Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Qingqing Zhuo | 4452 | 68.71% | 3 | 6.12% |
Charlene Liu | 990 | 15.28% | 1 | 2.04% |
Nicholas Kazlauskas | 207 | 3.19% | 5 | 10.20% |
Duncan Ma | 149 | 2.30% | 2 | 4.08% |
Eric Yang | 133 | 2.05% | 5 | 10.20% |
Alex Deucher | 123 | 1.90% | 2 | 4.08% |
Sung Joon Kim | 113 | 1.74% | 3 | 6.12% |
Dmytro Laktyushkin | 53 | 0.82% | 5 | 10.20% |
David Francis | 49 | 0.76% | 1 | 2.04% |
Ovidiu Bunea | 49 | 0.76% | 2 | 4.08% |
Harry Wentland | 48 | 0.74% | 3 | 6.12% |
Leo (Sunpeng) Li | 21 | 0.32% | 2 | 4.08% |
Wayne Lin | 18 | 0.28% | 1 | 2.04% |
rodrigosiqueira | 16 | 0.25% | 1 | 2.04% |
Jun Lei | 16 | 0.25% | 2 | 4.08% |
Bhawanpreet Lakha | 11 | 0.17% | 3 | 6.12% |
Taimur Hassan | 11 | 0.17% | 1 | 2.04% |
Alvin lee | 8 | 0.12% | 2 | 4.08% |
Aurabindo Pillai | 5 | 0.08% | 1 | 2.04% |
Meenakshikumar Somasundaram | 4 | 0.06% | 1 | 2.04% |
Andrey Grodzovsky | 1 | 0.02% | 1 | 2.04% |
Wenjing Liu | 1 | 0.02% | 1 | 2.04% |
Jerry (Fangzhi) Zuo | 1 | 0.02% | 1 | 2.04% |
Total | 6479 | 49 |
/* * Copyright 2022 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: AMD * */ #include "dcn35_clk_mgr.h" #include "dccg.h" #include "clk_mgr_internal.h" // For dce12_get_dp_ref_freq_khz #include "dce100/dce_clk_mgr.h" // For dcn20_update_clocks_update_dpp_dto #include "dcn20/dcn20_clk_mgr.h" #include "reg_helper.h" #include "core_types.h" #include "dcn35_smu.h" #include "dm_helpers.h" /* TODO: remove this include once we ported over remaining clk mgr functions*/ #include "dcn30/dcn30_clk_mgr.h" #include "dcn31/dcn31_clk_mgr.h" #include "dc_dmub_srv.h" #include "link.h" #include "logger_types.h" #undef DC_LOGGER #define DC_LOGGER \ clk_mgr->base.base.ctx->logger #define regCLK1_CLK_PLL_REQ 0x0237 #define regCLK1_CLK_PLL_REQ_BASE_IDX 0 #define CLK1_CLK_PLL_REQ__FbMult_int__SHIFT 0x0 #define CLK1_CLK_PLL_REQ__PllSpineDiv__SHIFT 0xc #define CLK1_CLK_PLL_REQ__FbMult_frac__SHIFT 0x10 #define CLK1_CLK_PLL_REQ__FbMult_int_MASK 0x000001FFL #define CLK1_CLK_PLL_REQ__PllSpineDiv_MASK 0x0000F000L #define CLK1_CLK_PLL_REQ__FbMult_frac_MASK 0xFFFF0000L #define regCLK1_CLK2_BYPASS_CNTL 0x029c #define regCLK1_CLK2_BYPASS_CNTL_BASE_IDX 0 #define CLK1_CLK2_BYPASS_CNTL__CLK2_BYPASS_SEL__SHIFT 0x0 #define CLK1_CLK2_BYPASS_CNTL__CLK2_BYPASS_DIV__SHIFT 0x10 #define CLK1_CLK2_BYPASS_CNTL__CLK2_BYPASS_SEL_MASK 0x00000007L #define CLK1_CLK2_BYPASS_CNTL__CLK2_BYPASS_DIV_MASK 0x000F0000L #define REG(reg_name) \ (ctx->clk_reg_offsets[reg ## reg_name ## _BASE_IDX] + reg ## reg_name) #define TO_CLK_MGR_DCN35(clk_mgr)\ container_of(clk_mgr, struct clk_mgr_dcn35, base) static int dcn35_get_active_display_cnt_wa( struct dc *dc, struct dc_state *context) { int i, display_count; bool tmds_present = false; display_count = 0; for (i = 0; i < context->stream_count; i++) { const struct dc_stream_state *stream = context->streams[i]; if (stream->signal == SIGNAL_TYPE_HDMI_TYPE_A || stream->signal == SIGNAL_TYPE_DVI_SINGLE_LINK || stream->signal == SIGNAL_TYPE_DVI_DUAL_LINK) tmds_present = true; } for (i = 0; i < dc->link_count; i++) { const struct dc_link *link = dc->links[i]; /* abusing the fact that the dig and phy are coupled to see if the phy is enabled */ if (link->link_enc && link->link_enc->funcs->is_dig_enabled && link->link_enc->funcs->is_dig_enabled(link->link_enc)) display_count++; } /* WA for hang on HDMI after display off back on*/ if (display_count == 0 && tmds_present) display_count = 1; return display_count; } static void dcn35_disable_otg_wa(struct clk_mgr *clk_mgr_base, struct dc_state *context, bool safe_to_lower, bool disable) { struct dc *dc = clk_mgr_base->ctx->dc; int i; for (i = 0; i < dc->res_pool->pipe_count; ++i) { struct pipe_ctx *pipe = safe_to_lower ? &context->res_ctx.pipe_ctx[i] : &dc->current_state->res_ctx.pipe_ctx[i]; if (pipe->top_pipe || pipe->prev_odm_pipe) continue; if (pipe->stream && (pipe->stream->dpms_off || dc_is_virtual_signal(pipe->stream->signal) || !pipe->stream->link_enc)) { struct stream_encoder *stream_enc = pipe->stream_res.stream_enc; if (disable) { if (stream_enc && stream_enc->funcs->disable_fifo) pipe->stream_res.stream_enc->funcs->disable_fifo(stream_enc); if (pipe->stream_res.tg && pipe->stream_res.tg->funcs->immediate_disable_crtc) pipe->stream_res.tg->funcs->immediate_disable_crtc(pipe->stream_res.tg); reset_sync_context_for_pipe(dc, context, i); } else { pipe->stream_res.tg->funcs->enable_crtc(pipe->stream_res.tg); if (stream_enc && stream_enc->funcs->enable_fifo) pipe->stream_res.stream_enc->funcs->enable_fifo(stream_enc); } } } } static void dcn35_update_clocks_update_dtb_dto(struct clk_mgr_internal *clk_mgr, struct dc_state *context, int ref_dtbclk_khz) { struct dccg *dccg = clk_mgr->dccg; uint32_t tg_mask = 0; int i; for (i = 0; i < clk_mgr->base.ctx->dc->res_pool->pipe_count; i++) { struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i]; struct dtbclk_dto_params dto_params = {0}; /* use mask to program DTO once per tg */ if (pipe_ctx->stream_res.tg && !