Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Philip Cox | 1840 | 74.83% | 1 | 2.86% |
David Yat Sin | 179 | 7.28% | 2 | 5.71% |
Mukul Joshi | 94 | 3.82% | 6 | 17.14% |
Felix Kuhling | 66 | 2.68% | 1 | 2.86% |
Jonathan Kim | 66 | 2.68% | 2 | 5.71% |
Ben Goz | 47 | 1.91% | 4 | 11.43% |
Yong Zhao | 44 | 1.79% | 6 | 17.14% |
Lang Yu | 34 | 1.38% | 2 | 5.71% |
Oak Zeng | 30 | 1.22% | 2 | 5.71% |
Jay Cornwall | 26 | 1.06% | 1 | 2.86% |
Oded Gabbay | 18 | 0.73% | 2 | 5.71% |
Shaoyun Liu | 7 | 0.28% | 1 | 2.86% |
Amber Lin | 3 | 0.12% | 1 | 2.86% |
Rajneesh Bhardwaj | 2 | 0.08% | 1 | 2.86% |
Joseph Greathouse | 1 | 0.04% | 1 | 2.86% |
Kent Russell | 1 | 0.04% | 1 | 2.86% |
Graham Sider | 1 | 0.04% | 1 | 2.86% |
Total | 2459 | 35 |
// SPDX-License-Identifier: GPL-2.0 OR MIT /* * Copyright 2018-2022 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * */ #include <linux/printk.h> #include <linux/slab.h> #include <linux/uaccess.h> #include "kfd_priv.h" #include "kfd_mqd_manager.h" #include "v10_structs.h" #include "gc/gc_10_1_0_offset.h" #include "gc/gc_10_1_0_sh_mask.h" #include "amdgpu_amdkfd.h" static inline struct v10_compute_mqd *get_mqd(void *mqd) { return (struct v10_compute_mqd *)mqd; } static inline struct v10_sdma_mqd *get_sdma_mqd(void *mqd) { return (struct v10_sdma_mqd *)mqd; } static void update_cu_mask(struct mqd_manager *mm, void *mqd, struct mqd_update_info *minfo) { struct v10_compute_mqd *m; uint32_t se_mask[4] = {0}; /* 4 is the max # of SEs */ if (!minfo || !minfo->cu_mask.ptr) return; mqd_symmetrically_map_cu_mask(mm, minfo->cu_mask.ptr, minfo->cu_mask.count, se_mask, 0); m = get_mqd(mqd); m->compute_static_thread_mgmt_se0 = se_mask[0]; m->compute_static_thread_mgmt_se1 = se_mask[1]; m->compute_static_thread_mgmt_se2 = se_mask[2]; m->compute_static_thread_mgmt_se3 = se_mask[3]; pr_debug("update cu mask to %#x %#x %#x %#x\n", m->compute_static_thread_mgmt_se0, m->compute_static_thread_mgmt_se1, m->compute_static_thread_mgmt_se2, m->compute_static_thread_mgmt_se3); } static void set_priority(struct v10_compute_mqd *m, struct queue_properties *q) { m->cp_hqd_pipe_priority = pipe_priority_map[q->priority]; m->cp_hqd_queue_priority = q->priority; } static struct kfd_mem_obj *allocate_mqd(struct kfd_node *kfd, struct queue_properties *q) { struct kfd_mem_obj *mqd_mem_obj; if (kfd_gtt_sa_allocate(kfd, sizeof(struct v10_compute_mqd), &mqd_mem_obj)) return NULL; return mqd_mem_obj; } static void init_mqd(struct mqd_manager *mm, void **mqd, struct kfd_mem_obj *mqd_mem_obj, uint64_t *gart_addr, struct queue_properties *q) { uint64_t addr; struct v10_compute_mqd *m; m = (struct v10_compute_mqd *) mqd_mem_obj->cpu_ptr; addr = mqd_mem_obj->gpu_addr; memset(m, 0, sizeof(struct v10_compute_mqd)); m->header = 0xC0310800; m->compute_pipelinestat_enable = 1; m->compute_static_thread_mgmt_se0 = 0xFFFFFFFF; m->compute_static_thread_mgmt_se1 = 0xFFFFFFFF; m->compute_static_thread_mgmt_se2 = 