Contributors: 34
Author Tokens Token Proportion Commits Commit Proportion
Aurabindo Pillai 8356 66.12% 10 8.55%
rodrigosiqueira 964 7.63% 6 5.13%
Wenjing Liu 964 7.63% 13 11.11%
Qingqing Zhuo 484 3.83% 2 1.71%
Samson Tam 446 3.53% 3 2.56%
Harry Wentland 341 2.70% 5 4.27%
Alvin lee 318 2.52% 31 26.50%
Bhawanpreet Lakha 211 1.67% 3 2.56%
Alex Deucher 186 1.47% 2 1.71%
Jun Lei 93 0.74% 5 4.27%
Yue Hin Lau 63 0.50% 1 0.85%
Dillon Varone 33 0.26% 6 5.13%
Vladimir Stempen 27 0.21% 1 0.85%
Ao Zhong 17 0.13% 1 0.85%
Leo (Hao) Chen 16 0.13% 1 0.85%
Chris Park 15 0.12% 1 0.85%
Austin Zheng 14 0.11% 1 0.85%
Eric Yang 13 0.10% 1 0.85%
Hersen Wu 10 0.08% 2 1.71%
Dmytro Laktyushkin 9 0.07% 4 3.42%
Hamza Mahfooz 8 0.06% 2 1.71%
Jerry (Fangzhi) Zuo 8 0.06% 2 1.71%
David Francis 7 0.06% 1 0.85%
Joshua Aberback 5 0.04% 3 2.56%
George Shen 5 0.04% 1 0.85%
LongJun Tang 5 0.04% 1 0.85%
Jasdeep Dhillon 4 0.03% 1 0.85%
Meenakshikumar Somasundaram 4 0.03% 1 0.85%
Yongqiang Sun 4 0.03% 1 0.85%
Anthony Koo 2 0.02% 1 0.85%
Meera Patel 2 0.02% 1 0.85%
Martin Leung 1 0.01% 1 0.85%
Mounika Adhuri 1 0.01% 1 0.85%
Charlene Liu 1 0.01% 1 0.85%
Total 12637 117


// SPDX-License-Identifier: MIT
/*
 * Copyright 2022 Advanced Micro Devices, Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 *
 * Authors: AMD
 *
 */

#include "dm_services.h"
#include "dc.h"

#include "dcn32_init.h"

#include "resource.h"
#include "include/irq_service_interface.h"
#include "dcn32_resource.h"

#include "dcn20/dcn20_resource.h"
#include "dcn30/dcn30_resource.h"

#include "dcn10/dcn10_ipp.h"
#include "dcn30/dcn30_hubbub.h"
#include "dcn31/dcn31_hubbub.h"
#include "dcn32/dcn32_hubbub.h"
#include "dcn32/dcn32_mpc.h"
#include "dcn32_hubp.h"
#include "irq/dcn32/irq_service_dcn32.h"
#include "dcn32/dcn32_dpp.h"
#include "dcn32/dcn32_optc.h"
#include "dcn20/dcn20_hwseq.h"
#include "dcn30/dcn30_hwseq.h"
#include "dce110/dce110_hwseq.h"
#include "dcn30/dcn30_opp.h"
#include "dcn20/dcn20_dsc.h"
#include "dcn30/dcn30_vpg.h"
#include "dcn30/dcn30_afmt.h"
#include "dcn30/dcn30_dio_stream_encoder.h"
#include "dcn32/dcn32_dio_stream_encoder.h"
#include "dcn31/dcn31_hpo_dp_stream_encoder.h"
#include "dcn31/dcn31_hpo_dp_link_encoder.h"
#include "dcn32/dcn32_hpo_dp_link_encoder.h"
#include "dcn31/dcn31_apg.h"
#include "dcn31/dcn31_dio_link_encoder.h"
#include "dcn32/dcn32_dio_link_encoder.h"
#include "dce/dce_clock_source.h"
#include "dce/dce_audio.h"
#include "dce/dce_hwseq.h"
#include "clk_mgr.h"
#include "virtual/virtual_stream_encoder.h"
#include "dml/display_mode_vba.h"
#include "dcn32/dcn32_dccg.h"
#include "dcn10/dcn10_resource.h"
#include "link.h"
#include "dcn31/dcn31_panel_cntl.h"

#include "dcn30/dcn30_dwb.h"
#include "dcn32/dcn32_mmhubbub.h"

#include "dcn/dcn_3_2_0_offset.h"
#include "dcn/dcn_3_2_0_sh_mask.h"
#include "nbio/nbio_4_3_0_offset.h"

#include "reg_helper.h"
#include "dce/dmub_abm.h"
#include "dce/dmub_psr.h"
#include "dce/dce_aux.h"
#include "dce/dce_i2c.h"

#include "dml/dcn30/display_mode_vba_30.h"
#include "vm_helper.h"
#include "dcn20/dcn20_vmid.h"
#include "dml/dcn32/dcn32_fpu.h"

#include "dml2/dml2_wrapper.h"

#define DC_LOGGER_INIT(logger)

enum dcn32_clk_src_array_id {
	DCN32_CLK_SRC_PLL0,
	DCN32_CLK_SRC_PLL1,
	DCN32_CLK_SRC_PLL2,
	DCN32_CLK_SRC_PLL3,
	DCN32_CLK_SRC_PLL4,
	DCN32_CLK_SRC_TOTAL
};

/* begin *********************
 * macros to expend register list macro defined in HW object header file
 */

/* DCN */
#define BASE_INNER(seg) ctx->dcn_reg_offsets[seg]

#define BASE(seg) BASE_INNER(seg)

#define SR(reg_name)\
		REG_STRUCT.reg_name = BASE(reg ## reg_name ## _BASE_IDX) +  \
					reg ## reg_name
#define SR_ARR(reg_name, id) \
	REG_STRUCT[id].reg_name = BASE(reg##reg_name##_BASE_IDX) + reg##reg_name

#define SR_ARR_INIT(reg_name, id, value) \
	REG_STRUCT[id].reg_name = value

#define SRI(reg_name, block, id)\
	REG_STRUCT.reg_name = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
		reg ## block ## id ## _ ## reg_name

#define SRI_ARR(reg_name, block, id)\
	REG_STRUCT[id].reg_name = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
		reg ## block ## id ## _ ## reg_name

#define SR_ARR_I2C(reg_name, id) \
	REG_STRUCT[id-1].reg_name = BASE(reg##reg_name##_BASE_IDX) + reg##reg_name

#define SRI_ARR_I2C(reg_name, block, id)\
	REG_STRUCT[id-1].reg_name = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
		reg ## block ## id ## _ ## reg_name

#define SRI_ARR_ALPHABET(reg_name, block, index, id)\
	REG_STRUCT[index].reg_name = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
		reg ## block ## id ## _ ## reg_name

#define SRI2(reg_name, block, id)\
	.reg_name = BASE(reg ## reg_name ## _BASE_IDX) +	\
		reg ## reg_name
#define SRI2_ARR(reg_name, block, id)\
	REG_STRUCT[id].reg_name = BASE(reg ## reg_name ## _BASE_IDX) +	\
		reg ## reg_name

#define SRIR(var_name, reg_name, block, id)\
	.var_name = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
		reg ## block ## id ## _ ## reg_name

#define SRII(reg_name, block, id)\
	REG_STRUCT.reg_name[id] = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
					reg ## block ## id ## _ ## reg_name

#define SRII_ARR_2(reg_name, block, id, inst)\
	REG_STRUCT[inst].reg_name[id] = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
		reg ## block ## id ## _ ## reg_name

#define SRII_MPC_RMU(reg_name, block, id)\
	.RMU##_##reg_name[id] = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
		reg ## block ## id ## _ ## reg_name

#define SRII_DWB(reg_name, temp_name, block, id)\
	REG_STRUCT.reg_name[id] = BASE(reg ## block ## id ## _ ## temp_name ## _BASE_IDX) + \
		reg ## block ## id ## _ ## temp_name

#define SF_DWB2(reg_name, block, id, field_name, post_fix)	\
	.field_name = reg_name ## __ ## field_name ## post_fix

#define DCCG_SRII(reg_name, block, id)\
	REG_STRUCT.block ## _ ## reg_name[id] = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
		reg ## block ## id ## _ ## reg_name

#define VUPDATE_SRII(reg_name, block, id)\
	REG_STRUCT.reg_name[id] = BASE(reg ## reg_name ## _ ## block ## id ## _BASE_IDX) + \
		reg ## reg_name ## _ ## block ## id

/* NBIO */
#define NBIO_BASE_INNER(seg) ctx->nbio_reg_offsets[seg]

#define NBIO_BASE(seg) \
	NBIO_BASE_INNER(seg)

#define NBIO_SR(reg_name)\
	REG_STRUCT.reg_name = NBIO_BASE(regBIF_BX0_ ## reg_name ## _BASE_IDX) + \
			regBIF_BX0_ ## reg_name
#define NBIO_SR_ARR(reg_name, id)\
	REG_STRUCT[id].reg_name = NBIO_BASE(regBIF_BX0_ ## reg_name ## _BASE_IDX) + \
		regBIF_BX0_ ## reg_name

#undef CTX
#define CTX ctx
#define REG(reg_name) \
	(ctx->dcn_reg_offsets[reg ## reg_name ## _BASE_IDX] + reg ## reg_name)

static struct bios_registers bios_regs;

#define bios_regs_init() \
		( \
		NBIO_SR(BIOS_SCRATCH_3),\
		NBIO_SR(BIOS_SCRATCH_6)\
		)

#define clk_src_regs_init(index, pllid)\
	CS_COMMON_REG_LIST_DCN3_0_RI(index, pllid)

static struct dce110_clk_src_regs clk_src_regs[5];

static const struct dce110_clk_src_shift cs_shift = {
		CS_COMMON_MASK_SH_LIST_DCN3_2(__SHIFT)
};

static const struct dce110_clk_src_mask cs_mask = {
		CS_COMMON_MASK_SH_LIST_DCN3_2(_MASK)
};

#define abm_regs_init(id)\
		ABM_DCN32_REG_LIST_RI(id)

static struct dce_abm_registers abm_regs[4];

static const struct dce_abm_shift abm_shift = {
		ABM_MASK_SH_LIST_DCN32(__SHIFT)
};

static const struct dce_abm_mask abm_mask = {
		ABM_MASK_SH_LIST_DCN32(_MASK)
};

#define audio_regs_init(id)\
		AUD_COMMON_REG_LIST_RI(id)

static struct dce_audio_registers audio_regs[5];

#define DCE120_AUD_COMMON_MASK_SH_LIST(mask_sh)\
		SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_INDEX, AZALIA_ENDPOINT_REG_INDEX, mask_sh),\
		SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_DATA, AZALIA_ENDPOINT_REG_DATA, mask_sh),\
		AUD_COMMON_MASK_SH_LIST_BASE(mask_sh)

static const struct dce_audio_shift audio_shift = {
		DCE120_AUD_COMMON_MASK_SH_LIST(__SHIFT)
};

static const struct dce_audio_mask audio_mask = {
		DCE120_AUD_COMMON_MASK_SH_LIST(_MASK)
};

#define vpg_regs_init(id)\
	VPG_DCN3_REG_LIST_RI(id)

static struct dcn30_vpg_registers vpg_regs[10];

static const struct dcn30_vpg_shift vpg_shift = {
	DCN3_VPG_MASK_SH_LIST(__SHIFT)
};

static const struct dcn30_vpg_mask vpg_mask = {
	DCN3_VPG_MASK_SH_LIST(_MASK)
};

#define afmt_regs_init(id)\
	AFMT_DCN3_REG_LIST_RI(id)

static struct dcn30_afmt_registers afmt_regs[6];

static const struct dcn30_afmt_shift afmt_shift = {
	DCN3_AFMT_MASK_SH_LIST(__SHIFT)
};

static const struct dcn30_afmt_mask afmt_mask = {
	DCN3_AFMT_MASK_SH_LIST(_MASK)
};

#define apg_regs_init(id)\
	APG_DCN31_REG_LIST_RI(id)

static struct dcn31_apg_registers apg_regs[4];

static const struct dcn31_apg_shift apg_shift = {
	DCN31_APG_MASK_SH_LIST(__SHIFT)
};

static const struct dcn31_apg_mask apg_mask = {
		DCN31_APG_MASK_SH_LIST(_MASK)
};