(tg_mask & (1 << pipe_ctx->stream_res.tg->inst))) { tg_mask |= (1 << pipe_ctx->stream_res.tg->inst); dto_params.otg_inst = pipe_ctx->stream_res.tg->inst; dto_params.ref_dtbclk_khz = ref_dtbclk_khz; dccg->funcs->set_dtbclk_dto(clk_mgr->dccg, &dto_params); //dccg->funcs->set_audio_dtbclk_dto(clk_mgr->dccg, &dto_params); } } } static void dcn35_update_clocks_update_dpp_dto(struct clk_mgr_internal *clk_mgr, struct dc_state *context, bool safe_to_lower) { int i; bool dppclk_active[MAX_PIPES] = {0}; clk_mgr->dccg->ref_dppclk = clk_mgr->base.clks.dppclk_khz; for (i = 0; i < clk_mgr->base.ctx->dc->res_pool->pipe_count; i++) { int dpp_inst = 0, dppclk_khz, prev_dppclk_khz; dppclk_khz = context->res_ctx.pipe_ctx[i].plane_res.bw.dppclk_khz; if (context->res_ctx.pipe_ctx[i].plane_res.dpp) dpp_inst = context->res_ctx.pipe_ctx[i].plane_res.dpp->inst; else if (!context->res_ctx.pipe_ctx[i].plane_res.dpp && dppclk_khz == 0) { /* dpp == NULL && dppclk_khz == 0 is valid because of pipe harvesting. * In this case just continue in loop */ continue; } else if (!context->res_ctx.pipe_ctx[i].plane_res.dpp && dppclk_khz > 0) { /* The software state is not valid if dpp resource is NULL and * dppclk_khz > 0. */ ASSERT(false); continue; } prev_dppclk_khz = clk_mgr->dccg->pipe_dppclk_khz[i]; if (safe_to_lower || prev_dppclk_khz < dppclk_khz) clk_mgr->dccg->funcs->update_dpp_dto( clk_mgr->dccg, dpp_inst, dppclk_khz); dppclk_active[dpp_inst] = true; } if (safe_to_lower) for (i = 0; i < clk_mgr->base.ctx->dc->res_pool->pipe_count; i++) { struct dpp *old_dpp = clk_mgr->base.ctx->dc->current_state->res_ctx.pipe_ctx[i].plane_res.dpp; if (old_dpp && !dppclk_active[old_dpp->inst]) clk_mgr->dccg->funcs->update_dpp_dto(clk_mgr->dccg, old_dpp->inst, 0); } } void dcn35_update_clocks(struct clk_mgr *clk_mgr_base, struct dc_state *context, bool safe_to_lower) { union dmub_rb_cmd cmd; struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base); struct dc_clocks *new_clocks = &context->bw_ctx.bw.dcn.clk; struct dc *dc = clk_mgr_base->ctx->dc; int display_count; bool update_dppclk = false; bool update_dispclk = false; bool dpp_clock_lowered = false; if (dc->work_arounds.skip_clock_update) return; /* DTBCLK is fixed, so set a default if unspecified. */ if (new_clocks->dtbclk_en && !new_clocks->ref_dtbclk_khz) new_clocks->ref_dtbclk_khz = 600000; /* * if it is safe to lower, but we are already in the lower state, we don't have to do anything * also if safe to lower is false, we just go in the higher state */ if (safe_to_lower) { if (new_clocks->zstate_support != DCN_ZSTATE_SUPPORT_DISALLOW && new_clocks->zstate_support != clk_mgr_base->clks.zstate_support) { dcn35_smu_set_zstate_support(clk_mgr, new_clocks->zstate_support); dm_helpers_enable_periodic_detection(clk_mgr_base->ctx, true); clk_mgr_base->clks.zstate_support = new_clocks->zstate_support; } if (clk_mgr_base->clks.dtbclk_en && !new_clocks->dtbclk_en) { dcn35_smu_set_dtbclk(clk_mgr, false); clk_mgr_base->clks.dtbclk_en = new_clocks->dtbclk_en; } /* check that we're not already in lower */ if (clk_mgr_base->clks.pwr_state != DCN_PWR_STATE_LOW_POWER) { display_count = dcn35_get_active_display_cnt_wa(dc, context); /* if we can go lower, go lower */ if (display_count == 0) clk_mgr_base->clks.pwr_state = DCN_PWR_STATE_LOW_POWER; } } else { if (new_clocks->zstate_support == DCN_ZSTATE_SUPPORT_DISALLOW && new_clocks->zstate_support != clk_mgr_base->clks.zstate_support) { dcn35_smu_set_zstate_support(clk_mgr, DCN_ZSTATE_SUPPORT_DISALLOW); dm_helpers_enable_periodic_detection(clk_mgr_base->ctx, false); clk_mgr_base->clks.zstate_support = new_clocks->zstate_support; } if (!clk_mgr_base->clks.dtbclk_en && new_clocks->dtbclk_en) { dcn35_smu_set_dtbclk(clk_mgr, true); clk_mgr_base->clks.dtbclk_en = new_clocks->dtbclk_en; dcn35_update_clocks_update_dtb_dto(clk_mgr, context, new_clocks->ref_dtbclk_khz); clk_mgr_base->clks.ref_dtbclk_khz = new_clocks->ref_dtbclk_khz; } /* check that we're not already in D0 */ if (clk_mgr_base->clks.pwr_state != DCN_PWR_STATE_MISSION_MODE) { union display_idle_optimization_u idle_info = { 0 }; dcn35_smu_set_display_idle_optimization(clk_mgr, idle_info.data); /* update power state */ clk_mgr_base->clks.pwr_state = DCN_PWR_STATE_MISSION_MODE; } } if (dc->debug.force_min_dcfclk_mhz > 0) new_clocks->dcfclk_khz = (new_clocks->dcfclk_khz > (dc->debug.force_min_dcfclk_mhz * 1000)) ? new_clocks->dcfclk_khz : (dc->debug.force_min_dcfclk_mhz * 1000); if (should_set_clock(safe_to_lower, new_clocks->dcfclk_khz, clk_mgr_base->clks.dcfclk_khz)) { clk_mgr_base->clks.dcfclk_khz = new_clocks->dcfclk_khz; dcn35_smu_set_hard_min_dcfclk(clk_mgr, clk_mgr_base->clks.dcfclk_khz); } if (should_set_clock(safe_to_lower, new_clocks->dcfclk_deep_sleep_khz, clk_mgr_base->clks.dcfclk_deep_sleep_khz)) { clk_mgr_base->clks.dcfclk_deep_sleep_khz = new_clocks->dcfclk_deep_sleep_khz; dcn35_smu_set_min_deep_sleep_dcfclk(clk_mgr, clk_mgr_base->clks.dcfclk_deep_sleep_khz); } // workaround: Limit dppclk to 100Mhz to avoid lower eDP panel switch to plus 4K monitor underflow. if (new_clocks->dppclk_khz < 100000) new_clocks->dppclk_khz = 100000; if (should_set_clock(safe_to_lower, new_clocks->dppclk_khz, clk_mgr->base.clks.dppclk_khz)) { if (clk_mgr->base.clks.dppclk_khz > new_clocks->dppclk_khz) dpp_clock_lowered = true; clk_mgr_base->clks.dppclk_khz = new_clocks->dppclk_khz; update_dppclk = true; } if (should_set_clock(safe_to_lower, new_clocks->dispclk_khz, clk_mgr_base->clks.dispclk_khz)) { dcn35_disable_otg_wa(clk_mgr_base, context, safe_to_lower, true); clk_mgr_base->clks.dispclk_khz = new_clocks->dispclk_khz; dcn35_smu_set_dispclk(clk_mgr, clk_mgr_base->clks.dispclk_khz); dcn35_disable_otg_wa(clk_mgr_base, context, safe_to_lower, false); update_dispclk = true; } /* clock limits are received with MHz precision, divide by 1000 to prevent setting clocks at every call */ if (!dc->debug.disable_dtb_ref_clk_switch && should_set_clock(safe_to_lower, new_clocks->ref_dtbclk_khz / 1000, clk_mgr_base->clks.ref_dtbclk_khz / 1000)) { dcn35_update_clocks_update_dtb_dto(clk_mgr, context, new_clocks->ref_dtbclk_khz); clk_mgr_base->clks.ref_dtbclk_khz = new_clocks->ref_dtbclk_khz; } if (dpp_clock_lowered) { // increase per DPP DTO before lowering global dppclk dcn35_update_clocks_update_dpp_dto(clk_mgr, context, safe_to_lower); dcn35_smu_set_dppclk(clk_mgr, clk_mgr_base->clks.dppclk_khz); } else { // increase global DPPCLK before lowering per DPP DTO if (update_dppclk || update_dispclk) dcn35_smu_set_dppclk(clk_mgr, clk_mgr_base->clks.dppclk_khz); dcn35_update_clocks_update_dpp_dto(clk_mgr, context, safe_to_lower); } // notify DMCUB of latest clocks memset(&cmd, 0, sizeof(cmd)); cmd.notify_clocks.header.type = DMUB_CMD__CLK_MGR; cmd.notify_clocks.header.sub_type = DMUB_CMD__CLK_MGR_NOTIFY_CLOCKS; cmd.notify_clocks.clocks.dcfclk_khz = clk_mgr_base->clks.dcfclk_khz; cmd.notify_clocks.clocks.dcfclk_deep_sleep_khz = clk_mgr_base->clks.dcfclk_deep_sleep_khz; cmd.notify_clocks.clocks.dispclk_khz = clk_mgr_base->clks.dispclk_khz; cmd.notify_clocks.clocks.dppclk_khz = clk_mgr_base->clks.dppclk_khz; dm_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT); } static int get_vco_frequency_from_reg(struct clk_mgr_internal *clk_mgr) { /* get FbMult value */ struct fixed31_32 pll_req; unsigned int fbmult_frac_val = 0; unsigned int fbmult_int_val = 0; struct dc_context *ctx = clk_mgr->base.ctx; /* * Register value of fbmult is in 8.16 format, we are converting to 314.32 * to leverage the fix point operations available in driver */ REG_GET(CLK1_CLK_PLL_REQ, FbMult_frac, &fbmult_frac_val); /* 16 bit fractional part*/ REG_GET(CLK1_CLK_PLL_REQ, FbMult_int, &fbmult_int_val); /* 8 bit integer part */ pll_req = dc_fixpt_from_int(fbmult_int_val); /* * since fractional part is only 16 bit in register definition but is 32 bit * in our fix point definiton, need to shift left by 16 to obtain correct value */ pll_req.value |= fbmult_frac_val << 16; /* multiply by REFCLK period */ pll_req = dc_fixpt_mul_int(pll_req, clk_mgr->dfs_ref_freq_khz); /* integer part is now VCO frequency in kHz */ return dc_fixpt_floor(pll_req); } static void dcn35_enable_pme_wa(struct clk_mgr *clk_mgr_base) { struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base); dcn35_smu_enable_pme_wa(clk_mgr); } void dcn35_init_clocks(struct clk_mgr *clk_mgr) { uint32_t ref_dtbclk = clk_mgr->clks.ref_dtbclk_khz; memset(&(clk_mgr->clks), 0, sizeof(struct dc_clocks)); // Assumption is that boot state always supports pstate clk_mgr->clks.ref_dtbclk_khz = ref_dtbclk; // restore ref_dtbclk clk_mgr->clks.p_state_change_support = true; clk_mgr->clks.prev_p_state_change_support = true; clk_mgr->clks.pwr_state = DCN_PWR_STATE_UNKNOWN; clk_mgr->clks.zstate_support = DCN_ZSTATE_SUPPORT_UNKNOWN; } bool dcn35_are_clock_states_equal(struct dc_clocks *a, struct dc_clocks *b) { if (a->dispclk_khz != b->dispclk_khz) return false; else if (a->dppclk_khz != b->dppclk_khz) return false; else if (a->dcfclk_khz != b->dcfclk_khz) return false; else if (a->dcfclk_deep_sleep_khz != b->dcfclk_deep_sleep_khz) return false; else if (a->zstate_support != b->zstate_support) return false; else if (a->dtbclk_en != b->dtbclk_en) return false; return true; } static void dcn35_dump_clk_registers(struct clk_state_registers_and_bypass *regs_and_bypass, struct clk_mgr *clk_mgr_base, struct clk_log_info *log_info) { } static struct clk_bw_params dcn35_bw_params = { .vram_type = Ddr4MemType, .num_channels = 