0xFFFFFFFF; m->compute_static_thread_mgmt_se3 = 0xFFFFFFFF; m->cp_hqd_persistent_state = CP_HQD_PERSISTENT_STATE__PRELOAD_REQ_MASK | 0x53 << CP_HQD_PERSISTENT_STATE__PRELOAD_SIZE__SHIFT; m->cp_mqd_control = 1 << CP_MQD_CONTROL__PRIV_STATE__SHIFT; m->cp_mqd_base_addr_lo = lower_32_bits(addr); m->cp_mqd_base_addr_hi = upper_32_bits(addr); m->cp_hqd_quantum = 1 << CP_HQD_QUANTUM__QUANTUM_EN__SHIFT | 1 << CP_HQD_QUANTUM__QUANTUM_SCALE__SHIFT | 1 << CP_HQD_QUANTUM__QUANTUM_DURATION__SHIFT; /* Set cp_hqd_hq_scheduler0 bit 14 to 1 to have the CP set up the * DISPATCH_PTR. This is required for the kfd debugger */ m->cp_hqd_hq_scheduler0 = 1 << 14; if (q->format == KFD_QUEUE_FORMAT_AQL) { m->cp_hqd_aql_control = 1 << CP_HQD_AQL_CONTROL__CONTROL0__SHIFT; } if (mm->dev->kfd->cwsr_enabled) { m->cp_hqd_persistent_state |= (1 << CP_HQD_PERSISTENT_STATE__QSWITCH_MODE__SHIFT); m->cp_hqd_ctx_save_base_addr_lo = lower_32_bits(q->ctx_save_restore_area_address); m->cp_hqd_ctx_save_base_addr_hi = upper_32_bits(q->ctx_save_restore_area_address); m->cp_hqd_ctx_save_size = q->ctx_save_restore_area_size; m->cp_hqd_cntl_stack_size = q->ctl_stack_size; m->cp_hqd_cntl_stack_offset = q->ctl_stack_size; m->cp_hqd_wg_state_offset = q->ctl_stack_size; } *mqd = m; if (gart_addr) *gart_addr = addr; mm->update_mqd(mm, m, q, NULL); } static int load_mqd(struct mqd_manager *mm, void *mqd, uint32_t pipe_id, uint32_t queue_id, struct queue_properties *p, struct mm_struct *mms) { int r = 0; /* AQL write pointer counts in 64B packets, PM4/CP counts in dwords. */ uint32_t wptr_shift = (p->format == KFD_QUEUE_FORMAT_AQL ? 4 : 0); r = mm->dev->kfd2kgd->hqd_load(mm->dev->adev, mqd, pipe_id, queue_id, (uint32_t __user *)p->write_ptr, wptr_shift, 0, mms, 0); return r; } static void update_mqd(struct mqd_manager *mm, void *mqd, struct queue_properties *q, struct mqd_update_info *minfo) { struct v10_compute_mqd *m; m = get_mqd(mqd); m->cp_hqd_pq_control = 5 << CP_HQD_PQ_CONTROL__RPTR_BLOCK_SIZE__SHIFT; m->cp_hqd_pq_control |= ffs(q->queue_size / sizeof(unsigned int)) - 1 - 1; pr_debug("cp_hqd_pq_control 0x%x\n", m->cp_hqd_pq_control); m->cp_hqd_pq_base_lo = lower_32_bits((uint64_t)q->queue_address >> 8); m->cp_hqd_pq_base_hi = upper_32_bits((uint64_t)q->queue_address >> 8); m->cp_hqd_pq_rptr_report_addr_lo = lower_32_bits((uint64_t)q->read_ptr); m->cp_hqd_pq_rptr_report_addr_hi = upper_32_bits((uint64_t)q->read_ptr); m->cp_hqd_pq_wptr_poll_addr_lo = lower_32_bits((uint64_t)q->write_ptr); m->cp_hqd_pq_wptr_poll_addr_hi = upper_32_bits((uint64_t)q->write_ptr); m->cp_hqd_pq_doorbell_control = q->doorbell_off << CP_HQD_PQ_DOORBELL_CONTROL__DOORBELL_OFFSET__SHIFT; pr_debug("cp_hqd_pq_doorbell_control 0x%x\n", m->cp_hqd_pq_doorbell_control); m->cp_hqd_ib_control = 3 << CP_HQD_IB_CONTROL__MIN_IB_AVAIL_SIZE__SHIFT; /* * HW does not clamp this field correctly. Maximum EOP queue size * is constrained by per-SE EOP done signal count, which is 8-bit. * Limit is 0xFF EOP