kzalloc(sizeof(struct kfd_mem_obj), GFP_KERNEL); if (!(*mem_obj)) return -ENOMEM; pr_debug("Allocated mem_obj = %p for size = %d\n", *mem_obj, size); start_search = 0; mutex_lock(&kfd->gtt_sa_lock); kfd_gtt_restart_search: /* Find the first chunk that is free */ found = find_next_zero_bit(kfd->gtt_sa_bitmap, kfd->gtt_sa_num_of_chunks, start_search); pr_debug("Found = %d\n", found); /* If there wasn't any free chunk, bail out */ if (found == kfd->gtt_sa_num_of_chunks) goto kfd_gtt_no_free_chunk; /* Update fields of mem_obj */ (*mem_obj)->range_start = found; (*mem_obj)->range_end = found; (*mem_obj)->gpu_addr = kfd_gtt_sa_calc_gpu_addr( kfd->gtt_start_gpu_addr, found, kfd->gtt_sa_chunk_size); (*mem_obj)->cpu_ptr = kfd_gtt_sa_calc_cpu_addr( kfd->gtt_start_cpu_ptr, found, kfd->gtt_sa_chunk_size); pr_debug("gpu_addr = %p, cpu_addr = %p\n", (uint64_t *) (*mem_obj)->gpu_addr, (*mem_obj)->cpu_ptr); /* If we need only one chunk, mark it as allocated and get out */ if (size <= kfd->gtt_sa_chunk_size) { pr_debug("Single bit\n"); __set_bit(found, kfd->gtt_sa_bitmap); goto kfd_gtt_out; } /* Otherwise, try to see if we have enough contiguous chunks */ cur_size = size - kfd->gtt_sa_chunk_size; do { (*mem_obj)->range_end = find_next_zero_bit(kfd->gtt_sa_bitmap, kfd->gtt_sa_num_of_chunks, ++found); /* * If next free chunk is not contiguous than we need to * restart our search from the last free chunk we found (which * wasn't contiguous to the previous ones */ if ((*mem_obj)->range_end != found) { start_search = found; goto kfd_gtt_restart_search; } /* * If we reached end of buffer, bail out with error */ if (found == kfd->gtt_sa_num_of_chunks) goto kfd_gtt_no_free_chunk; /* Check if we don't need another chunk */ if (cur_size <= kfd->gtt_sa_chunk_size) cur_size = 0; else cur_size -= kfd->gtt_sa_chunk_size; } while (cur_size > 0); pr_debug("range_start = %d, range_end = %d\n", (*mem_obj)->range_start, (*mem_obj)->range_end); /* Mark the chunks as allocated */ bitmap_set(kfd->gtt_sa_bitmap, (*mem_obj)->range_start, (*mem_obj)->range_end - (*mem_obj)->range_start + 1); kfd_gtt_out: mutex_unlock(&kfd->gtt_sa_lock); return 0; kfd_gtt_no_free_chunk: pr_debug("Allocation failed with mem_obj = %p\n", *mem_obj); mutex_unlock(&kfd->gtt_sa_lock); kfree(*mem_obj); return -ENOMEM; } int kfd_gtt_sa_free(struct kfd_node *node, struct kfd_mem_obj *mem_obj) { struct kfd_dev *kfd = node->kfd; /* Act like kfree when trying to free a NULL object */ if (!mem_obj) return 0; pr_debug("Free mem_obj = %p, range_start = %d, range_end = %d\n", mem_obj, mem_obj->range_start, mem_obj->range_end); mutex_lock(&kfd->gtt_sa_lock); /* Mark the chunks as free */ bitmap_clear(kfd->gtt_sa_bitmap, mem_obj->range_start, mem_obj->range_end - mem_obj->range_start + 1); mutex_unlock(&kfd->gtt_sa_lock); kfree(mem_obj); return 0; } void kgd2kfd_set_sram_ecc_flag(struct kfd_dev *kfd) { /* * TODO: Currently update SRAM ECC flag for first node. * This needs to be updated later when we can * identify SRAM ECC error on other nodes also. */ if (kfd) atomic_inc(&kfd->nodes[0]->sram_ecc_flag); } void kfd_inc_compute_active(struct kfd_node *node) { if (atomic_inc_return(&node->kfd->compute_profile) == 1) amdgpu_amdkfd_set_compute_idle(node->adev, false); } void kfd_dec_compute_active(struct kfd_node *node) { int count = atomic_dec_return(&node->kfd->compute_profile); if (count == 0) amdgpu_amdkfd_set_compute_idle(node->adev, true); WARN_ONCE(count < 0, "Compute profile ref. count error"); } void kgd2kfd_smi_event_throttle(struct kfd_dev *kfd, uint64_t throttle_bitmask) { /* * TODO: For now, raise the throttling event only on first node. * This will need to change after we are able to determine * which node raised the throttling event. */ if (kfd && kfd->init_complete) kfd_smi_event_update_thermal_throttling(kfd->nodes[0], throttle_bitmask); } /* kfd_get_num_sdma_engines returns the number of PCIe optimized SDMA and * kfd_get_num_xgmi_sdma_engines returns the number of XGMI SDMA. * When the device has more than two engines, we reserve two for PCIe to enable * full-duplex and the rest are used as XGMI. */ unsigned int kfd_get_num_sdma_engines(struct kfd_node *node) { /* If XGMI is not supported, all SDMA engines are PCIe */ if (!node->adev->gmc.xgmi.supported) return node->adev->sdma.num_instances/(int)node->kfd->num_nodes; return min(node->adev->sdma.num_instances/(int)node->kfd->num_nodes, 2); } unsigned int kfd_get_num_xgmi_sdma_engines(struct kfd_node *node) { /* After reserved for PCIe, the rest of engines are XGMI */ return node->adev->sdma.num_instances/(int)node->kfd->num_nodes - kfd_get_num_sdma_engines(node); } int kgd2kfd_check_and_lock_kfd(void) { mutex_lock(&kfd_processes_mutex); if (!hash_empty(kfd_processes_table) || kfd_is_locked()) { mutex_unlock(&kfd_processes_mutex); return -EBUSY; } ++kfd_locked; mutex_unlock(&kfd_processes_mutex); return 0; } void kgd2kfd_unlock_kfd(void) { mutex_lock(&kfd_processes_mutex); --kfd_locked; mutex_unlock(&kfd_processes_mutex); } #if defined(CONFIG_DEBUG_FS) /* This function will send a package to HIQ to hang the HWS * which will trigger a GPU reset and bring the HWS back to normal state */ int kfd_debugfs_hang_hws(struct kfd_node *dev) { if (dev->dqm->sched_policy != KFD_SCHED_POLICY_HWS) { pr_err("HWS is not enabled"); return -EINVAL; } return dqm_debugfs_hang_hws(dev->dqm); } #endif
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1