#define stream_enc_regs_init(id)\
	SE_DCN32_REG_LIST_RI(id)

static struct dcn10_stream_enc_registers stream_enc_regs[5];

static const struct dcn10_stream_encoder_shift se_shift = {
		SE_COMMON_MASK_SH_LIST_DCN32(__SHIFT)
};

static const struct dcn10_stream_encoder_mask se_mask = {
		SE_COMMON_MASK_SH_LIST_DCN32(_MASK)
};


#define aux_regs_init(id)\
	DCN2_AUX_REG_LIST_RI(id)

static struct dcn10_link_enc_aux_registers link_enc_aux_regs[5];

#define hpd_regs_init(id)\
	HPD_REG_LIST_RI(id)

static struct dcn10_link_enc_hpd_registers link_enc_hpd_regs[5];

#define link_regs_init(id, phyid)\
	( \
	LE_DCN31_REG_LIST_RI(id), \
	UNIPHY_DCN2_REG_LIST_RI(id, phyid)\
	)
	/*DPCS_DCN31_REG_LIST(id),*/ \

static struct dcn10_link_enc_registers link_enc_regs[5];

static const struct dcn10_link_enc_shift le_shift = {
	LINK_ENCODER_MASK_SH_LIST_DCN31(__SHIFT), \
	//DPCS_DCN31_MASK_SH_LIST(__SHIFT)
};

static const struct dcn10_link_enc_mask le_mask = {
	LINK_ENCODER_MASK_SH_LIST_DCN31(_MASK), \
	//DPCS_DCN31_MASK_SH_LIST(_MASK)
};

#define hpo_dp_stream_encoder_reg_init(id)\
	DCN3_1_HPO_DP_STREAM_ENC_REG_LIST_RI(id)

static struct dcn31_hpo_dp_stream_encoder_registers hpo_dp_stream_enc_regs[4];

static const struct dcn31_hpo_dp_stream_encoder_shift hpo_dp_se_shift = {
	DCN3_1_HPO_DP_STREAM_ENC_MASK_SH_LIST(__SHIFT)
};

static const struct dcn31_hpo_dp_stream_encoder_mask hpo_dp_se_mask = {
	DCN3_1_HPO_DP_STREAM_ENC_MASK_SH_LIST(_MASK)
};


#define hpo_dp_link_encoder_reg_init(id)\
	DCN3_1_HPO_DP_LINK_ENC_REG_LIST_RI(id)
	/*DCN3_1_RDPCSTX_REG_LIST(0),*/
	/*DCN3_1_RDPCSTX_REG_LIST(1),*/
	/*DCN3_1_RDPCSTX_REG_LIST(2),*/
	/*DCN3_1_RDPCSTX_REG_LIST(3),*/

static struct dcn31_hpo_dp_link_encoder_registers hpo_dp_link_enc_regs[2];

static const struct dcn31_hpo_dp_link_encoder_shift hpo_dp_le_shift = {
	DCN3_2_HPO_DP_LINK_ENC_MASK_SH_LIST(__SHIFT)
};

static const struct dcn31_hpo_dp_link_encoder_mask hpo_dp_le_mask = {
	DCN3_2_HPO_DP_LINK_ENC_MASK_SH_LIST(_MASK)
};

#define dpp_regs_init(id)\
	DPP_REG_LIST_DCN30_COMMON_RI(id)

static struct dcn3_dpp_registers dpp_regs[4];

static const struct dcn3_dpp_shift tf_shift = {
		DPP_REG_LIST_SH_MASK_DCN30_COMMON(__SHIFT)
};

static const struct dcn3_dpp_mask tf_mask = {
		DPP_REG_LIST_SH_MASK_DCN30_COMMON(_MASK)
};


#define opp_regs_init(id)\
	OPP_REG_LIST_DCN30_RI(id)

static struct dcn20_opp_registers opp_regs[4];

static const struct dcn20_opp_shift opp_shift = {
	OPP_MASK_SH_LIST_DCN20(__SHIFT)
};

static const struct dcn20_opp_mask opp_mask = {
	OPP_MASK_SH_LIST_DCN20(_MASK)
};

#define aux_engine_regs_init(id)\
	( \
	AUX_COMMON_REG_LIST0_RI(id), \
	SR_ARR_INIT(AUXN_IMPCAL, id, 0), \
	SR_ARR_INIT(AUXP_IMPCAL, id, 0), \
	SR_ARR_INIT(AUX_RESET_MASK, id, DP_AUX0_AUX_CONTROL__AUX_RESET_MASK), \
	SR_ARR_INIT(AUX_RESET_MASK, id, DP_AUX0_AUX_CONTROL__AUX_RESET_MASK)\
	)

static struct dce110_aux_registers aux_engine_regs[5];

static const struct dce110_aux_registers_shift aux_shift = {
	DCN_AUX_MASK_SH_LIST(__SHIFT)
};

static const struct dce110_aux_registers_mask aux_mask = {
	DCN_AUX_MASK_SH_LIST(_MASK)
};

#define dwbc_regs_dcn3_init(id)\
	DWBC_COMMON_REG_LIST_DCN30_RI(id)

static struct dcn30_dwbc_registers dwbc30_regs[1];

static const struct dcn30_dwbc_shift dwbc30_shift = {
	DWBC_COMMON_MASK_SH_LIST_DCN30(__SHIFT)
};

static const struct dcn30_dwbc_mask dwbc30_mask = {
	DWBC_COMMON_MASK_SH_LIST_DCN30(_MASK)
};

#define mcif_wb_regs_dcn3_init(id)\
	MCIF_WB_COMMON_REG_LIST_DCN32_RI(id)

static struct dcn30_mmhubbub_registers mcif_wb30_regs[1];

static const struct dcn30_mmhubbub_shift mcif_wb30_shift = {
	MCIF_WB_COMMON_MASK_SH_LIST_DCN32(__SHIFT)
};

static const struct dcn30_mmhubbub_mask mcif_wb30_mask = {
	MCIF_WB_COMMON_MASK_SH_LIST_DCN32(_MASK)
};

#define dsc_regsDCN20_init(id)\
	DSC_REG_LIST_DCN20_RI(id)

static struct dcn20_dsc_registers dsc_regs[4];

static const struct dcn20_dsc_shift dsc_shift = {
	DSC_REG_LIST_SH_MASK_DCN20(__SHIFT)
};

static const struct dcn20_dsc_mask dsc_mask = {
	DSC_REG_LIST_SH_MASK_DCN20(_MASK)
};

static struct dcn30_mpc_registers mpc_regs;

#define dcn_mpc_regs_init() \
	MPC_REG_LIST_DCN3_2_RI(0),\
	MPC_REG_LIST_DCN3_2_RI(1),\
	MPC_REG_LIST_DCN3_2_RI(2),\
	MPC_REG_LIST_DCN3_2_RI(3),\
	MPC_OUT_MUX_REG_LIST_DCN3_0_RI(0),\
	MPC_OUT_MUX_REG_LIST_DCN3_0_RI(1),\
	MPC_OUT_MUX_REG_LIST_DCN3_0_RI(2),\
	MPC_OUT_MUX_REG_LIST_DCN3_0_RI(3),\
	MPC_DWB_MUX_REG_LIST_DCN3_0_RI(0)

static const struct dcn30_mpc_shift mpc_shift = {
	MPC_COMMON_MASK_SH_LIST_DCN32(__SHIFT)
};

static const struct dcn30_mpc_mask mpc_mask = {
	MPC_COMMON_MASK_SH_LIST_DCN32(_MASK)
};

#define optc_regs_init(id)\
	OPTC_COMMON_REG_LIST_DCN3_2_RI(id)

static struct dcn_optc_registers optc_regs[4];

static const struct dcn_optc_shift optc_shift = {
	OPTC_COMMON_MASK_SH_LIST_DCN3_2(__SHIFT)
};

static const struct dcn_optc_mask optc_mask = {
	OPTC_COMMON_MASK_SH_LIST_DCN3_2(_MASK)
};

#define hubp_regs_init(id)\
	HUBP_REG_LIST_DCN32_RI(id)

static struct dcn_hubp2_registers hubp_regs[4];


static const struct dcn_hubp2_shift hubp_shift = {
		HUBP_MASK_SH_LIST_DCN32(__SHIFT)
};

static const struct dcn_hubp2_mask hubp_mask = {
		HUBP_MASK_SH_LIST_DCN32(_MASK)
};

static struct dcn_hubbub_registers hubbub_reg;
#define hubbub_reg_init()\
		HUBBUB_REG_LIST_DCN32_RI(0)

static const struct dcn_hubbub_shift hubbub_shift = {
		HUBBUB_MASK_SH_LIST_DCN32(__SHIFT)
};

static const struct dcn_hubbub_mask hubbub_mask = {
		HUBBUB_MASK_SH_LIST_DCN32(_MASK)
};

static struct dccg_registers dccg_regs;

#define dccg_regs_init()\
	DCCG_REG_LIST_DCN32_RI()

static const struct dccg_shift dccg_shift = {
		DCCG_MASK_SH_LIST_DCN32(__SHIFT)
};

static const struct dccg_mask dccg_mask = {
		DCCG_MASK_SH_LIST_DCN32(_MASK)
};


#define SRII2(reg_name_pre, reg_name_post, id)\
	.reg_name_pre ## _ ##  reg_name_post[id] = BASE(reg ## reg_name_pre \
			## id ## _ ## reg_name_post ## _BASE_IDX) + \
			reg ## reg_name_pre ## id ## _ ## reg_name_post


#define HWSEQ_DCN32_REG_LIST()\
	SR(DCHUBBUB_GLOBAL_TIMER_CNTL), \
	SR(DIO_MEM_PWR_CTRL), \
	SR(ODM_MEM_PWR_CTRL3), \
	SR(MMHUBBUB_MEM_PWR_CNTL), \
	SR(DCCG_GATE_DISABLE_CNTL), \
	SR(DCCG_GATE_DISABLE_CNTL2), \
	SR(DCFCLK_CNTL),\
	SR(DC_MEM_GLOBAL_PWR_REQ_CNTL), \
	SRII(PIXEL_RATE_CNTL, OTG, 0), \
	SRII(PIXEL_RATE_CNTL, OTG, 1),\
	SRII(PIXEL_RATE_CNTL, OTG, 2),\
	SRII(PIXEL_RATE_CNTL, OTG, 3),\
	SRII(PHYPLL_PIXEL_RATE_CNTL, OTG, 0),\
	SRII(PHYPLL_PIXEL_RATE_CNTL, OTG, 1),\
	SRII(PHYPLL_PIXEL_RATE_CNTL, OTG, 2),\
	SRII(PHYPLL_PIXEL_RATE_CNTL, OTG, 3),\
	SR(MICROSECOND_TIME_BASE_DIV), \
	SR(MILLISECOND_TIME_BASE_DIV), \
	SR(DISPCLK_FREQ_CHANGE_CNTL), \
	SR(RBBMIF_TIMEOUT_DIS), \
	SR(RBBMIF_TIMEOUT_DIS_2), \
	SR(DCHUBBUB_CRC_CTRL), \
	SR(DPP_TOP0_DPP_CRC_CTRL), \
	SR(DPP_TOP0_DPP_CRC_VAL_B_A), \
	SR(DPP_TOP0_DPP_CRC_VAL_R_G), \
	SR(MPC_CRC_CTRL), \
	SR(MPC_CRC_RESULT_GB), \
	SR(MPC_CRC_RESULT_C), \
	SR(MPC_CRC_RESULT_AR), \
	SR(DOMAIN0_PG_CONFIG), \
	SR(DOMAIN1_PG_CONFIG), \
	SR(DOMAIN2_PG_CONFIG), \
	SR(DOMAIN3_PG_CONFIG), \
	SR(DOMAIN16_PG_CONFIG), \
	SR(DOMAIN17_PG_CONFIG), \
	SR(DOMAIN18_PG_CONFIG), \
	SR(DOMAIN19_PG_CONFIG), \
	SR(DOMAIN0_PG_STATUS), \
	SR(DOMAIN1_PG_STATUS), \
	SR(DOMAIN2_PG_STATUS), \
	SR(DOMAIN3_PG_STATUS), \
	SR(DOMAIN16_PG_STATUS), \
	SR(DOMAIN17_PG_STATUS), \
	SR(DOMAIN18_PG_STATUS), \
	SR(DOMAIN19_PG_STATUS), \
	SR(D1VGA_CONTROL), \
	SR(D2VGA_CONTROL), \
	SR(D3VGA_CONTROL), \
	SR(D4VGA_CONTROL), \
	SR(D5VGA_CONTROL), \
	SR(D6VGA_CONTROL), \
	SR(DC_IP_REQUEST_CNTL), \
	SR(AZALIA_AUDIO_DTO), \
	SR(AZALIA_CONTROLLER_CLOCK_GATING)

static struct dce_hwseq_registers hwseq_reg;

