Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Nicholas Kazlauskas | 1138 | 37.02% | 3 | 12.00% |
Jake Wang | 785 | 25.54% | 3 | 12.00% |
Jerry (Fangzhi) Zuo | 432 | 14.05% | 1 | 4.00% |
David Galiffi | 247 | 8.04% | 2 | 8.00% |
Dmytro Laktyushkin | 112 | 3.64% | 1 | 4.00% |
Hansen | 84 | 2.73% | 1 | 4.00% |
Hung, Cruise | 81 | 2.64% | 1 | 4.00% |
Charlene Liu | 64 | 2.08% | 1 | 4.00% |
Aurabindo Pillai | 41 | 1.33% | 2 | 8.00% |
Daniel Miess | 30 | 0.98% | 1 | 4.00% |
Harry Wentland | 23 | 0.75% | 3 | 12.00% |
Martin Leung | 14 | 0.46% | 1 | 4.00% |
Jun Lei | 9 | 0.29% | 1 | 4.00% |
Eryk Brol | 6 | 0.20% | 1 | 4.00% |
George Shen | 4 | 0.13% | 1 | 4.00% |
Michael Strauss | 3 | 0.10% | 1 | 4.00% |
Eric Yang | 1 | 0.03% | 1 | 4.00% |
Total | 3074 | 25 |
/* * Copyright 2018 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: AMD * */ #include "reg_helper.h" #include "core_types.h" #include "dcn31_dccg.h" #include "dal_asic_id.h" #define TO_DCN_DCCG(dccg)\ container_of(dccg, struct dcn_dccg, base) #define REG(reg) \ (dccg_dcn->regs->reg) #undef FN #define FN(reg_name, field_name) \ dccg_dcn->dccg_shift->field_name, dccg_dcn->dccg_mask->field_name #define CTX \ dccg_dcn->base.ctx #define DC_LOGGER \ dccg->ctx->logger void dccg31_update_dpp_dto(struct dccg *dccg, int dpp_inst, int req_dppclk) { struct dcn_dccg *dccg_dcn = TO_DCN_DCCG(dccg); if (dccg->dpp_clock_gated[dpp_inst]) { /* * Do not update the DPPCLK DTO if the clock is stopped. * It is treated the same as if the pipe itself were in PG. */ return; } if (dccg->ref_dppclk && req_dppclk) { int ref_dppclk = dccg->ref_dppclk; int modulo, phase; // phase / modulo = dpp pipe clk / dpp global clk modulo = 0xff; // use FF at the end phase = ((modulo * req_dppclk) + ref_dppclk - 1) / ref_dppclk; if (phase > 0xff) { ASSERT(false); phase = 0xff; } REG_SET_2(DPPCLK_DTO_PARAM[dpp_inst], 0, DPPCLK0_DTO_PHASE, phase, DPPCLK0_DTO_MODULO, modulo); REG_UPDATE(DPPCLK_DTO_CTRL, DPPCLK_DTO_ENABLE[dpp_inst], 1); } else { REG_UPDATE(DPPCLK_DTO_CTRL, DPPCLK_DTO_ENABLE[dpp_inst], 0); } dccg->pipe_dppclk_khz[dpp_inst] = req_dppclk; } static enum phyd32clk_clock_source get_phy_mux_symclk( struct dcn_dccg *dccg_dcn, enum phyd32clk_clock_source src) { if (dccg_dcn->base.ctx->asic_id.chip_family == FAMILY_YELLOW_CARP && dccg_dcn->base.ctx->asic_id.hw_internal_rev == YELLOW_CARP_B0) { if (src == PHYD32CLKC) src = PHYD32CLKF; if (src == PHYD32CLKD) src = PHYD32CLKG; } return src; } static void dccg31_enable_dpstreamclk(struct dccg *dccg, int otg_inst) { struct dcn_dccg *dccg_dcn = TO_DCN_DCCG(dccg); /* enabled to select one of the DTBCLKs for pipe */ switch (otg_inst) { case 0: REG_UPDATE(DPSTREAMCLK_CNTL, DPSTREAMCLK_PIPE0_EN, 1); break; case 1: REG_UPDATE(DPSTREAMCLK_CNTL, DPSTREAMCLK_PIPE1_EN, 1); break; case 2: REG_UPDATE(DPSTREAMCLK_CNTL, DPSTREAMCLK_PIPE2_EN, 1); break; case 3: REG_UPDATE(DPSTREAMCLK_CNTL, DPSTREAMCLK_PIPE3_EN, 1); break; default: BREAK_TO_DEBUGGER(); return; } if (dccg->ctx->dc->debug.root_clock_optimization.bits.dpstream) REG_UPDATE_2(DCCG_GATE_DISABLE_CNTL3, DPSTREAMCLK_GATE_DISABLE, 1, DPSTREAMCLK_ROOT_GATE_DISABLE, 1); } static void dccg31_disable_dpstreamclk(struct dccg *dccg, int otg_inst) { struct dcn_dccg *dccg_dcn = TO_DCN_DCCG(dccg); if (dccg->ctx->dc->debug.root_clock_optimization.bits.dpstream) REG_UPDATE_2(DCCG_GATE_DISABLE_CNTL3, DPSTREAMCLK_ROOT_GATE_DISABLE, 0, DPSTREAMCLK_GATE_DISABLE, 0); switch (otg_inst) { case 0: REG_UPDATE(DPSTREAMCLK_CNTL, DPSTREAMCLK_PIPE0_EN, 0); break; case 1: REG_UPDATE(DPSTREAMCLK_CNTL, DPSTREAMCLK_PIPE1_EN, 0); break; case 2: REG_UPDATE(DPSTREAMCLK_CNTL, DPSTREAMCLK_PIPE2_EN, 0); break; case 3: REG_UPDATE(DPSTREAMCLK_CNTL, DPSTREAMCLK_PIPE3_EN, 0); break; default: BREAK_TO_DEBUGGER(); return; } } void dccg31_set_dpstreamclk( struct dccg *dccg, enum streamclk_source src, int otg_inst, int dp_hpo_inst) { if (src == REFCLK) dccg31_disable_dpstreamclk(dccg, otg_inst); else dccg31_enable_dpstreamclk(dccg, otg_inst); } void dccg31_enable_symclk32_se( struct dccg *dccg, int hpo_se_inst, enum phyd32clk_clock_source phyd32clk) { struct dcn_dccg *dccg_dcn = TO_DCN_DCCG(dccg); phyd32clk = get_phy_mux_symclk(dccg_dcn, phyd32clk); /* select one of the PHYD32CLKs as the source for symclk32_se */ switch (hpo_se_inst) { case 0: if (dccg->ctx->dc->debug.root_clock_optimization.bits.symclk32_se) REG_UPDATE_2(DCCG_GATE_DISABLE_CNTL3, SYMCLK32_SE0_GATE_DISABLE, 1, SYMCLK32_ROOT_SE0_GATE_DISABLE, 1); REG_UPDATE_2(SYMCLK32_SE_CNTL, SYMCLK32_SE0_SRC_SEL, phyd32clk, SYMCLK32_SE0_EN, 1); break; case 1: if (dccg->ctx->dc->debug.root_clock_optimization.bits.symclk32_se) REG_UPDATE_2(DCCG_GATE_DISABLE_CNTL3, SYMCLK32_SE1_GATE_DISABLE, 1, SYMCLK32_ROOT_SE1_GATE_DISABLE, 1); REG_UPDATE_2(SYMCLK32_SE_CNTL, SYMCLK32_SE1_SRC_SEL, phyd32clk, SYMCLK32_SE1_EN, 