entries (= 0x7F8 dwords). CP will not submit * more than (EOP entry count - 1) so a queue size of 0x800 dwords * is safe, giving a maximum field value of 0xA. */ m->cp_hqd_eop_control = min(0xA, ffs(q->eop_ring_buffer_size / sizeof(unsigned int)) - 1 - 1); m->cp_hqd_eop_base_addr_lo = lower_32_bits(q->eop_ring_buffer_address >> 8); m->cp_hqd_eop_base_addr_hi = upper_32_bits(q->eop_ring_buffer_address >> 8); m->cp_hqd_iq_timer = 0; m->cp_hqd_vmid = q->vmid; if (q->format == KFD_QUEUE_FORMAT_AQL) { /* GC 10 removed WPP_CLAMP from PQ Control */ m->cp_hqd_pq_control |= CP_HQD_PQ_CONTROL__NO_UPDATE_RPTR_MASK | 2 << CP_HQD_PQ_CONTROL__SLOT_BASED_WPTR__SHIFT | 1 << CP_HQD_PQ_CONTROL__QUEUE_FULL_EN__SHIFT; m->cp_hqd_pq_doorbell_control |= 1 << CP_HQD_PQ_DOORBELL_CONTROL__DOORBELL_BIF_DROP__SHIFT; } if (mm->dev->kfd->cwsr_enabled) m->cp_hqd_ctx_save_control = 0; update_cu_mask(mm, mqd, minfo); set_priority(m, q); q->is_active = QUEUE_IS_ACTIVE(*q); } static uint32_t read_doorbell_id(void *mqd) { struct v10_compute_mqd *m = (struct v10_compute_mqd *)mqd; return m->queue_doorbell_id0; } static int get_wave_state(struct mqd_manager *mm, void *mqd, struct queue_properties *q, void __user *ctl_stack, u32 *ctl_stack_used_size, u32 *save_area_used_size) { struct v10_compute_mqd *m; struct kfd_context_save_area_header header; m = get_mqd(mqd); /* Control stack is written backwards, while workgroup context data * is written forwards. Both starts from m->cp_hqd_cntl_stack_size. * Current position is at m->cp_hqd_cntl_stack_offset and * m->cp_hqd_wg_state_offset, respectively. */ *ctl_stack_used_size = m->cp_hqd_cntl_stack_size - m->cp_hqd_cntl_stack_offset; *save_area_used_size = m->cp_hqd_wg_state_offset - m->cp_hqd_cntl_stack_size; /* Control stack is not copied to user mode for GFXv10 because * it's part of the context save area that is already * accessible to user mode */ header.wave_state.control_stack_size = *ctl_stack_used_size; header.wave_state.wave_state_size = *save_area_used_size; header.wave_state.wave_state_offset = m->cp_hqd_wg_state_offset; header.wave_state.control_stack_offset = m->cp_hqd_cntl_stack_offset; if (copy_to_user(ctl_stack, &header, sizeof(header.wave_state))) return -EFAULT; return 0; } static void checkpoint_mqd(struct mqd_manager *mm, void *mqd, void *mqd_dst, void *ctl_stack_dst) { struct v10_compute_mqd *m; m = get_mqd(mqd); memcpy(mqd_dst, m, sizeof(struct v10_compute_mqd)); } static void restore_mqd(struct mqd_manager *mm, void **mqd, struct kfd_mem_obj *mqd_mem_obj, uint64_t *gart_addr, struct queue_properties *qp, const void *mqd_src, const void *ctl_stack_src, const u32 ctl_stack_size) { uint64_t addr; struct v10_compute_mqd *m; m = (struct v10_compute_mqd *) mqd_mem_obj->cpu_ptr; addr = mqd_mem_obj->gpu_addr; memcpy(m, mqd_src, sizeof(*m)); *mqd = m; if (gart_addr) *gart_addr = addr; m->cp_hqd_pq_doorbell_control = qp->doorbell_off << CP_HQD_PQ_DOORBELL_CONTROL__DOORBELL_OFFSET__SHIFT; pr_debug("cp_hqd_pq_doorbell_control 