#define hwseq_reg_init()\
	HWSEQ_DCN32_REG_LIST()

#define HWSEQ_DCN32_MASK_SH_LIST(mask_sh)\
	HWSEQ_DCN_MASK_SH_LIST(mask_sh), \
	HWS_SF(, DCHUBBUB_GLOBAL_TIMER_CNTL, DCHUBBUB_GLOBAL_TIMER_REFDIV, mask_sh), \
	HWS_SF(, DOMAIN0_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
	HWS_SF(, DOMAIN0_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
	HWS_SF(, DOMAIN1_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
	HWS_SF(, DOMAIN1_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
	HWS_SF(, DOMAIN2_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
	HWS_SF(, DOMAIN2_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
	HWS_SF(, DOMAIN3_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
	HWS_SF(, DOMAIN3_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
	HWS_SF(, DOMAIN16_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
	HWS_SF(, DOMAIN16_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
	HWS_SF(, DOMAIN17_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
	HWS_SF(, DOMAIN17_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
	HWS_SF(, DOMAIN18_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
	HWS_SF(, DOMAIN18_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
	HWS_SF(, DOMAIN19_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
	HWS_SF(, DOMAIN19_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
	HWS_SF(, DOMAIN0_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
	HWS_SF(, DOMAIN1_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
	HWS_SF(, DOMAIN2_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
	HWS_SF(, DOMAIN3_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
	HWS_SF(, DOMAIN16_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
	HWS_SF(, DOMAIN17_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
	HWS_SF(, DOMAIN18_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
	HWS_SF(, DOMAIN19_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
	HWS_SF(, DC_IP_REQUEST_CNTL, IP_REQUEST_EN, mask_sh), \
	HWS_SF(, AZALIA_AUDIO_DTO, AZALIA_AUDIO_DTO_MODULE, mask_sh), \
	HWS_SF(, HPO_TOP_CLOCK_CONTROL, HPO_HDMISTREAMCLK_G_GATE_DIS, mask_sh), \
	HWS_SF(, ODM_MEM_PWR_CTRL3, ODM_MEM_UNASSIGNED_PWR_MODE, mask_sh), \
	HWS_SF(, ODM_MEM_PWR_CTRL3, ODM_MEM_VBLANK_PWR_MODE, mask_sh), \
	HWS_SF(, MMHUBBUB_MEM_PWR_CNTL, VGA_MEM_PWR_FORCE, mask_sh)

static const struct dce_hwseq_shift hwseq_shift = {
		HWSEQ_DCN32_MASK_SH_LIST(__SHIFT)
};

static const struct dce_hwseq_mask hwseq_mask = {
		HWSEQ_DCN32_MASK_SH_LIST(_MASK)
};
#define vmid_regs_init(id)\
		DCN20_VMID_REG_LIST_RI(id)

static struct dcn_vmid_registers vmid_regs[16];

static const struct dcn20_vmid_shift vmid_shifts = {
		DCN20_VMID_MASK_SH_LIST(__SHIFT)
};

static const struct dcn20_vmid_mask vmid_masks = {
		DCN20_VMID_MASK_SH_LIST(_MASK)
};

static const struct resource_caps res_cap_dcn32 = {
	.num_timing_generator = 4,
	.num_opp = 4,
	.num_video_plane = 4,
	.num_audio = 5,
	.num_stream_encoder = 5,
	.num_hpo_dp_stream_encoder = 4,
	.num_hpo_dp_link_encoder = 2,
	.num_pll = 5,
	.num_dwb = 1,
	.num_ddc = 5,
	.num_vmid = 16,
	.num_mpc_3dlut = 4,
	.num_dsc = 4,
};

static const struct dc_plane_cap plane_cap = {
	.type = DC_PLANE_TYPE_DCN_UNIVERSAL,
	.per_pixel_alpha = true,

	.pixel_format_support = {
			.argb8888 = true,
			.nv12 = true,
			.fp16 = true,
			.p010 = true,
			.ayuv = false,
	},

	.max_upscale_factor = {
			.argb8888 = 16000,
			.nv12 = 16000,
			.fp16 = 16000
	},

	// 6:1 downscaling ratio: 1000/6 = 166.666
	.max_downscale_factor = {
			.argb8888 = 167,
			.nv12 = 167,
			.fp16 = 167
	},
	64,
	64
};

static const struct dc_debug_options debug_defaults_drv = {
	.disable_dmcu = true,
	.force_abm_enable = false,
	.timing_trace = false,
	.clock_trace = true,
	.disable_pplib_clock_request = false,
	.pipe_split_policy = MPC_SPLIT_AVOID, // Due to CRB, no need to MPC split anymore
	.force_single_disp_pipe_split = false,
	.disable_dcc = DCC_ENABLE,
	.vsr_support = true,
	.performance_trace = false,
	.max_downscale_src_width = 7680,/*upto 8K*/
	.disable_pplib_wm_range = false,
	.scl_reset_length10 = true,
	.sanity_checks = false,
	.underflow_assert_delay_us = 0xFFFFFFFF,
	.dwb_fi_phase = -1, // -1 = disable,
	.dmub_command_table = true,
	.enable_mem_low_power = {
		.bits = {
			.vga = false,
			.i2c = false,
			.dmcu = false, // This is previously known to cause hang on S3 cycles if enabled
			.dscl = false,
			.cm = false,
			.mpc = false,
			.optc = true,
		}
	},
	.use_max_lb = true,
	.force_disable_subvp = false,
	.exit_idle_opt_for_cursor_updates = true,
	.using_dml2 = false,
	.enable_single_display_2to1_odm_policy = true,

	/* Must match enable_single_display_2to1_odm_policy to support dynamic ODM transitions*/
	.enable_double_buffered_dsc_pg_support = true,
	.enable_dp_dig_pixel_rate_div_policy = 1,
	.allow_sw_cursor_fallback = false, // Linux can't do SW cursor "fallback"
	.alloc_extra_way_for_cursor = true,
	.min_prefetch_in_strobe_ns = 60000, // 60us
	.disable_unbounded_requesting = false,
	.override_dispclk_programming = true,
	.disable_fpo_optimizations = false,
	.fpo_vactive_margin_us = 2000, // 2000us
	.disable_fpo_vactive = false,
	.disable_boot_optimizations = false,
	.disable_subvp_high_refresh = false,
	.disable_dp_plus_plus_wa = true,
	.fpo_vactive_min_active_margin_us = 200,
	.fpo_vactive_max_blank_us = 1000,
	.enable_legacy_fast_update = false,
};

static struct dce_aux *dcn32_aux_engine_create(
	struct dc_context *ctx,
	uint32_t inst)
{
	struct aux_engine_dce110 *aux_engine =
		kzalloc(sizeof(struct aux_engine_dce110), GFP_KERNEL);

	if (!aux_engine)
		return NULL;

#undef REG_STRUCT
#define REG_STRUCT aux_engine_regs
	aux_engine_regs_init(0),
	aux_engine_regs_init(1),
	aux_engine_regs_init(2),
	aux_engine_regs_init(3),
	aux_engine_regs_init(4);

	dce110_aux_engine_construct(aux_engine, ctx, inst,
				    SW_AUX_TIMEOUT_PERIOD_MULTIPLIER * AUX_TIMEOUT_PERIOD,
				    &aux_engine_regs[inst],
					&aux_mask,
					&aux_shift,
					ctx->dc->caps.extended_aux_timeout_support);

	return &aux_engine->base;
}
#define i2c_inst_regs_init(id)\
	I2C_HW_ENGINE_COMMON_REG_LIST_DCN30_RI(id)

static struct dce_i2c_registers i2c_hw_regs[5];

static const struct dce_i2c_shift i2c_shifts = {
		I2C_COMMON_MASK_SH_LIST_DCN30(__SHIFT)
};

static const struct dce_i2c_mask i2c_masks = {
		I2C_COMMON_MASK_SH_LIST_DCN30(_MASK)
};

static struct dce_i2c_hw *dcn32_i2c_hw_create(
	struct dc_context *ctx,
	uint32_t inst)
{
	struct dce_i2c_hw *dce_i2c_hw =
		kzalloc(sizeof(struct dce_i2c_hw), GFP_KERNEL);

	if (!dce_i2c_hw)
		return NULL;

#undef REG_STRUCT
#define REG_STRUCT i2c_hw_regs
	i2c_inst_regs_init(1),
	i2c_inst_regs_init(2),
	i2c_inst_regs_init(3),
	i2c_inst_regs_init(4),
	i2c_inst_regs_init(5);

	dcn2_i2c_hw_construct(dce_i2c_hw, ctx, inst,
				    &i2c_hw_regs[inst], &i2c_shifts, &i2c_masks);

	return dce_i2c_hw;
}

static struct clock_source *dcn32_clock_source_create(
		struct dc_context *ctx,
		struct dc_bios *bios,
		enum clock_source_id id,
		const struct dce110_clk_src_regs *regs,
		bool dp_clk_src)
{
	struct dce110_clk_src *clk_src =
		kzalloc(sizeof(struct dce110_clk_src), GFP_KERNEL);

	if (!clk_src)
		return NULL;

	if (dcn31_clk_src_construct(clk_src, ctx, bios, id,
			regs, &cs_shift, &cs_mask)) {
		clk_src->base.dp_clk_src = dp_clk_src;
		return &clk_src->base;
	}

	kfree(clk_src);
	BREAK_TO_DEBUGGER();
	return NULL;
}

static struct hubbub *dcn32_hubbub_create(struct dc_context *ctx)
{
	int i;

	struct dcn20_hubbub *hubbub2 = kzalloc(sizeof(struct dcn20_hubbub),
					  GFP_KERNEL);

	if (!hubbub2)
		return NULL;

#undef REG_STRUCT
#define REG_STRUCT hubbub_reg
	hubbub_reg_init();

#undef REG_STRUCT
#define REG_STRUCT vmid_regs
	vmid_regs_init(0),
	vmid_regs_init(1),
	vmid_regs_init(2),
	vmid_regs_init(3),
	vmid_regs_init(4),
	vmid_regs_init(5),
	vmid_regs_init(6),
	vmid_regs_init(7),
	vmid_regs_init(8),
	vmid_regs_init(9),
	vmid_regs_init(10),
	vmid_regs_init(11),
	vmid_regs_init(12),
	vmid_regs_init(13),
	vmid_regs_init(14),
	vmid_regs_init(15);

	hubbub32_construct(hubbub2, ctx,
			&hubbub_reg,
			&hubbub_shift,
			&hubbub_mask,
			ctx->dc->dml.ip.det_buffer_size_kbytes,
			ctx->dc->dml.ip.pixel_chunk_size_kbytes,
			ctx->dc->dml.ip.config_return_buffer_size_in_kbytes);


	for (i = 0; i < res_cap_dcn32.num_vmid; i++) {
		struct dcn20_vmid *vmid = &hubbub2->vmid[i];

		vmid->ctx = ctx;

		vmid->regs = &vmid_regs[i];
		vmid->shifts = &vmid_shifts;
		vmid->masks = &vmid_masks;
	}

	return &hubbub2->base;
}

static struct hubp *dcn32_hubp_create(
	struct dc_context *ctx,
	uint32_t inst)
{
	struct dcn20_hubp *hubp2 =
		kzalloc(sizeof(struct dcn20_hubp), GFP_KERNEL);

	if (!hubp2)
		return NULL;

#undef REG_STRUCT
#define REG_STRUCT hubp_regs
	hubp_regs_init(0),
	hubp_regs_init(1),
	hubp_regs_init(2),
	hubp_regs_init(3);

	if (hubp32_construct(hubp2, ctx, inst,
			&hubp_regs[inst], &hubp_shift, &hubp_mask))
		return &hubp2->base;