1); break; case 2: if (dccg->ctx->dc->debug.root_clock_optimization.bits.symclk32_se) REG_UPDATE_2(DCCG_GATE_DISABLE_CNTL3, SYMCLK32_SE2_GATE_DISABLE, 1, SYMCLK32_ROOT_SE2_GATE_DISABLE, 1); REG_UPDATE_2(SYMCLK32_SE_CNTL, SYMCLK32_SE2_SRC_SEL, phyd32clk, SYMCLK32_SE2_EN, 1); break; case 3: if (dccg->ctx->dc->debug.root_clock_optimization.bits.symclk32_se) REG_UPDATE_2(DCCG_GATE_DISABLE_CNTL3, SYMCLK32_SE3_GATE_DISABLE, 1, SYMCLK32_ROOT_SE3_GATE_DISABLE, 1); REG_UPDATE_2(SYMCLK32_SE_CNTL, SYMCLK32_SE3_SRC_SEL, phyd32clk, SYMCLK32_SE3_EN, 1); break; default: BREAK_TO_DEBUGGER(); return; } } void dccg31_disable_symclk32_se( struct dccg *dccg, int hpo_se_inst) { struct dcn_dccg *dccg_dcn = TO_DCN_DCCG(dccg); /* set refclk as the source for symclk32_se */ switch (hpo_se_inst) { case 0: REG_UPDATE_2(SYMCLK32_SE_CNTL, SYMCLK32_SE0_SRC_SEL, 0, SYMCLK32_SE0_EN, 0); if (dccg->ctx->dc->debug.root_clock_optimization.bits.symclk32_se) REG_UPDATE_2(DCCG_GATE_DISABLE_CNTL3, SYMCLK32_SE0_GATE_DISABLE, 0, SYMCLK32_ROOT_SE0_GATE_DISABLE, 0); break; case 1: REG_UPDATE_2(SYMCLK32_SE_CNTL, SYMCLK32_SE1_SRC_SEL, 0, SYMCLK32_SE1_EN, 0); if (dccg->ctx->dc->debug.root_clock_optimization.bits.symclk32_se) REG_UPDATE_2(DCCG_GATE_DISABLE_CNTL3, SYMCLK32_SE1_GATE_DISABLE, 0, SYMCLK32_ROOT_SE1_GATE_DISABLE, 0); break; case 2: REG_UPDATE_2(SYMCLK32_SE_CNTL, SYMCLK32_SE2_SRC_SEL, 0, SYMCLK32_SE2_EN, 0); if (dccg->ctx->dc->debug.root_clock_optimization.bits.symclk32_se) REG_UPDATE_2(DCCG_GATE_DISABLE_CNTL3, SYMCLK32_SE2_GATE_DISABLE, 0, SYMCLK32_ROOT_SE2_GATE_DISABLE, 0); break; case 3: REG_UPDATE_2(SYMCLK32_SE_CNTL, SYMCLK32_SE3_SRC_SEL, 0, SYMCLK32_SE3_EN, 0); if (dccg->ctx->dc->debug.root_clock_optimization.bits.symclk32_se) REG_UPDATE_2(DCCG_GATE_DISABLE_CNTL3, SYMCLK32_SE3_GATE_DISABLE, 0, SYMCLK32_ROOT_SE3_GATE_DISABLE, 0); break; default: BREAK_TO_DEBUGGER(); return; } } void dccg31_enable_symclk32_le( struct dccg *dccg, int hpo_le_inst, enum phyd32clk_clock_source phyd32clk) { struct dcn_dccg *dccg_dcn = TO_DCN_DCCG(dccg); phyd32clk = get_phy_mux_symclk(dccg_dcn, phyd32clk); /* select one of the PHYD32CLKs as the source for symclk32_le */ switch (hpo_le_inst) { case 0: REG_UPDATE_2(SYMCLK32_LE_CNTL, SYMCLK32_LE0_SRC_SEL, phyd32clk, SYMCLK32_LE0_EN, 1); break; case 1: REG_UPDATE_2(SYMCLK32_LE_CNTL, SYMCLK32_LE1_SRC_SEL, phyd32clk, SYMCLK32_LE1_EN, 1); break; default: BREAK_TO_DEBUGGER(); return; } } void dccg31_disable_symclk32_le( struct dccg *dccg, int hpo_le_inst) { struct dcn_dccg *dccg_dcn = TO_DCN_DCCG(dccg); /* set refclk as the source for symclk32_le */ switch (hpo_le_inst) { case 0: REG_UPDATE_2(SYMCLK32_LE_CNTL, SYMCLK32_LE0_SRC_SEL, 0, SYMCLK32_LE0_EN, 0); break; case 1: REG_UPDATE_2(SYMCLK32_LE_CNTL, SYMCLK32_LE1_SRC_SEL, 0, SYMCLK32_LE1_EN, 0); break; default: BREAK_TO_DEBUGGER(); return; } } void dccg31_set_symclk32_le_root_clock_gating( struct dccg *dccg, int hpo_le_inst, bool enable) { struct dcn_dccg *dccg_dcn = TO_DCN_DCCG(dccg); if (!dccg->ctx->dc->debug.root_clock_optimization.bits.symclk32_le) return; switch (hpo_le_inst) { case 0: REG_UPDATE_2(DCCG_GATE_DISABLE_CNTL3, SYMCLK32_LE0_GATE_DISABLE, enable ? 1 : 0, SYMCLK32_ROOT_LE0_GATE_DISABLE, enable ? 1 : 0); break; case 1: REG_UPDATE_2(DCCG_GATE_DISABLE_CNTL3, SYMCLK32_LE1_GATE_DISABLE, enable ? 1 : 0, SYMCLK32_ROOT_LE1_GATE_DISABLE, enable ? 1 : 0); break; default: BREAK_TO_DEBUGGER(); return; } } void dccg31_disable_dscclk(struct dccg *dccg, int inst) { struct dcn_dccg *dccg_dcn = TO_DCN_DCCG(dccg); if (!dccg->ctx->dc->debug.root_clock_optimization.bits.dsc) return; //DTO must be enabled to generate a 0 Hz clock output switch (inst) { case 0: REG_UPDATE(DSCCLK_DTO_CTRL, DSCCLK0_DTO_ENABLE, 1); REG_UPDATE_2(DSCCLK0_DTO_PARAM, DSCCLK0_DTO_PHASE, 0, DSCCLK0_DTO_MODULO, 1); break; case 1: REG_UPDATE(DSCCLK_DTO_CTRL, DSCCLK1_DTO_ENABLE, 1); REG_UPDATE_2(DSCCLK1_DTO_PARAM, DSCCLK1_DTO_PHASE, 0, DSCCLK1_DTO_MODULO, 1); break; case 2: REG_UPDATE(DSCCLK_DTO_CTRL, DSCCLK2_DTO_ENABLE, 1); REG_UPDATE_2(DSCCLK2_DTO_PARAM, DSCCLK2_DTO_PHASE, 0, DSCCLK2_DTO_MODULO, 1); break; case 3: if (REG(DSCCLK3_DTO_PARAM)) { REG_UPDATE(DSCCLK_DTO_CTRL, DSCCLK3_DTO_ENABLE, 1); REG_UPDATE_2(DSCCLK3_DTO_PARAM, DSCCLK3_DTO_PHASE, 0, DSCCLK3_DTO_MODULO, 1); } break; default: BREAK_TO_DEBUGGER(); return; } } void dccg31_enable_dscclk(struct dccg *dccg, int inst) { struct dcn_dccg *dccg_dcn = TO_DCN_DCCG(dccg); if (!dccg->ctx->dc->debug.root_clock_optimization.bits.dsc) return; //Disable DTO switch (inst) { case 0: REG_UPDATE_2(DSCCLK0_DTO_PARAM, DSCCLK0_DTO_PHASE, 0, DSCCLK0_DTO_MODULO, 0); REG_UPDATE(DSCCLK_DTO_CTRL, DSCCLK0_DTO_ENABLE, 0); break; case 1: REG_UPDATE_2(DSCCLK1_DTO_PARAM, DSCCLK1_DTO_PHASE, 0, DSCCLK1_DTO_MODULO, 0); REG_UPDATE(DSCCLK_DTO_CTRL, DSCCLK1_DTO_ENABLE, 