0x%x\n", m->cp_hqd_pq_doorbell_control); qp->is_active = 0; } static void init_mqd_hiq(struct mqd_manager *mm, void **mqd, struct kfd_mem_obj *mqd_mem_obj, uint64_t *gart_addr, struct queue_properties *q) { struct v10_compute_mqd *m; init_mqd(mm, mqd, mqd_mem_obj, gart_addr, q); m = get_mqd(*mqd); m->cp_hqd_pq_control |= 1 << CP_HQD_PQ_CONTROL__PRIV_STATE__SHIFT | 1 << CP_HQD_PQ_CONTROL__KMD_QUEUE__SHIFT; } static int destroy_hiq_mqd(struct mqd_manager *mm, void *mqd, enum kfd_preempt_type type, unsigned int timeout, uint32_t pipe_id, uint32_t queue_id) { int err; struct v10_compute_mqd *m; u32 doorbell_off; m = get_mqd(mqd); doorbell_off = m->cp_hqd_pq_doorbell_control >> CP_HQD_PQ_DOORBELL_CONTROL__DOORBELL_OFFSET__SHIFT; err = amdgpu_amdkfd_unmap_hiq(mm->dev->adev, doorbell_off, 0); if (err) pr_debug("Destroy HIQ MQD failed: %d\n", err); return err; } static void init_mqd_sdma(struct mqd_manager *mm, void **mqd, struct kfd_mem_obj *mqd_mem_obj, uint64_t *gart_addr, struct queue_properties *q) { struct v10_sdma_mqd *m; m = (struct v10_sdma_mqd *) mqd_mem_obj->cpu_ptr; memset(m, 0, sizeof(struct v10_sdma_mqd)); *mqd = m; if (gart_addr) *gart_addr = mqd_mem_obj->gpu_addr; mm->update_mqd(mm, m, q, NULL); } #define SDMA_RLC_DUMMY_DEFAULT 0xf static void update_mqd_sdma(struct mqd_manager *mm, void *mqd, struct queue_properties *q, struct mqd_update_info *minfo) { struct v10_sdma_mqd *m; m = get_sdma_mqd(mqd); m->sdmax_rlcx_rb_cntl = (ffs(q->queue_size / sizeof(unsigned int)) - 1) << SDMA0_RLC0_RB_CNTL__RB_SIZE__SHIFT | q->vmid << SDMA0_RLC0_RB_CNTL__RB_VMID__SHIFT | 1 << SDMA0_RLC0_RB_CNTL__RPTR_WRITEBACK_ENABLE__SHIFT | 6 << SDMA0_RLC0_RB_CNTL__RPTR_WRITEBACK_TIMER__SHIFT; m->sdmax_rlcx_rb_base = lower_32_bits(q->queue_address >> 8); m->sdmax_rlcx_rb_base_hi = upper_32_bits(q->queue_address >> 8); m->sdmax_rlcx_rb_rptr_addr_lo = lower_32_bits((uint64_t)q->read_ptr); m->sdmax_rlcx_rb_rptr_addr_hi = upper_32_bits((uint64_t)q->read_ptr); m->sdmax_rlcx_doorbell_offset = q->doorbell_off << SDMA0_RLC0_DOORBELL_OFFSET__OFFSET__SHIFT; m->sdma_engine_id = q->sdma_engine_id; m->sdma_queue_id = q->sdma_queue_id; m->sdmax_rlcx_dummy_reg = SDMA_RLC_DUMMY_DEFAULT; q->is_active = QUEUE_IS_ACTIVE(*q); } static void checkpoint_mqd_sdma(struct mqd_manager *mm, void *mqd, void *mqd_dst, void *ctl_stack_dst) { struct v10_sdma_mqd *m; m = get_sdma_mqd(mqd); memcpy(mqd_dst, m, sizeof(struct v10_sdma_mqd)); } static void restore_mqd_sdma(struct mqd_manager *mm, void **mqd, struct kfd_mem_obj *mqd_mem_obj, uint64_t *gart_addr, struct queue_properties *qp, const void *mqd_src, const void *ctl_stack_src, const u32 ctl_stack_size) { uint64_t addr; struct v10_sdma_mqd *m; m = (struct v10_sdma_mqd *) mqd_mem_obj->cpu_ptr; addr = mqd_mem_obj->gpu_addr; memcpy(m, mqd_src, sizeof(*m)); m->sdmax_rlcx_doorbell_offset = qp->doorbell_off << SDMA0_RLC0_DOORBELL_OFFSET__OFFSET__SHIFT; *mqd = m; if (gart_addr) *gart_addr = addr; qp->is_active = 0; } #if defined(CONFIG_DEBUG_FS) static int debugfs_show_mqd(struct seq_file *m, void *data) { seq_hex_dump(m, " ", DUMP_PREFIX_OFFSET, 32, 4, data, sizeof(struct v10_compute_mqd), false); return 0; } static int debugfs_show_mqd_sdma(struct seq_file *m, void *data) { seq_hex_dump(m, " ", DUMP_PREFIX_OFFSET, 32, 4, data, sizeof(struct v10_sdma_mqd), false); return 0; } #endif struct mqd_manager *mqd_manager_init_v10(enum KFD_MQD_TYPE type, struct kfd_node *dev) { struct mqd_manager *mqd; if (WARN_ON(type >= KFD_MQD_TYPE_MAX)) return NULL; mqd = kzalloc(sizeof(*mqd), GFP_KERNEL); if (!mqd) return NULL; mqd->dev = dev; switch (type) { case KFD_MQD_TYPE_CP: pr_debug("%s@%i\n", __func__, __LINE__); mqd->allocate_mqd = allocate_mqd; mqd->init_mqd = init_mqd; mqd->free_mqd = kfd_free_mqd_cp; mqd->load_mqd = load_mqd; mqd->update_mqd = update_mqd; mqd->destroy_mqd = kfd_destroy_mqd_cp; mqd->is_occupied = kfd_is_occupied_cp; mqd->mqd_size = sizeof(struct v10_compute_mqd); mqd->get_wave_state = get_wave_state; mqd->checkpoint_mqd = checkpoint_mqd; mqd->restore_mqd = restore_mqd; mqd->mqd_stride = kfd_mqd_stride; #if defined(CONFIG_DEBUG_FS) mqd->debugfs_show_mqd = debugfs_show_mqd; #endif pr_debug("%s@%i\n", __func__, __LINE__); break; case KFD_MQD_TYPE_HIQ: pr_debug("%s@%i\n", __func__, __LINE__); mqd->allocate_mqd = allocate_hiq_mqd; mqd->init_mqd = init_mqd_hiq; mqd->free_mqd = free_mqd_hiq_sdma; mqd->load_mqd = kfd_hiq_load_mqd_kiq; mqd->update_mqd = update_mqd; mqd->destroy_mqd = destroy_hiq_mqd; mqd->is_occupied = kfd_is_occupied_cp; mqd->mqd_size = sizeof(struct v10_compute_mqd); mqd->mqd_stride = kfd_mqd_stride; #if defined(CONFIG_DEBUG_FS) mqd->debugfs_show_mqd = debugfs_show_mqd; #endif mqd->read_doorbell_id = read_doorbell_id; pr_debug("%s@%i\n", __func__, __LINE__); break; case KFD_MQD_TYPE_DIQ: mqd->allocate_mqd = allocate_mqd; mqd->init_mqd = init_mqd_hiq; mqd->free_mqd = kfd_free_mqd_cp; mqd->load_mqd = load_mqd; mqd->update_mqd = update_mqd; mqd->destroy_mqd = kfd_destroy_mqd_cp; mqd->is_occupied = kfd_is_occupied_cp; mqd->mqd_size = sizeof(struct v10_compute_mqd); #if defined(CONFIG_DEBUG_FS) mqd->debugfs_show_mqd = debugfs_show_mqd; #endif break; case KFD_MQD_TYPE_SDMA: pr_debug("%s@%i\n", __func__, __LINE__); mqd->allocate_mqd = allocate_sdma_mqd; mqd->init_mqd = init_mqd_sdma; mqd->free_mqd = free_mqd_hiq_sdma; mqd->load_mqd = kfd_load_mqd_sdma; mqd->update_mqd = update_mqd_sdma; mqd->destroy_mqd = kfd_destroy_mqd_sdma; mqd->is_occupied = kfd_is_occupied_sdma; mqd->checkpoint_mqd = checkpoint_mqd_sdma; mqd->restore_mqd = restore_mqd_sdma; mqd->mqd_size = sizeof(struct v10_sdma_mqd); mqd->mqd_stride = kfd_mqd_stride; #if defined(CONFIG_DEBUG_FS) mqd->debugfs_show_mqd = debugfs_show_mqd_sdma; #endif pr_debug("%s@%i\n", __func__, __LINE__); break; default: kfree(mqd); return NULL; } return mqd; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1