	BREAK_TO_DEBUGGER();
	kfree(hubp2);
	return NULL;
}

static void dcn32_dpp_destroy(struct dpp **dpp)
{
	kfree(TO_DCN30_DPP(*dpp));
	*dpp = NULL;
}

static struct dpp *dcn32_dpp_create(
	struct dc_context *ctx,
	uint32_t inst)
{
	struct dcn3_dpp *dpp3 =
		kzalloc(sizeof(struct dcn3_dpp), GFP_KERNEL);

	if (!dpp3)
		return NULL;

#undef REG_STRUCT
#define REG_STRUCT dpp_regs
	dpp_regs_init(0),
	dpp_regs_init(1),
	dpp_regs_init(2),
	dpp_regs_init(3);

	if (dpp32_construct(dpp3, ctx, inst,
			&dpp_regs[inst], &tf_shift, &tf_mask))
		return &dpp3->base;

	BREAK_TO_DEBUGGER();
	kfree(dpp3);
	return NULL;
}

static struct mpc *dcn32_mpc_create(
		struct dc_context *ctx,
		int num_mpcc,
		int num_rmu)
{
	struct dcn30_mpc *mpc30 = kzalloc(sizeof(struct dcn30_mpc),
					  GFP_KERNEL);

	if (!mpc30)
		return NULL;

#undef REG_STRUCT
#define REG_STRUCT mpc_regs
	dcn_mpc_regs_init();

	dcn32_mpc_construct(mpc30, ctx,
			&mpc_regs,
			&mpc_shift,
			&mpc_mask,
			num_mpcc,
			num_rmu);

	return &mpc30->base;
}

static struct output_pixel_processor *dcn32_opp_create(
	struct dc_context *ctx, uint32_t inst)
{
	struct dcn20_opp *opp2 =
		kzalloc(sizeof(struct dcn20_opp), GFP_KERNEL);

	if (!opp2) {
		BREAK_TO_DEBUGGER();
		return NULL;
	}

#undef REG_STRUCT
#define REG_STRUCT opp_regs
	opp_regs_init(0),
	opp_regs_init(1),
	opp_regs_init(2),
	opp_regs_init(3);

	dcn20_opp_construct(opp2, ctx, inst,
			&opp_regs[inst], &opp_shift, &opp_mask);
	return &opp2->base;
}


static struct timing_generator *dcn32_timing_generator_create(
		struct dc_context *ctx,
		uint32_t instance)
{
	struct optc *tgn10 =
		kzalloc(sizeof(struct optc), GFP_KERNEL);

	if (!tgn10)
		return NULL;

#undef REG_STRUCT
#define REG_STRUCT optc_regs
	optc_regs_init(0),
	optc_regs_init(1),
	optc_regs_init(2),
	optc_regs_init(3);

	tgn10->base.inst = instance;
	tgn10->base.ctx = ctx;

	tgn10->tg_regs = &optc_regs[instance];
	tgn10->tg_shift = &optc_shift;
	tgn10->tg_mask = &optc_mask;

	dcn32_timing_generator_init(tgn10);

	return &tgn10->base;
}

static const struct encoder_feature_support link_enc_feature = {
		.max_hdmi_deep_color = COLOR_DEPTH_121212,
		.max_hdmi_pixel_clock = 600000,
		.hdmi_ycbcr420_supported = true,
		.dp_ycbcr420_supported = true,
		.fec_supported = true,
		.flags.bits.IS_HBR2_CAPABLE = true,
		.flags.bits.IS_HBR3_CAPABLE = true,
		.flags.bits.IS_TPS3_CAPABLE = true,
		.flags.bits.IS_TPS4_CAPABLE = true
};

static struct link_encoder *dcn32_link_encoder_create(
	struct dc_context *ctx,
	const struct encoder_init_data *enc_init_data)
{
	struct dcn20_link_encoder *enc20 =
		kzalloc(sizeof(struct dcn20_link_encoder), GFP_KERNEL);

	if (!enc20)
		return NULL;

#undef REG_STRUCT
#define REG_STRUCT link_enc_aux_regs
	aux_regs_init(0),
	aux_regs_init(1),
	aux_regs_init(2),
	aux_regs_init(3),
	aux_regs_init(4);

#undef REG_STRUCT
#define REG_STRUCT link_enc_hpd_regs
	hpd_regs_init(0),
	hpd_regs_init(1),
	hpd_regs_init(2),
	hpd_regs_init(3),
	hpd_regs_init(4);

#undef REG_STRUCT
#define REG_STRUCT link_enc_regs
	link_regs_init(0, A),
	link_regs_init(1, B),
	link_regs_init(2, C),
	link_regs_init(3, D),
	link_regs_init(4, E);

	dcn32_link_encoder_construct(enc20,
			enc_init_data,
			&link_enc_feature,
			&link_enc_regs[enc_init_data->transmitter],
			&link_enc_aux_regs[enc_init_data->channel - 1],
			&link_enc_hpd_regs[enc_init_data->hpd_source],
			&le_shift,
			&le_mask);

	return &enc20->enc10.base;
}

struct panel_cntl *dcn32_panel_cntl_create(const struct panel_cntl_init_data *init_data)
{
	struct dcn31_panel_cntl *panel_cntl =
		kzalloc(sizeof(struct dcn31_panel_cntl), GFP_KERNEL);

	if (!panel_cntl)
		return NULL;

	dcn31_panel_cntl_construct(panel_cntl, init_data);

	return &panel_cntl->base;
}

static void read_dce_straps(
	struct dc_context *ctx,
	struct resource_straps *straps)
{
	generic_reg_get(ctx, ctx->dcn_reg_offsets[regDC_PINSTRAPS_BASE_IDX] + regDC_PINSTRAPS,
		FN(DC_PINSTRAPS, DC_PINSTRAPS_AUDIO), &straps->dc_pinstraps_audio);

}

static struct audio *dcn32_create_audio(
		struct dc_context *ctx, unsigned int inst)
{

#undef REG_STRUCT
#define REG_STRUCT audio_regs
	audio_regs_init(0),
	audio_regs_init(1),
	audio_regs_init(2),
	audio_regs_init(3),
	audio_regs_init(4);

	return dce_audio_create(ctx, inst,
			&audio_regs[inst], &audio_shift, &audio_mask);
}

static struct vpg *dcn32_vpg_create(
	struct dc_context *ctx,
	uint32_t inst)
{
	struct dcn30_vpg *vpg3 = kzalloc(sizeof(struct dcn30_vpg), GFP_KERNEL);

	if (!vpg3)
		return NULL;

#undef REG_STRUCT
#define REG_STRUCT vpg_regs
	vpg_regs_init(0),
	vpg_regs_init(1),
	vpg_regs_init(2),
	vpg_regs_init(3),
	vpg_regs_init(4),
	vpg_regs_init(5),
	vpg_regs_init(6),
	vpg_regs_init(7),
	vpg_regs_init(8),
	vpg_regs_init(9);

	vpg3_construct(vpg3, ctx, inst,
			&vpg_regs[inst],
			&vpg_shift,
			&vpg_mask);

	return &vpg3->base;
}

static struct afmt *dcn32_afmt_create(
	struct dc_context *ctx,
	uint32_t inst)
{
	struct dcn30_afmt *afmt3 = kzalloc(sizeof(struct dcn30_afmt), GFP_KERNEL);

	if (!afmt3)
		return NULL;

#undef REG_STRUCT
#define REG_STRUCT afmt_regs
	afmt_regs_init(0),
	afmt_regs_init(1),
	afmt_regs_init(2),
	afmt_regs_init(3),
	afmt_regs_init(4),
	afmt_regs_init(5);

	afmt3_construct(afmt3, ctx, inst,
			&afmt_regs[inst],
			&afmt_shift,
			&afmt_mask);

	return &afmt3->base;
}

static struct apg *dcn31_apg_create(
	struct dc_context *ctx,
	uint32_t inst)
{
	struct dcn31_apg *apg31 = kzalloc(sizeof(struct dcn31_apg), GFP_KERNEL);

	if (!apg31)
		return NULL;

#undef REG_STRUCT
#define REG_STRUCT apg_regs
	apg_regs_init(0),
	apg_regs_init(1),
	apg_regs_init(2),
	apg_regs_init(3);

	apg31_construct(apg31, ctx, inst,
			&apg_regs[inst],
			&apg_shift,
			&apg_mask);

	return &apg31->base;
}

static struct stream_encoder *dcn32_stream_encoder_create(
	enum engine_id eng_id,
	struct dc_context *ctx)
{
	struct dcn10_stream_encoder *enc1;
	struct vpg *vpg;
	struct afmt *afmt;
	int vpg_inst;
	int afmt_inst;

	/* Mapping of VPG, AFMT, DME register blocks to DIO block instance */
	if (eng_id <= ENGINE_ID_DIGF) {
		vpg_inst = eng_id;
		afmt_inst = eng_id;
	} else
		return NULL;

	enc1 = kzalloc(sizeof(struct dcn10_stream_encoder), GFP_KERNEL);
	vpg = dcn32_vpg_create(ctx, vpg_inst);
	afmt = dcn32_afmt_create(ctx, afmt_inst);

	if (!enc1 || !vpg || !afmt) {
		kfree(enc1);
		kfree(vpg);
		kfree(afmt);
		return NULL;
	}

#undef REG_STRUCT
#define REG_STRUCT stream_enc_regs
	stream_enc_regs_init(0),
	stream_enc_regs_init(1),
	stream_enc_regs_init(2),
	stream_enc_regs_init(3),
	stream_enc_regs_init(4);

	dcn32_dio_stream_encoder_construct(enc1, ctx, ctx->dc_bios,
					eng_id, vpg, afmt,
					&stream_enc_regs[eng_id],
					&se_shift, &se_mask);

	return &enc1->base;
}

static struct hpo_dp_stream_encoder *dcn32_hpo_dp_stream_encoder_create(
	enum engine_id eng_id,
	struct dc_context *ctx)
{
	struct dcn31_hpo_dp_stream_encoder *hpo_dp_enc31;
	struct vpg *vpg;
	struct apg *apg;
	uint32_t hpo_dp_inst;
	uint32_t vpg_inst;
	uint32_t apg_inst;

	ASSERT((eng_id >= ENGINE_ID_HPO_DP_0) && (eng_id <= ENGINE_ID_HPO_DP_3));
	hpo_dp_inst = eng_id - ENGINE_ID_HPO_DP_0;

	/* Mapping of VPG register blocks to HPO DP block instance:
	 * VPG[6] -> HPO_DP[0]
	 * VPG[7] -> HPO_DP[1]
	 * VPG[8] -> HPO_DP[2]
	 * VPG[9] -> HPO_DP[3]
	 */
	vpg_inst = hpo_dp_inst + 6;

	/* Mapping of APG register blocks to HPO DP block instance:
	 * APG[0] -> HPO_DP[0]
	 * APG[1] -> HPO_DP[1]
	 * APG[2] -> HPO_DP[2]
	 * APG[3] -> HPO_DP[3]
	 */
	apg_inst = hpo_dp_inst;

	/* allocate HPO stream encoder and create VPG sub-block */
	hpo_dp_enc31 = kzalloc(sizeof(struct dcn31_hpo_dp_stream_encoder), GFP_KERNEL);
	vpg = dcn32_vpg_create(ctx, vpg_inst);
	apg = dcn31_apg_create(ctx, apg_inst);

	if (!hpo_dp_enc31 || !vpg || !apg) {
		kfree(hpo_dp_enc31);
		kfree(vpg);
		kfree(apg);
		return NULL;
	}

#undef REG_STRUCT
#define REG_STRUCT hpo_dp_stream_enc_regs
	hpo_dp_stream_encoder_reg_init(0),
	hpo_dp_stream_encoder_reg_init(1),
	hpo_dp_stream_encoder_reg_init(2),
	hpo_dp_stream_encoder_reg_init(3);

	dcn31_hpo_dp_stream_encoder_construct(hpo_dp_enc31, ctx, ctx->dc_bios,
					hpo_dp_inst, eng_id, vpg, apg,
					&hpo_dp_stream_enc_regs[hpo_dp_inst],
					&hpo_dp_se_shift, &hpo_dp_se_mask);

	return &hpo_dp_enc31->base;
}

static struct hpo_dp_link_encoder *dcn32_hpo_dp_link_encoder_create(
	uint8_t inst,
	struct dc_context *ctx)
{
	struct dcn31_hpo_dp_link_encoder *hpo_dp_enc31;