0); break; case 2: REG_UPDATE_2(DSCCLK2_DTO_PARAM, DSCCLK2_DTO_PHASE, 0, DSCCLK2_DTO_MODULO, 0); REG_UPDATE(DSCCLK_DTO_CTRL, DSCCLK2_DTO_ENABLE, 0); break; case 3: if (REG(DSCCLK3_DTO_PARAM)) { REG_UPDATE(DSCCLK_DTO_CTRL, DSCCLK3_DTO_ENABLE, 0); REG_UPDATE_2(DSCCLK3_DTO_PARAM, DSCCLK3_DTO_PHASE, 0, DSCCLK3_DTO_MODULO, 0); } break; default: BREAK_TO_DEBUGGER(); return; } } void dccg31_set_physymclk( struct dccg *dccg, int phy_inst, enum physymclk_clock_source clk_src, bool force_enable) { struct dcn_dccg *dccg_dcn = TO_DCN_DCCG(dccg); /* Force PHYSYMCLK on and Select phyd32clk as the source of clock which is output to PHY through DCIO */ switch (phy_inst) { case 0: if (force_enable) { REG_UPDATE_2(PHYASYMCLK_CLOCK_CNTL, PHYASYMCLK_FORCE_EN, 1, PHYASYMCLK_FORCE_SRC_SEL, clk_src); if (dccg->ctx->dc->debug.root_clock_optimization.bits.physymclk) REG_UPDATE(DCCG_GATE_DISABLE_CNTL2, PHYASYMCLK_GATE_DISABLE, 1); } else { REG_UPDATE_2(PHYASYMCLK_CLOCK_CNTL, PHYASYMCLK_FORCE_EN, 0, PHYASYMCLK_FORCE_SRC_SEL, 0); if (dccg->ctx->dc->debug.root_clock_optimization.bits.physymclk) REG_UPDATE(DCCG_GATE_DISABLE_CNTL2, PHYASYMCLK_GATE_DISABLE, 0); } break; case 1: if (force_enable) { REG_UPDATE_2(PHYBSYMCLK_CLOCK_CNTL, PHYBSYMCLK_FORCE_EN, 1, PHYBSYMCLK_FORCE_SRC_SEL, clk_src); if (dccg->ctx->dc->debug.root_clock_optimization.bits.physymclk) REG_UPDATE(DCCG_GATE_DISABLE_CNTL2, PHYBSYMCLK_GATE_DISABLE, 1); } else { REG_UPDATE_2(PHYBSYMCLK_CLOCK_CNTL, PHYBSYMCLK_FORCE_EN, 0, PHYBSYMCLK_FORCE_SRC_SEL, 0); if (dccg->ctx->dc->debug.root_clock_optimization.bits.physymclk) REG_UPDATE(DCCG_GATE_DISABLE_CNTL2, PHYBSYMCLK_GATE_DISABLE, 0); } break; case 2: if (force_enable) { REG_UPDATE_2(PHYCSYMCLK_CLOCK_CNTL, PHYCSYMCLK_FORCE_EN, 1, PHYCSYMCLK_FORCE_SRC_SEL, clk_src); if (dccg->ctx->dc->debug.root_clock_optimization.bits.physymclk) REG_UPDATE(DCCG_GATE_DISABLE_CNTL2, PHYCSYMCLK_GATE_DISABLE, 1); } else { REG_UPDATE_2(PHYCSYMCLK_CLOCK_CNTL, PHYCSYMCLK_FORCE_EN, 0, PHYCSYMCLK_FORCE_SRC_SEL, 0); if (dccg->ctx->dc->debug.root_clock_optimization.bits.physymclk) REG_UPDATE(DCCG_GATE_DISABLE_CNTL2, PHYCSYMCLK_GATE_DISABLE, 0); } break; case 3: if (force_enable) { REG_UPDATE_2(PHYDSYMCLK_CLOCK_CNTL, PHYDSYMCLK_FORCE_EN, 1, PHYDSYMCLK_FORCE_SRC_SEL, clk_src); if (dccg->ctx->dc->debug.root_clock_optimization.bits.physymclk) REG_UPDATE(DCCG_GATE_DISABLE_CNTL2, PHYDSYMCLK_GATE_DISABLE, 