1, .clk_table = { .num_entries = 4, }, }; static struct wm_table ddr5_wm_table = { .entries = { { .wm_inst = WM_A, .wm_type = WM_TYPE_PSTATE_CHG, .pstate_latency_us = 11.72, .sr_exit_time_us = 14.0, .sr_enter_plus_exit_time_us = 16.0, .valid = true, }, { .wm_inst = WM_B, .wm_type = WM_TYPE_PSTATE_CHG, .pstate_latency_us = 11.72, .sr_exit_time_us = 14.0, .sr_enter_plus_exit_time_us = 16.0, .valid = true, }, { .wm_inst = WM_C, .wm_type = WM_TYPE_PSTATE_CHG, .pstate_latency_us = 11.72, .sr_exit_time_us = 14.0, .sr_enter_plus_exit_time_us = 16.0, .valid = true, }, { .wm_inst = WM_D, .wm_type = WM_TYPE_PSTATE_CHG, .pstate_latency_us = 11.72, .sr_exit_time_us = 14.0, .sr_enter_plus_exit_time_us = 16.0, .valid = true, }, } }; static struct wm_table lpddr5_wm_table = { .entries = { { .wm_inst = WM_A, .wm_type = WM_TYPE_PSTATE_CHG, .pstate_latency_us = 11.65333, .sr_exit_time_us = 14.0, .sr_enter_plus_exit_time_us = 16.0, .valid = true, }, { .wm_inst = WM_B, .wm_type = WM_TYPE_PSTATE_CHG, .pstate_latency_us = 11.65333, .sr_exit_time_us = 14.0, .sr_enter_plus_exit_time_us = 16.0, .valid = true, }, { .wm_inst = WM_C, .wm_type = WM_TYPE_PSTATE_CHG, .pstate_latency_us = 11.65333, .sr_exit_time_us = 14.0, .sr_enter_plus_exit_time_us = 16.0, .valid = true, }, { .wm_inst = WM_D, .wm_type = WM_TYPE_PSTATE_CHG, .pstate_latency_us = 11.65333, .sr_exit_time_us = 14.0, .sr_enter_plus_exit_time_us = 16.0, .valid = true, }, } }; static DpmClocks_t_dcn35 dummy_clocks; static struct dcn35_watermarks dummy_wms = { 0 }; static void dcn35_build_watermark_ranges(struct clk_bw_params *bw_params, struct dcn35_watermarks *table) { int i, num_valid_sets; num_valid_sets = 0; for (i = 0; i < WM_SET_COUNT; i++) { /* skip empty entries, the smu array has no holes*/ if (!bw_params->wm_table.entries[i].valid) continue; table->WatermarkRow[WM_DCFCLK][num_valid_sets].WmSetting = bw_params->wm_table.entries[i].wm_inst; table->WatermarkRow[WM_DCFCLK][num_valid_sets].WmType = bw_params->wm_table.entries[i].wm_type; /* We will not select WM based on fclk, so leave it as unconstrained */ table->WatermarkRow[WM_DCFCLK][num_valid_sets].MinClock = 0; table->WatermarkRow[WM_DCFCLK][num_valid_sets].MaxClock = 0xFFFF; if (table->WatermarkRow[WM_DCFCLK][num_valid_sets].WmType == WM_TYPE_PSTATE_CHG) { if (i == 0) table->WatermarkRow[WM_DCFCLK][num_valid_sets].MinMclk = 0; else { /* add 1 to make it non-overlapping with next lvl */ table->WatermarkRow[WM_DCFCLK][num_valid_sets].MinMclk = bw_params->clk_table.entries[i - 1].dcfclk_mhz + 1; } table->WatermarkRow[WM_DCFCLK][num_valid_sets].MaxMclk = bw_params->clk_table.entries[i].dcfclk_mhz; } else { /* unconstrained for memory retraining */ table->WatermarkRow[WM_DCFCLK][num_valid_sets].MinClock = 0; table->WatermarkRow[WM_DCFCLK][num_valid_sets].MaxClock = 0xFFFF; /* Modify previous watermark range to cover up to max */ table->WatermarkRow[WM_DCFCLK][num_valid_sets - 1].MaxClock = 0xFFFF; } num_valid_sets++; } ASSERT(num_valid_sets != 0); /* Must have at least one set of valid watermarks */ /* modify the min and max to make sure we cover the whole range*/ table->WatermarkRow[WM_DCFCLK][0].MinMclk = 0; table->WatermarkRow[WM_DCFCLK][0].MinClock = 0; table->WatermarkRow[WM_DCFCLK][num_valid_sets - 1].MaxMclk = 0xFFFF; table->WatermarkRow[WM_DCFCLK][num_valid_sets - 1].MaxClock = 0xFFFF; /* This is for writeback only, does not matter currently as no writeback support*/ table->WatermarkRow[WM_SOCCLK][0].WmSetting = WM_A; table->WatermarkRow[WM_SOCCLK][0].MinClock = 0; table->WatermarkRow[WM_SOCCLK][0].MaxClock = 0xFFFF; table->WatermarkRow[WM_SOCCLK][0].MinMclk = 0; table->WatermarkRow[WM_SOCCLK][0].MaxMclk = 0xFFFF; } static void dcn35_notify_wm_ranges(struct clk_mgr *clk_mgr_base) { struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base); struct clk_mgr_dcn35 *clk_mgr_dcn35 = TO_CLK_MGR_DCN35(clk_mgr); struct dcn35_watermarks *table = clk_mgr_dcn35->smu_wm_set.wm_set; if (!clk_mgr->smu_ver) return; if (!table || clk_mgr_dcn35->smu_wm_set.mc_address.quad_part == 0) return; memset(table, 0, sizeof(*table)); dcn35_build_watermark_ranges(clk_mgr_base->bw_params, table); dcn35_smu_set_dram_addr_high(clk_mgr, clk_mgr_dcn35->smu_wm_set.mc_address.high_part); dcn35_smu_set_dram_addr_low(clk_mgr, clk_mgr_dcn35->smu_wm_set.mc_address.low_part); dcn35_smu_transfer_wm_table_dram_2_smu(clk_mgr); } static void dcn35_get_dpm_table_from_smu(struct clk_mgr_internal *clk_mgr, struct dcn35_smu_dpm_clks *smu_dpm_clks) { DpmClocks_t_dcn35 *table = smu_dpm_clks->dpm_clks; if (!clk_mgr->smu_ver) return; if (!table || smu_dpm_clks->mc_address.quad_part == 0) return; memset(table, 0, sizeof(*table)); dcn35_smu_set_dram_addr_high(clk_mgr, smu_dpm_clks->mc_address.high_part); dcn35_smu_set_dram_addr_low(clk_mgr, smu_dpm_clks->mc_address.low_part); dcn35_smu_transfer_dpm_table_smu_2_dram(clk_mgr); } static