	/* allocate HPO link encoder */
	hpo_dp_enc31 = kzalloc(sizeof(struct dcn31_hpo_dp_link_encoder), GFP_KERNEL);

#undef REG_STRUCT
#define REG_STRUCT hpo_dp_link_enc_regs
	hpo_dp_link_encoder_reg_init(0),
	hpo_dp_link_encoder_reg_init(1);

	hpo_dp_link_encoder32_construct(hpo_dp_enc31, ctx, inst,
					&hpo_dp_link_enc_regs[inst],
					&hpo_dp_le_shift, &hpo_dp_le_mask);

	return &hpo_dp_enc31->base;
}

static struct dce_hwseq *dcn32_hwseq_create(
	struct dc_context *ctx)
{
	struct dce_hwseq *hws = kzalloc(sizeof(struct dce_hwseq), GFP_KERNEL);

#undef REG_STRUCT
#define REG_STRUCT hwseq_reg
	hwseq_reg_init();

	if (hws) {
		hws->ctx = ctx;
		hws->regs = &hwseq_reg;
		hws->shifts = &hwseq_shift;
		hws->masks = &hwseq_mask;
	}
	return hws;
}
static const struct resource_create_funcs res_create_funcs = {
	.read_dce_straps = read_dce_straps,
	.create_audio = dcn32_create_audio,
	.create_stream_encoder = dcn32_stream_encoder_create,
	.create_hpo_dp_stream_encoder = dcn32_hpo_dp_stream_encoder_create,
	.create_hpo_dp_link_encoder = dcn32_hpo_dp_link_encoder_create,
	.create_hwseq = dcn32_hwseq_create,
};

static void dcn32_resource_destruct(struct dcn32_resource_pool *pool)
{
	unsigned int i;

	for (i = 0; i < pool->base.stream_enc_count; i++) {
		if (pool->base.stream_enc[i] != NULL) {
			if (pool->base.stream_enc[i]->vpg != NULL) {
				kfree(DCN30_VPG_FROM_VPG(pool->base.stream_enc[i]->vpg));
				pool->base.stream_enc[i]->vpg = NULL;
			}
			if (pool->base.stream_enc[i]->afmt != NULL) {
				kfree(DCN30_AFMT_FROM_AFMT(pool->base.stream_enc[i]->afmt));
				pool->base.stream_enc[i]->afmt = NULL;
			}
			kfree(DCN10STRENC_FROM_STRENC(pool->base.stream_enc[i]));
			pool->base.stream_enc[i] = NULL;
		}
	}

	for (i = 0; i < pool->base.hpo_dp_stream_enc_count; i++) {
		if (pool->base.hpo_dp_stream_enc[i] != NULL) {
			if (pool->base.hpo_dp_stream_enc[i]->vpg != NULL) {
				kfree(DCN30_VPG_FROM_VPG(pool->base.hpo_dp_stream_enc[i]->vpg));
				pool->base.hpo_dp_stream_enc[i]->vpg = NULL;
			}
			if (pool->base.hpo_dp_stream_enc[i]->apg != NULL) {
				kfree(DCN31_APG_FROM_APG(pool->base.hpo_dp_stream_enc[i]->apg));
				pool->base.hpo_dp_stream_enc[i]->apg = NULL;
			}
			kfree(DCN3_1_HPO_DP_STREAM_ENC_FROM_HPO_STREAM_ENC(pool->base.hpo_dp_stream_enc[i]));
			pool->base.hpo_dp_stream_enc[i] = NULL;
		}
	}

	for (i = 0; i < pool->base.hpo_dp_link_enc_count; i++) {
		if (pool->base.hpo_dp_link_enc[i] != NULL) {
			kfree(DCN3_1_HPO_DP_LINK_ENC_FROM_HPO_LINK_ENC(pool->base.hpo_dp_link_enc[i]));
			pool->base.hpo_dp_link_enc[i] = NULL;
		}
	}

	for (i = 0; i < pool->base.res_cap->num_dsc; i++) {
		if (pool->base.dscs[i] != NULL)
			dcn20_dsc_destroy(&pool->base.dscs[i]);
	}

	if (pool->base.mpc != NULL) {
		kfree(TO_DCN20_MPC(pool->base.mpc));
		pool->base.mpc = NULL;
	}
	if (pool->base.hubbub != NULL) {
		kfree(TO_DCN20_HUBBUB(pool->base.hubbub));
		pool->base.hubbub = NULL;
	}
	for (i = 0; i < pool->base.pipe_count; i++) {
		if (pool->base.dpps[i] != NULL)
			dcn32_dpp_destroy(&pool->base.dpps[i]);

		if (pool->base.ipps[i] != NULL)
			pool->base.ipps[i]->funcs->ipp_destroy(&pool->base.ipps[i]);

		if (pool->base.hubps[i] != NULL) {
			kfree(TO_DCN20_HUBP(pool->base.hubps[i]));
			pool->base.hubps[i] = NULL;
		}

		if (pool->base.irqs != NULL) {
			dal_irq_service_destroy(&pool->base.irqs);
		}
	}

	for (i = 0; i < pool->base.res_cap->num_ddc; i++) {
		if (pool->base.engines[i] != NULL)
			dce110_engine_destroy(&pool->base.engines[i]);
		if (pool->base.hw_i2cs[i] != NULL) {
			kfree(pool->base.hw_i2cs[i]);
			pool->base.hw_i2cs[i] = NULL;
		}
		if (pool->base.sw_i2cs[i] != NULL) {
			kfree(pool->base.sw_i2cs[i]);
			pool->base.sw_i2cs[i] = NULL;
		}
	}

	for (i = 0; i < pool->base.res_cap->num_opp; i++) {
		if (pool->base.opps[i] != NULL)
			pool->base.opps[i]->funcs->opp_destroy(&pool->base.opps[i]);
	}

	for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) {
		if (pool->base.timing_generators[i] != NULL)	{
			kfree(DCN10TG_FROM_TG(pool->base.timing_generators[i]));
			pool->base.timing_generators[i] = NULL;
		}
	}

	for (i = 0; i < pool->base.res_cap->num_dwb; i++) {
		if (pool->base.dwbc[i] != NULL) {
			kfree(TO_DCN30_DWBC(pool->base.dwbc[i]));
			pool->base.dwbc[i] = NULL;
		}
		if (pool->base.mcif_wb[i] != NULL) {
			kfree(TO_DCN30_MMHUBBUB(pool->base.mcif_wb[i]));
			pool->base.mcif_wb[i] = NULL;
		}
	}

	for (i = 0; i < pool->base.audio_count; i++) {
		if (pool->base.audios[i])
			dce_aud_destroy(&pool->base.audios[i]);
	}

	for (i = 0; i < pool->base.clk_src_count; i++) {
		if (pool->base.clock_sources[i] != NULL) {
			dcn20_clock_source_destroy(&pool->base.clock_sources[i]);
			pool->base.clock_sources[i] = NULL;
		}
	}

	for (i = 0; i < pool->base.res_cap->num_mpc_3dlut; i++) {
		if (pool->base.mpc_lut[i] != NULL) {
			dc_3dlut_func_release(pool->base.mpc_lut[i]);
			pool->base.mpc_lut[i] = NULL;
		}
		if (pool->base.mpc_shaper[i] != NULL) {
			dc_transfer_func_release(pool->base.mpc_shaper[i]);
			pool->base.mpc_shaper[i] = NULL;
		}
	}

	if (pool->base.dp_clock_source != NULL) {
		dcn20_clock_source_destroy(&pool->base.dp_clock_source);
		pool->base.dp_clock_source = NULL;
	}

	for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) {
		if (pool->base.multiple_abms[i] != NULL)
			dce_abm_destroy(&pool->base.multiple_abms[i]);
	}

	if (pool->base.psr != NULL)
		dmub_psr_destroy(&pool->base.psr);

	if (pool->base.dccg != NULL)
		dcn_dccg_destroy(&pool->base.dccg);

	if (pool->base.oem_device != NULL) {
		struct dc *dc = pool->base.oem_device->ctx->dc;

		dc->link_srv->destroy_ddc_service(&pool->base.oem_device);
	}
}


static bool dcn32_dwbc_create(struct dc_context *ctx, struct resource_pool *pool)
{
	int i;
	uint32_t dwb_count = pool->res_cap->num_dwb;

	for (i = 0; i < dwb_count; i++) {
		struct dcn30_dwbc *dwbc30 = kzalloc(sizeof(struct dcn30_dwbc),
						    GFP_KERNEL);

		if (!dwbc30) {
			dm_error("DC: failed to create dwbc30!\n");
			return false;
		}

#undef REG_STRUCT
#define REG_STRUCT dwbc30_regs
		dwbc_regs_dcn3_init(0);

		dcn30_dwbc_construct(dwbc30, ctx,
				&dwbc30_regs[i],
				&dwbc30_shift,
				&dwbc30_mask,
				i);

		pool->dwbc[i] = &dwbc30->base;
	}
	return true;
}

static bool dcn32_mmhubbub_create(struct dc_context *ctx, struct resource_pool *pool)
{
	int i;
	uint32_t dwb_count = pool->res_cap->num_dwb;

	for (i = 0; i < dwb_count; i++) {
		struct dcn30_mmhubbub *mcif_wb30 = kzalloc(sizeof(struct dcn30_mmhubbub),
						    GFP_KERNEL);

		if (!mcif_wb30) {
			dm_error("DC: failed to create mcif_wb30!\n");
			return false;
		}

#undef REG_STRUCT
#define REG_STRUCT mcif_wb30_regs
		mcif_wb_regs_dcn3_init(0);

		dcn32_mmhubbub_construct(mcif_wb30, ctx,
				&mcif_wb30_regs[i],
				&mcif_wb30_shift,
				&mcif_wb30_mask,
				i);

		pool->mcif_wb[i] = &mcif_wb30->base;
	}
	return true;
}

static struct display_stream_compressor *dcn32_dsc_create(
	struct dc_context *ctx, uint32_t inst)
{
	struct dcn20_dsc *dsc =
		kzalloc(sizeof(struct dcn20_dsc), GFP_KERNEL);

	if (!dsc) {
		BREAK_TO_DEBUGGER();
		return NULL;
	}

#undef REG_STRUCT
#define REG_STRUCT dsc_regs
	dsc_regsDCN20_init(0),
	dsc_regsDCN20_init(1),
	dsc_regsDCN20_init(2),
	dsc_regsDCN20_init(3);

	dsc2_construct(dsc, ctx, inst, &dsc_regs[inst], &dsc_shift, &dsc_mask);

	dsc->max_image_width = 6016;

	return &dsc->base;
}

static void dcn32_destroy_resource_pool(struct resource_pool **pool)
{
	struct dcn32_resource_pool *dcn32_pool = TO_DCN32_RES_POOL(*pool);

	dcn32_resource_destruct(dcn32_pool);
	kfree(dcn32_pool);
	*pool = NULL;
}

bool dcn32_acquire_post_bldn_3dlut(
		struct resource_context *res_ctx,
		const struct resource_pool *pool,
		int mpcc_id,
		struct dc_3dlut **lut,
		struct dc_transfer_func **shaper)
{
	bool ret = false;