1); } else { REG_UPDATE_2(PHYDSYMCLK_CLOCK_CNTL, PHYDSYMCLK_FORCE_EN, 0, PHYDSYMCLK_FORCE_SRC_SEL, 0); if (dccg->ctx->dc->debug.root_clock_optimization.bits.physymclk) REG_UPDATE(DCCG_GATE_DISABLE_CNTL2, PHYDSYMCLK_GATE_DISABLE, 0); } break; case 4: if (force_enable) { REG_UPDATE_2(PHYESYMCLK_CLOCK_CNTL, PHYESYMCLK_FORCE_EN, 1, PHYESYMCLK_FORCE_SRC_SEL, clk_src); if (dccg->ctx->dc->debug.root_clock_optimization.bits.physymclk) REG_UPDATE(DCCG_GATE_DISABLE_CNTL2, PHYESYMCLK_GATE_DISABLE, 1); } else { REG_UPDATE_2(PHYESYMCLK_CLOCK_CNTL, PHYESYMCLK_FORCE_EN, 0, PHYESYMCLK_FORCE_SRC_SEL, 0); if (dccg->ctx->dc->debug.root_clock_optimization.bits.physymclk) REG_UPDATE(DCCG_GATE_DISABLE_CNTL2, PHYESYMCLK_GATE_DISABLE, 0); } break; default: BREAK_TO_DEBUGGER(); return; } } /* Controls the generation of pixel valid for OTG in (OTG -> HPO case) */ void dccg31_set_dtbclk_dto( struct dccg *dccg, const struct dtbclk_dto_params *params) { struct dcn_dccg *dccg_dcn = TO_DCN_DCCG(dccg); int req_dtbclk_khz = params->pixclk_khz; uint32_t dtbdto_div; /* Mode DTBDTO Rate DTBCLK_DTO<x>_DIV Register * ODM 4:1 combine pixel rate/4 2 * ODM 2:1 combine pixel rate/2 4 * non-DSC 4:2:0 mode pixel rate/2 4 * DSC native 4:2:0 pixel rate/2 4 * DSC native 4:2:2 pixel rate/2 4 * Other modes pixel rate 8 */ if (params->num_odm_segments == 4) { dtbdto_div = 2; req_dtbclk_khz = params->pixclk_khz / 4; } else if ((params->num_odm_segments == 2) || (params->timing->pixel_encoding == PIXEL_ENCODING_YCBCR420) || (params->timing->flags.DSC && params->timing->pixel_encoding == PIXEL_ENCODING_YCBCR422 && !params->timing->dsc_cfg.ycbcr422_simple)) { dtbdto_div = 4; req_dtbclk_khz = params->pixclk_khz / 2; } else dtbdto_div = 8; if (params->ref_dtbclk_khz && req_dtbclk_khz) { uint32_t modulo, phase; // phase / modulo = dtbclk / dtbclk ref modulo = params->ref_dtbclk_khz * 1000; phase = div_u64((((unsigned long long)modulo * req_dtbclk_khz) + params->ref_dtbclk_khz - 1), params->ref_dtbclk_khz); REG_UPDATE(OTG_PIXEL_RATE_CNTL[params->otg_inst], DTBCLK_DTO_DIV[params->otg_inst], dtbdto_div); REG_WRITE(DTBCLK_DTO_MODULO[params->otg_inst], modulo); REG_WRITE(DTBCLK_DTO_PHASE[params->otg_inst], phase); REG_UPDATE(OTG_PIXEL_RATE_CNTL[params->otg_inst], DTBCLK_DTO_ENABLE[params->otg_inst], 1); REG_WAIT(OTG_PIXEL_RATE_CNTL[params->otg_inst], DTBCLKDTO_ENABLE_STATUS[params->otg_inst], 1, 1, 100); /* The