uint32_t find_max_clk_value(const uint32_t clocks[], uint32_t num_clocks) { uint32_t max = 0; int i; for (i = 0; i < num_clocks; ++i) { if (clocks[i] > max) max = clocks[i]; } return max; } static inline bool is_valid_clock_value(uint32_t clock_value) { return clock_value > 1 && clock_value < 100000; } static unsigned int convert_wck_ratio(uint8_t wck_ratio) { switch (wck_ratio) { case WCK_RATIO_1_2: return 2; case WCK_RATIO_1_4: return 4; /* Find lowest DPM, FCLK is filled in reverse order*/ default: break; } return 1; } static inline uint32_t calc_dram_speed_mts(const MemPstateTable_t *entry) { return entry->UClk * convert_wck_ratio(entry->WckRatio) * 2; } static void dcn35_clk_mgr_helper_populate_bw_params(struct clk_mgr_internal *clk_mgr, struct integrated_info *bios_info, DpmClocks_t_dcn35 *clock_table) { struct clk_bw_params *bw_params = clk_mgr->base.bw_params; struct clk_limit_table_entry def_max = bw_params->clk_table.entries[bw_params->clk_table.num_entries - 1]; uint32_t max_fclk = 0, min_pstate = 0, max_dispclk = 0, max_dppclk = 0; uint32_t max_pstate = 0, max_dram_speed_mts = 0, min_dram_speed_mts = 0; int i; /* Determine min/max p-state values. */ for (i = 0; i < clock_table->NumMemPstatesEnabled; i++) { uint32_t dram_speed_mts = calc_dram_speed_mts(&clock_table->MemPstateTable[i]); if (is_valid_clock_value(dram_speed_mts) && dram_speed_mts > max_dram_speed_mts) { max_dram_speed_mts = dram_speed_mts; max_pstate = i; } } min_dram_speed_mts = max_dram_speed_mts; min_pstate = max_pstate; for (i = 0; i < clock_table->NumMemPstatesEnabled; i++) { uint32_t dram_speed_mts = calc_dram_speed_mts(&clock_table->MemPstateTable[i]); if (is_valid_clock_value(dram_speed_mts) && dram_speed_mts < min_dram_speed_mts) { min_dram_speed_mts = dram_speed_mts; min_pstate = i; } } /* We expect the table to contain at least one valid P-state entry. */ ASSERT(clock_table->NumMemPstatesEnabled && is_valid_clock_value(max_dram_speed_mts) && is_valid_clock_value(min_dram_speed_mts)); /* dispclk and dppclk can be max at any voltage, same number of levels for both */ if (clock_table->NumDispClkLevelsEnabled <= NUM_DISPCLK_DPM_LEVELS && clock_table->NumDispClkLevelsEnabled <= NUM_DPPCLK_DPM_LEVELS) { max_dispclk = find_max_clk_value(clock_table->DispClocks, clock_table->NumDispClkLevelsEnabled); max_dppclk = find_max_clk_value(clock_table->DppClocks, clock_table->NumDispClkLevelsEnabled); } else { /* Invalid number of entries in the table from PMFW. */ ASSERT(0); } /* Base the clock table on dcfclk, need at least one entry regardless of pmfw table */ ASSERT(clock_table->NumDcfClkLevelsEnabled > 0); max_fclk = find_max_clk_value(clock_table->FclkClocks_Freq, clock_table->NumFclkLevelsEnabled); for (i = 0; i < clock_table->NumDcfClkLevelsEnabled; i++) { int j; /* First search defaults for the clocks we don't read using closest lower or equal default dcfclk */ for (j = bw_params->clk_table.num_entries - 1; j > 0; j--) if (bw_params->clk_table.entries[j].dcfclk_mhz <= clock_table->DcfClocks[i]) break; bw_params->clk_table.entries[i].phyclk_mhz = bw_params->clk_table.entries[j].phyclk_mhz; bw_params->clk_table.entries[i].phyclk_d18_mhz = bw_params->clk_table.entries[j].phyclk_d18_mhz; bw_params->clk_table.entries[i].dtbclk_mhz = bw_params->clk_table.entries[j].dtbclk_mhz; /* Now update clocks we do read */ bw_params->clk_table.entries[i].memclk_mhz = clock_table->MemPstateTable[min_pstate].MemClk; bw_params->clk_table.entries[i].voltage = clock_table->MemPstateTable[min_pstate].Voltage; bw_params->clk_table.entries[i].dcfclk_mhz = clock_table->DcfClocks[i]; bw_params->clk_table.entries[i].socclk_mhz = clock_table->SocClocks[i]; bw_params->clk_table.entries[i].dispclk_mhz = max_dispclk; bw_params->clk_table.entries[i].dppclk_mhz = max_dppclk; bw_params->clk_table.entries[i].wck_ratio = convert_wck_ratio(clock_table->MemPstateTable[min_pstate].WckRatio); /* Dcfclk and Fclk are tied, but at a different ratio */ bw_params->clk_table.entries[i].fclk_mhz = min(max_fclk, 2 * clock_table->DcfClocks[i]); } /* Make sure to include at least one entry at highest pstate */ if (max_pstate != min_pstate || i == 0) { if (i > MAX_NUM_DPM_LVL - 1) i = MAX_NUM_DPM_LVL - 1; bw_params->clk_table.entries[i].fclk_mhz = max_fclk; bw_params->clk_table.entries[i].memclk_mhz = clock_table->MemPstateTable[max_pstate].MemClk; bw_params->clk_table.entries[i].voltage = clock_table->MemPstateTable[max_pstate].Voltage; bw_params->clk_table.entries[i].dcfclk_mhz = find_max_clk_value(clock_table->DcfClocks, NUM_DCFCLK_DPM_LEVELS); bw_params->clk_table.entries[i].socclk_mhz = find_max_clk_value(clock_table->SocClocks, NUM_SOCCLK_DPM_LEVELS); bw_params->clk_table.entries[i].dispclk_mhz = max_dispclk; bw_params->clk_table.entries[i].dppclk_mhz = max_dppclk; bw_params->clk_table.entries[i].wck_ratio = convert_wck_ratio( clock_table->MemPstateTable[max_pstate].WckRatio); i++; } bw_params->clk_table.num_entries = i--; /* Make sure all highest clocks are included*/ bw_params->clk_table.entries[i].socclk_mhz = find_max_clk_value(clock_table->SocClocks, NUM_SOCCLK_DPM_LEVELS); bw_params->clk_table.entries[i].dispclk_mhz = find_max_clk_value(clock_table->DispClocks, NUM_DISPCLK_DPM_LEVELS); bw_params->clk_table.entries[i].dppclk_mhz = find_max_clk_value(clock_table->DppClocks, NUM_DPPCLK_DPM_LEVELS); bw_params->clk_table.entries[i].fclk_mhz = find_max_clk_value(clock_table->FclkClocks_Freq, NUM_FCLK_DPM_LEVELS); ASSERT(clock_table->DcfClocks[i] == find_max_clk_value(clock_table->DcfClocks, NUM_DCFCLK_DPM_LEVELS)); bw_params->clk_table.entries[i].phyclk_mhz = def_max.phyclk_mhz; bw_params->clk_table.entries[i].phyclk_d18_mhz = def_max.phyclk_d18_mhz; bw_params->clk_table.entries[i].dtbclk_mhz = def_max.dtbclk_mhz; bw_params->clk_table.num_entries_per_clk.num_dcfclk_levels = clock_table->NumDcfClkLevelsEnabled; bw_params->clk_table.num_entries_per_clk.num_dispclk_levels = clock_table->NumDispClkLevelsEnabled; bw_params->clk_table.num_entries_per_clk.num_dppclk_levels = clock_table->NumDispClkLevelsEnabled; bw_params->clk_table.num_entries_per_clk.num_fclk_levels = clock_table->NumFclkLevelsEnabled; bw_params->clk_table.num_entries_per_clk.num_memclk_levels = clock_table->NumMemPstatesEnabled; bw_params->clk_table.num_entries_per_clk.num_socclk_levels = clock_table->NumSocClkLevelsEnabled; /* * Set any 0 clocks to max default setting. Not an issue for * power since we aren't doing switching in such case anyway */ for (i = 0; i < bw_params->clk_table.num_entries; i++) { if (!bw_params->clk_table.entries[i].fclk_mhz) { bw_params->clk_table.entries[i].fclk_mhz = def_max.fclk_mhz; bw_params->clk_table.entries[i].memclk_mhz = def_max.memclk_mhz; bw_params->clk_table.entries[i].voltage = def_max.voltage; } if (!bw_params->clk_table.entries[i].dcfclk_mhz) bw_params->clk_table.entries[i].dcfclk_mhz = def_max.dcfclk_mhz; if (!bw_params->clk_table.entries[i].socclk_mhz) bw_params->clk_table.entries[i].socclk_mhz = def_max.socclk_mhz; if (!bw_params->clk_table.entries[i].dispclk_mhz) bw_params->clk_table.entries[i].dispclk_mhz = def_max.dispclk_mhz; if (!bw_params->clk_table.entries[i].dppclk_mhz) bw_params->clk_table.entries[i].dppclk_mhz = def_max.dppclk_mhz; if (!bw_params->clk_table.entries[i].fclk_mhz) bw_params->clk_table.entries[i].fclk_mhz = def_max.fclk_mhz; if (!bw_params->clk_table.entries[i].phyclk_mhz) bw_params->clk_table.entries[i].phyclk_mhz = def_max.phyclk_mhz; if (!bw_params->clk_table.entries[i].phyclk_d18_mhz) bw_params->clk_table.entries[i].phyclk_d18_mhz = def_max.phyclk_d18_mhz; if (!bw_params->clk_table.entries[i].dtbclk_mhz) bw_params->clk_table.entries[i].dtbclk_mhz = def_max.dtbclk_mhz; } ASSERT(bw_params->clk_table.entries[i-1].dcfclk_mhz); bw_params->vram_type = bios_info->memory_type; bw_params->dram_channel_width_bytes = bios_info->memory_type == 0x22 ? 8 : 4; bw_params->num_channels = bios_info->ma_channel_number ? bios_info->ma_channel_number : 4; for (i = 0; i < WM_SET_COUNT; i++) { bw_params->wm_table.entries[i].wm_inst = i; if (i >= bw_params->clk_table.num_entries) { bw_params->wm_table.entries[i].valid = false; continue; } bw_params->wm_table.entries[i].wm_type = WM_TYPE_PSTATE_CHG; bw_params->wm_table.entries[i].valid = true; } } static void dcn35_set_low_power_state(struct clk_mgr *clk_mgr_base) { int display_count; struct dc *dc = clk_mgr_base->ctx->dc; struct dc_state *context = dc->current_state; if (clk_mgr_base->clks.pwr_state != DCN_PWR_STATE_LOW_POWER) { display_count = dcn35_get_active_display_cnt_wa(dc, context); /* if we can go lower, go lower */ if (display_count == 0) clk_mgr_base->clks.pwr_state = DCN_PWR_STATE_LOW_POWER; } } static void dcn35_set_idle_state(struct clk_mgr *clk_mgr_base, bool allow_idle) { struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base); struct dc *dc = clk_mgr_base->ctx->dc; uint32_t val = dcn35_smu_read_ips_scratch(clk_mgr); if (dc->config.disable_ips == DMUB_IPS_ENABLE || dc->config.disable_ips == DMUB_IPS_DISABLE_DYNAMIC) { val = val & ~DMUB_IPS1_ALLOW_MASK; val = val & ~DMUB_IPS2_ALLOW_MASK; } else if (dc->config.disable_ips == DMUB_IPS_DISABLE_IPS1) { val |= DMUB_IPS1_ALLOW_MASK; val |= DMUB_IPS2_ALLOW_MASK; } else if (dc->config.disable_ips == DMUB_IPS_DISABLE_IPS2) { val = val & ~DMUB_IPS1_ALLOW_MASK; val |= DMUB_IPS2_ALLOW_MASK; } else if (dc->config.disable_ips == DMUB_IPS_DISABLE_IPS2_Z10) { val = val & ~DMUB_IPS1_ALLOW_MASK; val = val & ~DMUB_IPS2_ALLOW_MASK; } if (!allow_idle) { val |= DMUB_IPS1_ALLOW_MASK; val |= DMUB_IPS2_ALLOW_MASK; } dcn35_smu_write_ips_scratch(clk_mgr, val); } static void dcn35_exit_low_power_state(struct