	ASSERT(*lut == NULL && *shaper == NULL);
	*lut = NULL;
	*shaper = NULL;

	if (!res_ctx->is_mpc_3dlut_acquired[mpcc_id]) {
		*lut = pool->mpc_lut[mpcc_id];
		*shaper = pool->mpc_shaper[mpcc_id];
		res_ctx->is_mpc_3dlut_acquired[mpcc_id] = true;
		ret = true;
	}
	return ret;
}

bool dcn32_release_post_bldn_3dlut(
		struct resource_context *res_ctx,
		const struct resource_pool *pool,
		struct dc_3dlut **lut,
		struct dc_transfer_func **shaper)
{
	int i;
	bool ret = false;

	for (i = 0; i < pool->res_cap->num_mpc_3dlut; i++) {
		if (pool->mpc_lut[i] == *lut && pool->mpc_shaper[i] == *shaper) {
			res_ctx->is_mpc_3dlut_acquired[i] = false;
			pool->mpc_lut[i]->state.raw = 0;
			*lut = NULL;
			*shaper = NULL;
			ret = true;
			break;
		}
	}
	return ret;
}

static void dcn32_enable_phantom_plane(struct dc *dc,
		struct dc_state *context,
		struct dc_stream_state *phantom_stream,
		unsigned int dc_pipe_idx)
{
	struct dc_plane_state *phantom_plane = NULL;
	struct dc_plane_state *prev_phantom_plane = NULL;
	struct pipe_ctx *curr_pipe = &context->res_ctx.pipe_ctx[dc_pipe_idx];

	while (curr_pipe) {
		if (curr_pipe->top_pipe && curr_pipe->top_pipe->plane_state == curr_pipe->plane_state)
			phantom_plane = prev_phantom_plane;
		else
			phantom_plane = dc_create_plane_state(dc);

		memcpy(&phantom_plane->address, &curr_pipe->plane_state->address, sizeof(phantom_plane->address));
		memcpy(&phantom_plane->scaling_quality, &curr_pipe->plane_state->scaling_quality,
				sizeof(phantom_plane->scaling_quality));
		memcpy(&phantom_plane->src_rect, &curr_pipe->plane_state->src_rect, sizeof(phantom_plane->src_rect));
		memcpy(&phantom_plane->dst_rect, &curr_pipe->plane_state->dst_rect, sizeof(phantom_plane->dst_rect));
		memcpy(&phantom_plane->clip_rect, &curr_pipe->plane_state->clip_rect, sizeof(phantom_plane->clip_rect));
		memcpy(&phantom_plane->plane_size, &curr_pipe->plane_state->plane_size,
				sizeof(phantom_plane->plane_size));
		memcpy(&phantom_plane->tiling_info, &curr_pipe->plane_state->tiling_info,
				sizeof(phantom_plane->tiling_info));
		memcpy(&phantom_plane->dcc, &curr_pipe->plane_state->dcc, sizeof(phantom_plane->dcc));
		phantom_plane->format = curr_pipe->plane_state->format;
		phantom_plane->rotation = curr_pipe->plane_state->rotation;
		phantom_plane->visible = curr_pipe->plane_state->visible;

		/* Shadow pipe has small viewport. */
		phantom_plane->clip_rect.y = 0;
		phantom_plane->clip_rect.height = phantom_stream->src.height;

		phantom_plane->is_phantom = true;

		dc_add_plane_to_context(dc, phantom_stream, phantom_plane, context);

		curr_pipe = curr_pipe->bottom_pipe;
		prev_phantom_plane = phantom_plane;
	}
}

static struct dc_stream_state *dcn32_enable_phantom_stream(struct dc *dc,
		struct dc_state *context,
		display_e2e_pipe_params_st *pipes,
		unsigned int pipe_cnt,
		unsigned int dc_pipe_idx)
{
	struct dc_stream_state *phantom_stream = NULL;
	struct pipe_ctx *ref_pipe = &context->res_ctx.pipe_ctx[dc_pipe_idx];

	phantom_stream = dc_create_stream_for_sink(ref_pipe->stream->sink);
	phantom_stream->signal = SIGNAL_TYPE_VIRTUAL;
	phantom_stream->dpms_off = true;
	phantom_stream->mall_stream_config.type = SUBVP_PHANTOM;
	phantom_stream->mall_stream_config.paired_stream = ref_pipe->stream;
	ref_pipe->stream->mall_stream_config.type = SUBVP_MAIN;
	ref_pipe->stream->mall_stream_config.paired_stream = phantom_stream;

	/* stream has limited viewport and small timing */
	memcpy(&phantom_stream->timing, &ref_pipe->stream->timing, sizeof(phantom_stream->timing));
	memcpy(&phantom_stream->src, &ref_pipe->stream->src, sizeof(phantom_stream->src));
	memcpy(&phantom_stream->dst, &ref_pipe->stream->dst, sizeof(phantom_stream->dst));
	DC_FP_START();
	dcn32_set_phantom_stream_timing(dc, context, ref_pipe, phantom_stream, pipes, pipe_cnt, dc_pipe_idx);
	DC_FP_END();

	dc_add_stream_to_ctx(dc, context, phantom_stream);
	return phantom_stream;
}

void dcn32_retain_phantom_pipes(struct dc *dc, struct dc_state *context)
{
	int i;
	struct dc_plane_state *phantom_plane = NULL;
	struct dc_stream_state *phantom_stream = NULL;

	for (i = 0; i < dc->res_pool->pipe_count; i++) {
		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];

		if (resource_is_pipe_type(pipe, OTG_MASTER) &&
				resource_is_pipe_type(pipe, DPP_PIPE) &&
				pipe->stream->mall_stream_config.type == SUBVP_PHANTOM) {
			phantom_plane = pipe->plane_state;
			phantom_stream = pipe->stream;

			dc_plane_state_retain(phantom_plane);
			dc_stream_retain(phantom_stream);
		}
	}
}

// return true if removed piped from ctx, false otherwise
bool dcn32_remove_phantom_pipes(struct dc *dc, struct dc_state *context, bool fast_update)
{
	int i;
	bool removed_pipe = false;
	struct dc_plane_state *phantom_plane = NULL;
	struct dc_stream_state *phantom_stream = NULL;

	for (i = 0; i < dc->res_pool->pipe_count; i++) {
		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
		// build scaling params for phantom pipes
		if (pipe->plane_state && pipe->stream && pipe->stream->mall_stream_config.type == SUBVP_PHANTOM) {
			phantom_plane = pipe->plane_state;
			phantom_stream = pipe->stream;

			dc_rem_all_planes_for_stream(dc, pipe->stream, context);
			dc_remove_stream_from_ctx(dc, context, pipe->stream);

			/* Ref count is incremented on allocation and also when added to the context.
			 * Therefore we must call release for the the phantom plane and stream once
			 * they are removed from the ctx to finally decrement the refcount to 0 to free.
			 */
			dc_plane_state_release(phantom_plane);
			dc_stream_release(phantom_stream);

			removed_pipe = true;
		}

		/* For non-full updates, a shallow copy of the current state
		 * is created. In this case we don't want to erase the current
		 * state (there can be 2 HIRQL threads, one in flip, and one in
		 * checkMPO) that can cause a race condition.
		 *
		 * This is just a workaround, needs a proper fix.
		 */
		if (!fast_update) {
			// Clear all phantom stream info
			if (pipe->stream) {
				pipe->stream->mall_stream_config.type = SUBVP_NONE;
				pipe->stream->mall_stream_config.paired_stream = NULL;
			}

			if (pipe->plane_state) {
				pipe->plane_state->is_phantom = false;
			}
		}
	}
	return removed_pipe;
}

/* TODO: Input to this function should indicate which pipe indexes (or streams)
 * require a phantom pipe / stream
 */
void dcn32_add_phantom_pipes(struct dc *dc, struct dc_state *context,
		display_e2e_pipe_params_st *pipes,
		unsigned int pipe_cnt,
		unsigned int index)
{
	struct dc_stream_state *phantom_stream = NULL;
	unsigned int i;

	// The index of the DC pipe passed into this function is guarenteed to
	// be a valid candidate for SubVP (i.e. has a plane, stream, doesn't
	// already have phantom pipe assigned, etc.) by previous checks.
	phantom_stream = dcn32_enable_phantom_stream(dc, context, pipes, pipe_cnt, index);
	dcn32_enable_phantom_plane(dc, context, phantom_stream, index);

	for (i = 0; i < dc->res_pool->pipe_count; i++) {
		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];

		// Build scaling params for phantom pipes which were newly added.
		// We determine which phantom pipes were added by comparing with
		// the phantom stream.
		if (pipe->plane_state && pipe->stream && pipe->stream == phantom_stream &&
				pipe->stream->mall_stream_config.type == SUBVP_PHANTOM) {
			pipe->stream->use_dynamic_meta = false;
			pipe->plane_state->flip_immediate = false;
			if (!resource_build_scaling_params(pipe)) {
				// Log / remove phantom pipes since failed to build scaling params
			}
		}
	}
}

static bool dml1_validate(struct dc *dc, struct dc_state *context, bool fast_validate)
{
	bool out = false;

	BW_VAL_TRACE_SETUP();

	int vlevel = 0;
	int pipe_cnt = 0;
	display_e2e_pipe_params_st *pipes = kzalloc(dc->res_pool->pipe_count * sizeof(display_e2e_pipe_params_st), GFP_KERNEL);
	struct mall_temp_config mall_temp_config;

	/* To handle Freesync properly, setting FreeSync DML parameters
	 * to its default state for the first stage of validation
	 */
	context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching = false;
	context->bw_ctx.dml.soc.dram_clock_change_requirement_final = true;

	DC_LOGGER_INIT(dc->ctx->logger);

	/* For fast validation, there are situations where a shallow copy of
	 * of the dc->current_state is created for the validation. In this case
	 * we want to save and restore the mall config because we always
	 * teardown subvp at the beginning of validation (and don't attempt
	 * to add it back if it's fast validation). If we don't restore the
	 * subvp config in cases of fast validation + shallow copy of the
	 * dc->current_state, the dc->current_state will have a partially
	 * removed subvp state when we did not intend to remove it.
	 */
	if (fast_validate) {
		memset(&mall_temp_config, 0, sizeof(mall_temp_config));
		dcn32_save_mall_state(dc, context, &mall_temp_config);
	}

	BW_VAL_TRACE_COUNT();

	DC_FP_START();
	out = dcn32_internal_validate_bw(dc, context, pipes, &pipe_cnt, &vlevel, fast_validate);
	DC_FP_END();

	if (fast_validate)
		dcn32_restore_mall_state(dc, context, &mall_temp_config);

	if (pipe_cnt == 0)
		goto validate_out;

	if (!out)
		goto validate_fail;

	BW_VAL_TRACE_END_VOLTAGE_LEVEL();

	if (fast_validate) {
		BW_VAL_TRACE_SKIP(fast);
		goto validate_out;
	}

	dc->res_pool->funcs->calculate_wm_and_dlg(dc, context, pipes, pipe_cnt, vlevel);

	dcn32_override_min_req_memclk(dc, context);

	BW_VAL_TRACE_END_WATERMARKS();

	goto validate_out;

validate_fail:
	DC_LOG_WARNING("Mode Validation Warning: %s failed validation.\n",
		dml_get_status_message(context->bw_ctx.dml.vba.ValidationStatus[context->bw_ctx.dml.vba.soc.num_states]));

	BW_VAL_TRACE_SKIP(fail);
	out = false;

validate_out:
	kfree(pipes);

	BW_VAL_TRACE_FINISH();

	return out;
}

bool dcn32_validate_bandwidth(struct dc *dc,
		struct dc_state *context,
		bool fast_validate)
{
	bool out = false;

	if (dc->debug.using_dml2)
		out = dml2_validate(dc, context, fast_validate);
	else
		out = dml1_validate(dc, context, fast_validate);
	return out;
}

int dcn32_populate_dml_pipes_from_context(
	struct dc *dc, struct dc_state *context,
	display_e2e_pipe_params_st *pipes,
	bool fast_validate)
{
	int i, pipe_cnt;
	struct resource_context *res_ctx = &context->res_ctx;
	struct pipe_ctx *pipe = NULL;
	bool subvp_in_use = false;
	struct dc_crtc_timing *timing;

	dcn20_populate_dml_pipes_from_context(dc, context, pipes, fast_validate);

	for (i = 0, pipe_cnt = 0; i < dc->res_pool->pipe_count; i++) {

		if (!res_ctx->pipe_ctx[i].stream)
			continue;
		pipe = &res_ctx->pipe_ctx[i];
		timing = &pipe->stream->timing;

		pipes[pipe_cnt].pipe.src.gpuvm = true;
		DC_FP_START();
		dcn32_zero_pipe_dcc_fraction(pipes, pipe_cnt);
		DC_FP_END();
		pipes[pipe_cnt].pipe.dest.vfront_porch = timing->v_front_porch;
		pipes[pipe_cnt].pipe.dest.odm_combine_policy = dm_odm_combine_policy_dal;
		pipes[pipe_cnt].pipe.src.gpuvm_min_page_size_kbytes = 256; // according to spreadsheet
		pipes[pipe_cnt].pipe.src.unbounded_req_mode = false;
		pipes[pipe_cnt].pipe.scale_ratio_depth.lb_depth = dm_lb_19;