recommended programming sequence to enable DTBCLK DTO to generate * valid pixel HPO DPSTREAM ENCODER, specifies that DTO source select should * be set only after DTO is enabled */ REG_UPDATE(OTG_PIXEL_RATE_CNTL[params->otg_inst], PIPE_DTO_SRC_SEL[params->otg_inst], 1); } else { REG_UPDATE_3(OTG_PIXEL_RATE_CNTL[params->otg_inst], DTBCLK_DTO_ENABLE[params->otg_inst], 0, PIPE_DTO_SRC_SEL[params->otg_inst], 0, DTBCLK_DTO_DIV[params->otg_inst], dtbdto_div); REG_WRITE(DTBCLK_DTO_MODULO[params->otg_inst], 0); REG_WRITE(DTBCLK_DTO_PHASE[params->otg_inst], 0); } } void dccg31_set_audio_dtbclk_dto( struct dccg *dccg, const struct dtbclk_dto_params *params) { struct dcn_dccg *dccg_dcn = TO_DCN_DCCG(dccg); if (params->ref_dtbclk_khz && params->req_audio_dtbclk_khz) { uint32_t modulo, phase; // phase / modulo = dtbclk / dtbclk ref modulo = params->ref_dtbclk_khz * 1000; phase = div_u64((((unsigned long long)modulo * params->req_audio_dtbclk_khz) + params->ref_dtbclk_khz - 1), params->ref_dtbclk_khz); REG_WRITE(DCCG_AUDIO_DTBCLK_DTO_MODULO, modulo); REG_WRITE(DCCG_AUDIO_DTBCLK_DTO_PHASE, phase); //REG_UPDATE(DCCG_AUDIO_DTO_SOURCE, // DCCG_AUDIO_DTBCLK_DTO_USE_512FBR_DTO, 1); REG_UPDATE(DCCG_AUDIO_DTO_SOURCE, DCCG_AUDIO_DTO_SEL, 4); // 04 - DCCG_AUDIO_DTO_SEL_AUDIO_DTO_DTBCLK } else { REG_WRITE(DCCG_AUDIO_DTBCLK_DTO_PHASE, 0); REG_WRITE(DCCG_AUDIO_DTBCLK_DTO_MODULO, 0); REG_UPDATE(DCCG_AUDIO_DTO_SOURCE, DCCG_AUDIO_DTO_SEL, 3); // 03 - DCCG_AUDIO_DTO_SEL_NO_AUDIO_DTO } } void dccg31_get_dccg_ref_freq(struct dccg *dccg, unsigned int xtalin_freq_inKhz, unsigned int *dccg_ref_freq_inKhz) { /* * Assume refclk is sourced from xtalin * expect 24MHz */ *dccg_ref_freq_inKhz = xtalin_freq_inKhz; return; } void dccg31_set_dispclk_change_mode( struct dccg *dccg, enum dentist_dispclk_change_mode change_mode) { struct dcn_dccg *dccg_dcn = TO_DCN_DCCG(dccg); REG_UPDATE(DENTIST_DISPCLK_CNTL, DENTIST_DISPCLK_CHG_MODE, change_mode == DISPCLK_CHANGE_MODE_RAMPING ? 2 : 0); } void dccg31_init(struct dccg *dccg) { /* Set HPO stream encoder to use refclk to avoid case where PHY is * disabled and SYMCLK32 for HPO SE is sourced from PHYD32CLK which * will cause DCN to hang. */ dccg31_disable_symclk32_se(dccg, 0); dccg31_disable_symclk32_se(dccg, 1); dccg31_disable_symclk32_se(dccg, 2); dccg31_disable_symclk32_se(dccg, 3); dccg31_set_symclk32_le_root_clock_gating(dccg, 