clk_mgr *clk_mgr_base) { struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base); //SMU optimization is performed part of low power state exit. dcn35_smu_exit_low_power_state(clk_mgr); } static bool dcn35_is_ips_supported(struct clk_mgr *clk_mgr_base) { struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base); bool ips_supported = true; ips_supported = dcn35_smu_get_ips_supported(clk_mgr) ? true : false; return ips_supported; } static uint32_t dcn35_get_idle_state(struct clk_mgr *clk_mgr_base) { struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base); return dcn35_smu_read_ips_scratch(clk_mgr); } static void dcn35_init_clocks_fpga(struct clk_mgr *clk_mgr) { dcn35_init_clocks(clk_mgr); /* TODO: Implement the functions and remove the ifndef guard */ } static void dcn35_update_clocks_fpga(struct clk_mgr *clk_mgr, struct dc_state *context, bool safe_to_lower) { struct clk_mgr_internal *clk_mgr_int = TO_CLK_MGR_INTERNAL(clk_mgr); struct dc_clocks *new_clocks = &context->bw_ctx.bw.dcn.clk; int fclk_adj = new_clocks->fclk_khz; /* TODO: remove this after correctly set by DML */ new_clocks->dcfclk_khz = 400000; new_clocks->socclk_khz = 400000; /* Min fclk = 1.2GHz since all the extra scemi logic seems to run off of it */ //int fclk_adj = new_clocks->fclk_khz > 1200000 ? new_clocks->fclk_khz : 1200000; new_clocks->fclk_khz = 4320000; if (should_set_clock(safe_to_lower, new_clocks->phyclk_khz, clk_mgr->clks.phyclk_khz)) { clk_mgr->clks.phyclk_khz = new_clocks->phyclk_khz; } if (should_set_clock(safe_to_lower, new_clocks->dcfclk_khz, clk_mgr->clks.dcfclk_khz)) { clk_mgr->clks.dcfclk_khz = new_clocks->dcfclk_khz; } if (should_set_clock(safe_to_lower, new_clocks->dcfclk_deep_sleep_khz, clk_mgr->clks.dcfclk_deep_sleep_khz)) { clk_mgr->clks.dcfclk_deep_sleep_khz = new_clocks->dcfclk_deep_sleep_khz; } if (should_set_clock(safe_to_lower, new_clocks->socclk_khz, clk_mgr->clks.socclk_khz)) { clk_mgr->clks.socclk_khz = new_clocks->socclk_khz; } if (should_set_clock(safe_to_lower, new_clocks->dramclk_khz, clk_mgr->clks.dramclk_khz)) { clk_mgr->clks.dramclk_khz = new_clocks->dramclk_khz; } if (should_set_clock(safe_to_lower, new_clocks->dppclk_khz, clk_mgr->clks.dppclk_khz)) { clk_mgr->clks.dppclk_khz = new_clocks->dppclk_khz; } if (should_set_clock(safe_to_lower, fclk_adj, clk_mgr->clks.fclk_khz)) { clk_mgr->clks.fclk_khz = fclk_adj; } if (should_set_clock(safe_to_lower, new_clocks->dispclk_khz, clk_mgr->clks.dispclk_khz)) { clk_mgr->clks.dispclk_khz = new_clocks->dispclk_khz; } /* Both fclk and ref_dppclk run on the same scemi clock. * So take the higher value since the DPP DTO is typically programmed * such that max dppclk is 1:1 with ref_dppclk. */ if (clk_mgr->clks.fclk_khz > clk_mgr->clks.dppclk_khz) clk_mgr->clks.dppclk_khz = clk_mgr->clks.fclk_khz; if (clk_mgr->clks.dppclk_khz > clk_mgr->clks.fclk_khz) clk_mgr->clks.fclk_khz = clk_mgr->clks.dppclk_khz; // Both fclk and ref_dppclk run on the same scemi clock. clk_mgr_int->dccg->ref_dppclk = clk_mgr->clks.fclk_khz; /* TODO: set dtbclk in correct place */ clk_mgr->clks.dtbclk_en = true; dm_set_dcn_clocks(clk_mgr->ctx, &clk_mgr->clks); dcn35_update_clocks_update_dpp_dto(clk_mgr_int, context, safe_to_lower); dcn35_update_clocks_update_dtb_dto(clk_mgr_int, context, clk_mgr->clks.ref_dtbclk_khz); } static struct clk_mgr_funcs dcn35_funcs = { .get_dp_ref_clk_frequency = dce12_get_dp_ref_freq_khz, .get_dtb_ref_clk_frequency = dcn31_get_dtb_ref_freq_khz, .update_clocks = dcn35_update_clocks, .init_clocks = dcn35_init_clocks, .enable_pme_wa = dcn35_enable_pme_wa, .are_clock_states_equal = dcn35_are_clock_states_equal, .notify_wm_ranges = dcn35_notify_wm_ranges, .set_low_power_state = dcn35_set_low_power_state, .exit_low_power_state = dcn35_exit_low_power_state, .is_ips_supported = dcn35_is_ips_supported, .set_idle_state = dcn35_set_idle_state, .get_idle_state = dcn35_get_idle_state }; struct clk_mgr_funcs dcn35_fpga_funcs = { .get_dp_ref_clk_frequency = dce12_get_dp_ref_freq_khz, .update_clocks = dcn35_update_clocks_fpga, .init_clocks = dcn35_init_clocks_fpga, .get_dtb_ref_clk_frequency = dcn31_get_dtb_ref_freq_khz, }; void dcn35_clk_mgr_construct( struct dc_context *ctx, struct clk_mgr_dcn35 *clk_mgr, struct pp_smu_funcs *pp_smu, struct dccg *dccg) { struct dcn35_smu_dpm_clks smu_dpm_clks = { 0 }; struct clk_log_info log_info = {0}; clk_mgr->base.base.ctx = ctx; clk_mgr->base.base.funcs = &dcn35_funcs; clk_mgr->base.pp_smu = pp_smu; clk_mgr->base.dccg = dccg; clk_mgr->base.dfs_bypass_disp_clk = 0; clk_mgr->base.dprefclk_ss_percentage = 0; clk_mgr->base.dprefclk_ss_divider = 1000; clk_mgr->base.ss_on_dprefclk = false; clk_mgr->base.dfs_ref_freq_khz = 48000; clk_mgr->smu_wm_set.wm_set = (struct dcn35_watermarks *)dm_helpers_allocate_gpu_mem( clk_mgr->base.base.ctx, DC_MEM_ALLOC_TYPE_FRAME_BUFFER, sizeof(struct