		/* Only populate DML input with subvp info for full updates.
		 * This is just a workaround -- needs a proper fix.
		 */
		if (!fast_validate) {
			switch (pipe->stream->mall_stream_config.type) {
			case SUBVP_MAIN:
				pipes[pipe_cnt].pipe.src.use_mall_for_pstate_change = dm_use_mall_pstate_change_sub_viewport;
				subvp_in_use = true;
				break;
			case SUBVP_PHANTOM:
				pipes[pipe_cnt].pipe.src.use_mall_for_pstate_change = dm_use_mall_pstate_change_phantom_pipe;
				pipes[pipe_cnt].pipe.src.use_mall_for_static_screen = dm_use_mall_static_screen_disable;
				// Disallow unbounded req for SubVP according to DCHUB programming guide
				pipes[pipe_cnt].pipe.src.unbounded_req_mode = false;
				break;
			case SUBVP_NONE:
				pipes[pipe_cnt].pipe.src.use_mall_for_pstate_change = dm_use_mall_pstate_change_disable;
				pipes[pipe_cnt].pipe.src.use_mall_for_static_screen = dm_use_mall_static_screen_disable;
				break;
			default:
				break;
			}
		}

		pipes[pipe_cnt].dout.dsc_input_bpc = 0;
		if (pipes[pipe_cnt].dout.dsc_enable) {
			switch (timing->display_color_depth) {
			case COLOR_DEPTH_888:
				pipes[pipe_cnt].dout.dsc_input_bpc = 8;
				break;
			case COLOR_DEPTH_101010:
				pipes[pipe_cnt].dout.dsc_input_bpc = 10;
				break;
			case COLOR_DEPTH_121212:
				pipes[pipe_cnt].dout.dsc_input_bpc = 12;
				break;
			default:
				ASSERT(0);
				break;
			}
		}


		pipe_cnt++;
	}

	/* For DET allocation, we don't want to use DML policy (not optimal for utilizing all
	 * the DET available for each pipe). Use the DET override input to maintain our driver
	 * policy.
	 */
	dcn32_set_det_allocations(dc, context, pipes);

	// In general cases we want to keep the dram clock change requirement
	// (prefer configs that support MCLK switch). Only override to false
	// for SubVP
	if (context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching || subvp_in_use)
		context->bw_ctx.dml.soc.dram_clock_change_requirement_final = false;
	else
		context->bw_ctx.dml.soc.dram_clock_change_requirement_final = true;

	return pipe_cnt;
}

static struct dc_cap_funcs cap_funcs = {
	.get_dcc_compression_cap = dcn20_get_dcc_compression_cap,
	.get_subvp_en = dcn32_subvp_in_use,
};

void dcn32_calculate_wm_and_dlg(struct dc *dc, struct dc_state *context,
				display_e2e_pipe_params_st *pipes,
				int pipe_cnt,
				int vlevel)
{
    DC_FP_START();
    dcn32_calculate_wm_and_dlg_fpu(dc, context, pipes, pipe_cnt, vlevel);
    DC_FP_END();
}

static void dcn32_update_bw_bounding_box(struct dc *dc, struct clk_bw_params *bw_params)
{
	DC_FP_START();
	dcn32_update_bw_bounding_box_fpu(dc, bw_params);
	DC_FP_END();
}

static struct resource_funcs dcn32_res_pool_funcs = {
	.destroy = dcn32_destroy_resource_pool,
	.link_enc_create = dcn32_link_encoder_create,
	.link_enc_create_minimal = NULL,
	.panel_cntl_create = dcn32_panel_cntl_create,
	.validate_bandwidth = dcn32_validate_bandwidth,
	.calculate_wm_and_dlg = dcn32_calculate_wm_and_dlg,
	.populate_dml_pipes = dcn32_populate_dml_pipes_from_context,
	.acquire_free_pipe_as_secondary_dpp_pipe = dcn32_acquire_free_pipe_as_secondary_dpp_pipe,
	.acquire_free_pipe_as_secondary_opp_head = dcn32_acquire_free_pipe_as_secondary_opp_head,
	.release_pipe = dcn20_release_pipe,
	.add_stream_to_ctx = dcn30_add_stream_to_ctx,
	.add_dsc_to_stream_resource = dcn20_add_dsc_to_stream_resource,
	.remove_stream_from_ctx = dcn20_remove_stream_from_ctx,
	.populate_dml_writeback_from_context = dcn30_populate_dml_writeback_from_context,
	.set_mcif_arb_params = dcn30_set_mcif_arb_params,
	.find_first_free_match_stream_enc_for_link = dcn10_find_first_free_match_stream_enc_for_link,
	.acquire_post_bldn_3dlut = dcn32_acquire_post_bldn_3dlut,
	.release_post_bldn_3dlut = dcn32_release_post_bldn_3dlut,
	.update_bw_bounding_box = dcn32_update_bw_bounding_box,
	.patch_unknown_plane_state = dcn20_patch_unknown_plane_state,
	.update_soc_for_wm_a = dcn30_update_soc_for_wm_a,
	.add_phantom_pipes = dcn32_add_phantom_pipes,
	.remove_phantom_pipes = dcn32_remove_phantom_pipes,
	.retain_phantom_pipes = dcn32_retain_phantom_pipes,
	.save_mall_state = dcn32_save_mall_state,
	.restore_mall_state = dcn32_restore_mall_state,
};

static uint32_t read_pipe_fuses(struct dc_context *ctx)
{
	uint32_t value = REG_READ(CC_DC_PIPE_DIS);
	/* DCN32 support max 4 pipes */
	value = value & 0xf;
	return value;
}


static bool dcn32_resource_construct(
	uint8_t num_virtual_links,
	struct dc *dc,
	struct dcn32_resource_pool *pool)
{
	int i, j;
	struct dc_context *ctx = dc->ctx;
	struct irq_service_init_data init_data;
	struct ddc_service_init_data ddc_init_data = {0};
	uint32_t pipe_fuses = 0;
	uint32_t num_pipes  = 4;

#undef REG_STRUCT
#define REG_STRUCT bios_regs
	bios_regs_init();

#undef REG_STRUCT
#define REG_STRUCT clk_src_regs
	clk_src_regs_init(0, A),
	clk_src_regs_init(1, B),
	clk_src_regs_init(2, C),
	clk_src_regs_init(3, D),
	clk_src_regs_init(4, E);

#undef REG_STRUCT
#define REG_STRUCT abm_regs
	abm_regs_init(0),
	abm_regs_init(1),
	abm_regs_init(2),
	abm_regs_init(3);

#undef REG_STRUCT
#define REG_STRUCT dccg_regs
	dccg_regs_init();

	DC_FP_START();

	ctx->dc_bios->regs = &bios_regs;

	pool->base.res_cap = &res_cap_dcn32;
	/* max number of pipes for ASIC before checking for pipe fuses */
	num_pipes  = pool->base.res_cap->num_timing_generator;
	pipe_fuses = read_pipe_fuses(ctx);

	for (i = 0; i < pool->base.res_cap->num_timing_generator; i++)
		if (pipe_fuses & 1 << i)
			num_pipes--;

	if (pipe_fuses & 1)
		ASSERT(0); //Unexpected - Pipe 0 should always be fully functional!

	if (pipe_fuses & CC_DC_PIPE_DIS__DC_FULL_DIS_MASK)
		ASSERT(0); //Entire DCN is harvested!

	/* within dml lib, initial value is hard coded, if ASIC pipe is fused, the
	 * value will be changed, update max_num_dpp and max_num_otg for dml.
	 */
	dcn3_2_ip.max_num_dpp = num_pipes;
	dcn3_2_ip.max_num_otg = num_pipes;

	pool->base.funcs = &dcn32_res_pool_funcs;

	/*************************************************
	 *  Resource + asic cap harcoding                *
	 *************************************************/
	pool->base.underlay_pipe_index = NO_UNDERLAY_PIPE;
	pool->base.timing_generator_count = num_pipes;
	pool->base.pipe_count = num_pipes;
	pool->base.mpcc_count = num_pipes;
	dc->caps.max_downscale_ratio = 600;
	dc->caps.i2c_speed_in_khz = 100;
	dc->caps.i2c_speed_in_khz_hdcp = 100; /*1.4 w/a applied by default*/
	/* TODO: Bring max_cursor_size back to 256 after subvp cursor corruption is fixed*/
	dc->caps.max_cursor_size = 64;
	dc->caps.min_horizontal_blanking_period = 80;
	dc->caps.dmdata_alloc_size = 2048;
	dc->caps.mall_size_per_mem_channel = 4;
	dc->caps.mall_size_total = 0;
	dc->caps.cursor_cache_size = dc->caps.max_cursor_size * dc->caps.max_cursor_size * 8;

	dc->caps.cache_line_size = 64;
	dc->caps.cache_num_ways = 16;

	/* Calculate the available MALL space */
	dc->caps.max_cab_allocation_bytes = dcn32_calc_num_avail_chans_for_mall(
		dc, dc->ctx->dc_bios->vram_info.num_chans) *
		dc->caps.mall_size_per_mem_channel * 1024 * 1024;
	dc->caps.mall_size_total = dc->caps.max_cab_allocation_bytes;

	dc->caps.subvp_fw_processing_delay_us = 15;
	dc->caps.subvp_drr_max_vblank_margin_us = 40;
	dc->caps.subvp_prefetch_end_to_mall_start_us = 15;
	dc->caps.subvp_swath_height_margin_lines = 16;
	dc->caps.subvp_pstate_allow_width_us = 20;
	dc->caps.subvp_vertical_int_margin_us = 30;
	dc->caps.subvp_drr_vblank_start_margin_us = 100; // 100us margin

	dc->caps.max_slave_planes = 2;
	dc->caps.max_slave_yuv_planes = 2;
	dc->caps.max_slave_rgb_planes = 2;
	dc->caps.post_blend_color_processing = true;
	dc->caps.force_dp_tps4_for_cp2520 = true;
	if (dc->config.forceHBR2CP2520)
		dc->caps.force_dp_tps4_for_cp2520 = false;
	dc->caps.dp_hpo = true;
	dc->caps.dp_hdmi21_pcon_support = true;
	dc->caps.edp_dsc_support = true;
	dc->caps.extended_aux_timeout_support = true;
	dc->caps.dmcub_support = true;
	dc->caps.seamless_odm = true;
	dc->caps.max_v_total = (1 << 15) - 1;

	/* Color pipeline capabilities */
	dc->caps.color.dpp.dcn_arch = 1;
	dc->caps.color.dpp.input_lut_shared = 0;
	dc->caps.color.dpp.icsc = 1;
	dc->caps.color.dpp.dgam_ram = 0; // must use gamma_corr
	dc->caps.color.dpp.dgam_rom_caps.srgb = 1;
	dc->caps.color.dpp.dgam_rom_caps.bt2020 = 1;
	dc->caps.color.dpp.dgam_rom_caps.gamma2_2 = 1;
	dc->caps.color.dpp.dgam_rom_caps.pq = 1;
	dc->caps.color.dpp.dgam_rom_caps.hlg = 1;
	dc->caps.color.dpp.post_csc = 1;
	dc->caps.color.dpp.gamma_corr = 1;
	dc->caps.color.dpp.dgam_rom_for_yuv = 0;

	dc->caps.color.dpp.hw_3d_lut = 1;
	dc->caps.color.dpp.ogam_ram = 0;  // no OGAM in DPP since DCN1
	// no OGAM ROM on DCN2 and later ASICs
	dc->caps.color.dpp.ogam_rom_caps.srgb = 0;
	dc->caps.color.dpp.ogam_rom_caps.bt2020 = 0;
	dc->caps.color.dpp.ogam_rom_caps.gamma2_2 = 0;
	dc->caps.color.dpp.ogam_rom_caps.pq = 0;
	dc->caps.color.dpp.ogam_rom_caps.hlg = 0;
	dc->caps.color.dpp.ocsc = 0;

	dc->caps.color.mpc.gamut_remap = 1;
	dc->caps.color.mpc.num_3dluts = pool->base.res_cap->num_mpc_3dlut; //4, configurable to be before or after BLND in MPCC
	dc->caps.color.mpc.ogam_ram = 1;
	dc->caps.color.mpc.ogam_rom_caps.srgb = 0;
	dc->caps.color.mpc.ogam_rom_caps.bt2020 = 0;
	dc->caps.color.mpc.ogam_rom_caps.gamma2_2 = 0;
	dc->caps.color.mpc.ogam_rom_caps.pq = 0;
	dc->caps.color.mpc.ogam_rom_caps.hlg = 0;
	dc->caps.color.mpc.ocsc = 1;