0, false); dccg31_set_symclk32_le_root_clock_gating(dccg, 1, false); if (dccg->ctx->dc->debug.root_clock_optimization.bits.dpstream) { dccg31_disable_dpstreamclk(dccg, 0); dccg31_disable_dpstreamclk(dccg, 1); dccg31_disable_dpstreamclk(dccg, 2); dccg31_disable_dpstreamclk(dccg, 3); } if (dccg->ctx->dc->debug.root_clock_optimization.bits.physymclk) { dccg31_set_physymclk(dccg, 0, PHYSYMCLK_FORCE_SRC_SYMCLK, false); dccg31_set_physymclk(dccg, 1, PHYSYMCLK_FORCE_SRC_SYMCLK, false); dccg31_set_physymclk(dccg, 2, PHYSYMCLK_FORCE_SRC_SYMCLK, false); dccg31_set_physymclk(dccg, 3, PHYSYMCLK_FORCE_SRC_SYMCLK, false); dccg31_set_physymclk(dccg, 4, PHYSYMCLK_FORCE_SRC_SYMCLK, false); } } void dccg31_otg_add_pixel(struct dccg *dccg, uint32_t otg_inst) { struct dcn_dccg *dccg_dcn = TO_DCN_DCCG(dccg); REG_UPDATE(OTG_PIXEL_RATE_CNTL[otg_inst], OTG_ADD_PIXEL[otg_inst], 1); } void dccg31_otg_drop_pixel(struct dccg *dccg, uint32_t otg_inst) { struct dcn_dccg *dccg_dcn = TO_DCN_DCCG(dccg); REG_UPDATE(OTG_PIXEL_RATE_CNTL[otg_inst], OTG_DROP_PIXEL[otg_inst], 1); } static const struct dccg_funcs dccg31_funcs = { .update_dpp_dto = dccg31_update_dpp_dto, .get_dccg_ref_freq = dccg31_get_dccg_ref_freq, .dccg_init = dccg31_init, .set_dpstreamclk = dccg31_set_dpstreamclk, .enable_symclk32_se = dccg31_enable_symclk32_se, .disable_symclk32_se = dccg31_disable_symclk32_se, .enable_symclk32_le = dccg31_enable_symclk32_le, .disable_symclk32_le = dccg31_disable_symclk32_le, .set_physymclk = dccg31_set_physymclk, .set_dtbclk_dto = dccg31_set_dtbclk_dto, .set_audio_dtbclk_dto = dccg31_set_audio_dtbclk_dto, .set_fifo_errdet_ovr_en = dccg2_set_fifo_errdet_ovr_en, .otg_add_pixel = dccg31_otg_add_pixel, .otg_drop_pixel = dccg31_otg_drop_pixel, .set_dispclk_change_mode = dccg31_set_dispclk_change_mode, .disable_dsc = dccg31_disable_dscclk, .enable_dsc = dccg31_enable_dscclk, }; struct dccg *dccg31_create( struct dc_context *ctx, const struct dccg_registers *regs, const struct dccg_shift *dccg_shift, const struct dccg_mask *dccg_mask) { struct dcn_dccg *dccg_dcn = kzalloc(sizeof(*dccg_dcn), GFP_KERNEL); struct dccg *base; if (dccg_dcn == NULL) { BREAK_TO_DEBUGGER(); return NULL; } base = &dccg_dcn->base; base->ctx = ctx; base->funcs = &dccg31_funcs; dccg_dcn->regs = regs; dccg_dcn->dccg_shift = dccg_shift; dccg_dcn->dccg_mask = dccg_mask; return &dccg_dcn->base; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1