dcn35_watermarks), &clk_mgr->smu_wm_set.mc_address.quad_part); if (!clk_mgr->smu_wm_set.wm_set) { clk_mgr->smu_wm_set.wm_set = &dummy_wms; clk_mgr->smu_wm_set.mc_address.quad_part = 0; } ASSERT(clk_mgr->smu_wm_set.wm_set); smu_dpm_clks.dpm_clks = (DpmClocks_t_dcn35 *)dm_helpers_allocate_gpu_mem( clk_mgr->base.base.ctx, DC_MEM_ALLOC_TYPE_FRAME_BUFFER, sizeof(DpmClocks_t_dcn35), &smu_dpm_clks.mc_address.quad_part); if (smu_dpm_clks.dpm_clks == NULL) { smu_dpm_clks.dpm_clks = &dummy_clocks; smu_dpm_clks.mc_address.quad_part = 0; } ASSERT(smu_dpm_clks.dpm_clks); clk_mgr->base.smu_ver = dcn35_smu_get_smu_version(&clk_mgr->base); if (clk_mgr->base.smu_ver) clk_mgr->base.smu_present = true; /* TODO: Check we get what we expect during bringup */ clk_mgr->base.base.dentist_vco_freq_khz = get_vco_frequency_from_reg(&clk_mgr->base); if (ctx->dc_bios->integrated_info->memory_type == LpDdr5MemType) { dcn35_bw_params.wm_table = lpddr5_wm_table; } else { dcn35_bw_params.wm_table = ddr5_wm_table; } /* Saved clocks configured at boot for debug purposes */ dcn35_dump_clk_registers(&clk_mgr->base.base.boot_snapshot, &clk_mgr->base.base, &log_info); clk_mgr->base.base.dprefclk_khz = dcn35_smu_get_dprefclk(&clk_mgr->base); clk_mgr->base.base.clks.ref_dtbclk_khz = 600000; dce_clock_read_ss_info(&clk_mgr->base); /*when clk src is from FCH, it could have ss, same clock src as DPREF clk*/ clk_mgr->base.base.bw_params = &dcn35_bw_params; if (clk_mgr->base.base.ctx->dc->debug.pstate_enabled) { int i; dcn35_get_dpm_table_from_smu(&clk_mgr->base, &smu_dpm_clks); DC_LOG_SMU("NumDcfClkLevelsEnabled: %d\n" "NumDispClkLevelsEnabled: %d\n" "NumSocClkLevelsEnabled: %d\n" "VcnClkLevelsEnabled: %d\n" "FClkLevelsEnabled: %d\n" "NumMemPstatesEnabled: %d\n" "MinGfxClk: %d\n" "MaxGfxClk: %d\n", smu_dpm_clks.dpm_clks->NumDcfClkLevelsEnabled, smu_dpm_clks.dpm_clks->NumDispClkLevelsEnabled, smu_dpm_clks.dpm_clks->NumSocClkLevelsEnabled, smu_dpm_clks.dpm_clks->VcnClkLevelsEnabled, smu_dpm_clks.dpm_clks->NumFclkLevelsEnabled, smu_dpm_clks.dpm_clks->NumMemPstatesEnabled, smu_dpm_clks.dpm_clks->MinGfxClk, smu_dpm_clks.dpm_clks->MaxGfxClk); for (i = 0; i < smu_dpm_clks.dpm_clks->NumDcfClkLevelsEnabled; i++) { DC_LOG_SMU("smu_dpm_clks.dpm_clks->DcfClocks[%d] = %d\n", i, smu_dpm_clks.dpm_clks->DcfClocks[i]); } for (i = 0; i < smu_dpm_clks.dpm_clks->NumDispClkLevelsEnabled; i++) { DC_LOG_SMU("smu_dpm_clks.dpm_clks->DispClocks[%d] = %d\n", i, smu_dpm_clks.dpm_clks->DispClocks[i]); } for (i = 0; i < smu_dpm_clks.dpm_clks->NumSocClkLevelsEnabled; i++) { DC_LOG_SMU("smu_dpm_clks.dpm_clks->SocClocks[%d] = %d\n", i, smu_dpm_clks.dpm_clks->SocClocks[i]); } for (i = 0; i < smu_dpm_clks.dpm_clks->NumFclkLevelsEnabled; i++) { DC_LOG_SMU("smu_dpm_clks.dpm_clks->FclkClocks_Freq[%d] = %d\n", i, smu_dpm_clks.dpm_clks->FclkClocks_Freq[i]); DC_LOG_SMU("smu_dpm_clks.dpm_clks->FclkClocks_Voltage[%d] = %d\n", i, smu_dpm_clks.dpm_clks->FclkClocks_Voltage[i]); } for (i = 0; i < smu_dpm_clks.dpm_clks->NumSocClkLevelsEnabled; i++) DC_LOG_SMU("smu_dpm_clks.dpm_clks->SocVoltage[%d] = %d\n", i, smu_dpm_clks.dpm_clks->SocVoltage[i]); for (i = 0; i < smu_dpm_clks.dpm_clks->NumMemPstatesEnabled; i++) { DC_LOG_SMU("smu_dpm_clks.dpm_clks.MemPstateTable[%d].UClk = %d\n" "smu_dpm_clks.dpm_clks->MemPstateTable[%d].MemClk= %d\n" "smu_dpm_clks.dpm_clks->MemPstateTable[%d].Voltage = %d\n", i, smu_dpm_clks.dpm_clks->MemPstateTable[i].UClk, i, smu_dpm_clks.dpm_clks->MemPstateTable[i].MemClk, i, smu_dpm_clks.dpm_clks->MemPstateTable[i].Voltage); } if (ctx->dc_bios && ctx->dc_bios->integrated_info && ctx->dc->config.use_default_clock_table == false) { dcn35_clk_mgr_helper_populate_bw_params( &clk_mgr->base, ctx->dc_bios->integrated_info, smu_dpm_clks.dpm_clks); } } if (smu_dpm_clks.dpm_clks && smu_dpm_clks.mc_address.quad_part != 0) dm_helpers_free_gpu_mem(clk_mgr->base.base.ctx, DC_MEM_ALLOC_TYPE_FRAME_BUFFER, smu_dpm_clks.dpm_clks); if (ctx->dc->config.disable_ips != DMUB_IPS_DISABLE_ALL) { bool ips_support = false; /*avoid call pmfw at init*/ ips_support = dcn35_smu_get_ips_supported(&clk_mgr->base); if (ips_support) { ctx->dc->debug.ignore_pg = false; ctx->dc->debug.disable_dpp_power_gate = false; ctx->dc->debug.disable_hubp_power_gate = false; ctx->dc->debug.disable_dsc_power_gate = false; } else { /*let's reset the config control flag*/ ctx->dc->config.disable_ips = DMUB_IPS_DISABLE_ALL; /*pmfw not support it, disable it all*/ } } } void dcn35_clk_mgr_destroy(struct clk_mgr_internal *clk_mgr_int) { struct clk_mgr_dcn35 *clk_mgr = TO_CLK_MGR_DCN35(clk_mgr_int); if (clk_mgr->smu_wm_set.wm_set && clk_mgr->smu_wm_set.mc_address.quad_part != 0) dm_helpers_free_gpu_mem(clk_mgr_int->base.ctx, DC_MEM_ALLOC_TYPE_FRAME_BUFFER, clk_mgr->smu_wm_set.wm_set); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1