	/* Use pipe context based otg sync logic */
	dc->config.use_pipe_ctx_sync_logic = true;

	dc->config.dc_mode_clk_limit_support = true;
	/* read VBIOS LTTPR caps */
	{
		if (ctx->dc_bios->funcs->get_lttpr_caps) {
			enum bp_result bp_query_result;
			uint8_t is_vbios_lttpr_enable = 0;

			bp_query_result = ctx->dc_bios->funcs->get_lttpr_caps(ctx->dc_bios, &is_vbios_lttpr_enable);
			dc->caps.vbios_lttpr_enable = (bp_query_result == BP_RESULT_OK) && !!is_vbios_lttpr_enable;
		}

		/* interop bit is implicit */
		{
			dc->caps.vbios_lttpr_aware = true;
		}
	}

	if (dc->ctx->dce_environment == DCE_ENV_PRODUCTION_DRV)
		dc->debug = debug_defaults_drv;

	// Init the vm_helper
	if (dc->vm_helper)
		vm_helper_init(dc->vm_helper, 16);

	/*************************************************
	 *  Create resources                             *
	 *************************************************/

	/* Clock Sources for Pixel Clock*/
	pool->base.clock_sources[DCN32_CLK_SRC_PLL0] =
			dcn32_clock_source_create(ctx, ctx->dc_bios,
				CLOCK_SOURCE_COMBO_PHY_PLL0,
				&clk_src_regs[0], false);
	pool->base.clock_sources[DCN32_CLK_SRC_PLL1] =
			dcn32_clock_source_create(ctx, ctx->dc_bios,
				CLOCK_SOURCE_COMBO_PHY_PLL1,
				&clk_src_regs[1], false);
	pool->base.clock_sources[DCN32_CLK_SRC_PLL2] =
			dcn32_clock_source_create(ctx, ctx->dc_bios,
				CLOCK_SOURCE_COMBO_PHY_PLL2,
				&clk_src_regs[2], false);
	pool->base.clock_sources[DCN32_CLK_SRC_PLL3] =
			dcn32_clock_source_create(ctx, ctx->dc_bios,
				CLOCK_SOURCE_COMBO_PHY_PLL3,
				&clk_src_regs[3], false);
	pool->base.clock_sources[DCN32_CLK_SRC_PLL4] =
			dcn32_clock_source_create(ctx, ctx->dc_bios,
				CLOCK_SOURCE_COMBO_PHY_PLL4,
				&clk_src_regs[4], false);

	pool->base.clk_src_count = DCN32_CLK_SRC_TOTAL;

	/* todo: not reuse phy_pll registers */
	pool->base.dp_clock_source =
			dcn32_clock_source_create(ctx, ctx->dc_bios,
				CLOCK_SOURCE_ID_DP_DTO,
				&clk_src_regs[0], true);

	for (i = 0; i < pool->base.clk_src_count; i++) {
		if (pool->base.clock_sources[i] == NULL) {
			dm_error("DC: failed to create clock sources!\n");
			BREAK_TO_DEBUGGER();
			goto create_fail;
		}
	}

	/* DCCG */
	pool->base.dccg = dccg32_create(ctx, &dccg_regs, &dccg_shift, &dccg_mask);
	if (pool->base.dccg == NULL) {
		dm_error("DC: failed to create dccg!\n");
		BREAK_TO_DEBUGGER();
		goto create_fail;
	}

	/* DML */
	dml_init_instance(&dc->dml, &dcn3_2_soc, &dcn3_2_ip, DML_PROJECT_DCN32);

	/* IRQ Service */
	init_data.ctx = dc->ctx;
	pool->base.irqs = dal_irq_service_dcn32_create(&init_data);
	if (!pool->base.irqs)
		goto create_fail;

	/* HUBBUB */
	pool->base.hubbub = dcn32_hubbub_create(ctx);
	if (pool->base.hubbub == NULL) {
		BREAK_TO_DEBUGGER();
		dm_error("DC: failed to create hubbub!\n");
		goto create_fail;
	}

	/* HUBPs, DPPs, OPPs, TGs, ABMs */
	for (i = 0, j = 0; i < pool->base.res_cap->num_timing_generator; i++) {

		/* if pipe is disabled, skip instance of HW pipe,
		 * i.e, skip ASIC register instance
		 */
		if (pipe_fuses & 1 << i)
			continue;

		/* HUBPs */
		pool->base.hubps[j] = dcn32_hubp_create(ctx, i);
		if (pool->base.hubps[j] == NULL) {
			BREAK_TO_DEBUGGER();
			dm_error(
				"DC: failed to create hubps!\n");
			goto create_fail;
		}

		/* DPPs */
		pool->base.dpps[j] = dcn32_dpp_create(ctx, i);
		if (pool->base.dpps[j] == NULL) {
			BREAK_TO_DEBUGGER();
			dm_error(
				"DC: failed to create dpps!\n");
			goto create_fail;
		}

		/* OPPs */
		pool->base.opps[j] = dcn32_opp_create(ctx, i);
		if (pool->base.opps[j] == NULL) {
			BREAK_TO_DEBUGGER();
			dm_error(
				"DC: failed to create output pixel processor!\n");
			goto create_fail;
		}

		/* TGs */
		pool->base.timing_generators[j] = dcn32_timing_generator_create(
				ctx, i);
		if (pool->base.timing_generators[j] == NULL) {
			BREAK_TO_DEBUGGER();
			dm_error("DC: failed to create tg!\n");
			goto create_fail;
		}

		/* ABMs */
		pool->base.multiple_abms[j] = dmub_abm_create(ctx,
				&abm_regs[i],
				&abm_shift,
				&abm_mask);
		if (pool->base.multiple_abms[j] == NULL) {
			dm_error("DC: failed to create abm for pipe %d!\n", i);
			BREAK_TO_DEBUGGER();
			goto create_fail;
		}

		/* index for resource pool arrays for next valid pipe */
		j++;
	}

	/* PSR */
	pool->base.psr = dmub_psr_create(ctx);
	if (pool->base.psr == NULL) {
		dm_error("DC: failed to create psr obj!\n");
		BREAK_TO_DEBUGGER();
		goto create_fail;
	}

	/* MPCCs */
	pool->base.mpc = dcn32_mpc_create(ctx, pool->base.res_cap->num_timing_generator, pool->base.res_cap->num_mpc_3dlut);
	if (pool->base.mpc == NULL) {
		BREAK_TO_DEBUGGER();
		dm_error("DC: failed to create mpc!\n");
		goto create_fail;
	}

	/* DSCs */
	for (i = 0; i < pool->base.res_cap->num_dsc; i++) {
		pool->base.dscs[i] = dcn32_dsc_create(ctx, i);
		if (pool->base.dscs[i] == NULL) {
			BREAK_TO_DEBUGGER();
			dm_error("DC: failed to create display stream compressor %d!\n", i);
			goto create_fail;
		}
	}

	/* DWB */
	if (!dcn32_dwbc_create(ctx, &pool->base)) {
		BREAK_TO_DEBUGGER();
		dm_error("DC: failed to create dwbc!\n");
		goto create_fail;
	}

	/* MMHUBBUB */
	if (!dcn32_mmhubbub_create(ctx, &pool->base)) {
		BREAK_TO_DEBUGGER();
		dm_error("DC: failed to create mcif_wb!\n");
		goto create_fail;
	}

	/* AUX and I2C */
	for (i = 0; i < pool->base.res_cap->num_ddc; i++) {
		pool->base.engines[i] = dcn32_aux_engine_create(ctx, i);
		if (pool->base.engines[i] == NULL) {
			BREAK_TO_DEBUGGER();
			dm_error(
				"DC:failed to create aux engine!!\n");
			goto create_fail;
		}
		pool->base.hw_i2cs[i] = dcn32_i2c_hw_create(ctx, i);
		if (pool->base.hw_i2cs[i] == NULL) {
			BREAK_TO_DEBUGGER();
			dm_error(
				"DC:failed to create hw i2c!!\n");
			goto create_fail;
		}
		pool->base.sw_i2cs[i] = NULL;
	}

	/* Audio, HWSeq, Stream Encoders including HPO and virtual, MPC 3D LUTs */
	if (!resource_construct(num_virtual_links, dc, &pool->base,
			&res_create_funcs))
		goto create_fail;

	/* HW Sequencer init functions and Plane caps */
	dcn32_hw_sequencer_init_functions(dc);

	dc->caps.max_planes =  pool->base.pipe_count;

	for (i = 0; i < dc->caps.max_planes; ++i)
		dc->caps.planes[i] = plane_cap;

	dc->cap_funcs = cap_funcs;

	if (dc->ctx->dc_bios->fw_info.oem_i2c_present) {
		ddc_init_data.ctx = dc->ctx;
		ddc_init_data.link = NULL;
		ddc_init_data.id.id = dc->ctx->dc_bios->fw_info.oem_i2c_obj_id;
		ddc_init_data.id.enum_id = 0;
		ddc_init_data.id.type = OBJECT_TYPE_GENERIC;
		pool->base.oem_device = dc->link_srv->create_ddc_service(&ddc_init_data);
	} else {
		pool->base.oem_device = NULL;
	}

	dc->dml2_options.dcn_pipe_count = pool->base.pipe_count;
	dc->dml2_options.use_native_pstate_optimization = false;
	dc->dml2_options.use_native_soc_bb_construction = true;
	dc->dml2_options.minimize_dispclk_using_odm = true;

	dc->dml2_options.callbacks.dc = dc;
	dc->dml2_options.callbacks.build_scaling_params = &resource_build_scaling_params;
	dc->dml2_options.callbacks.can_support_mclk_switch_using_fw_based_vblank_stretch = &dcn30_can_support_mclk_switch_using_fw_based_vblank_stretch;
	dc->dml2_options.callbacks.acquire_secondary_pipe_for_mpc_odm = &dc_resource_acquire_secondary_pipe_for_mpc_odm_legacy;
	dc->dml2_options.callbacks.update_pipes_for_stream_with_slice_count = &resource_update_pipes_for_stream_with_slice_count;
	dc->dml2_options.callbacks.update_pipes_for_plane_with_slice_count = &resource_update_pipes_for_plane_with_slice_count;
	dc->dml2_options.callbacks.get_mpc_slice_index = &resource_get_mpc_slice_index;
	dc->dml2_options.callbacks.get_odm_slice_index = &resource_get_odm_slice_index;
	dc->dml2_options.callbacks.get_opp_head = &resource_get_opp_head;

	dc->dml2_options.svp_pstate.callbacks.dc = dc;
	dc->dml2_options.svp_pstate.callbacks.add_plane_to_context = &dc_add_plane_to_context;
	dc->dml2_options.svp_pstate.callbacks.add_stream_to_ctx = &dc_add_stream_to_ctx;
	dc->dml2_options.svp_pstate.callbacks.build_scaling_params = &resource_build_scaling_params;
	dc->dml2_options.svp_pstate.callbacks.create_plane = &dc_create_plane_state;
	dc->dml2_options.svp_pstate.callbacks.remove_plane_from_context = &dc_remove_plane_from_context;
	dc->dml2_options.svp_pstate.callbacks.remove_stream_from_ctx = &dc_remove_stream_from_ctx;
	dc->dml2_options.svp_pstate.callbacks.create_stream_for_sink = &dc_create_stream_for_sink;
	dc->dml2_options.svp_pstate.callbacks.plane_state_release = &dc_plane_state_release;
	dc->dml2_options.svp_pstate.callbacks.stream_release = &dc_stream_release;
	dc->dml2_options.svp_pstate.callbacks.release_dsc = &dcn20_release_dsc;

	dc->dml2_options.svp_pstate.subvp_fw_processing_delay_us = dc->caps.subvp_fw_processing_delay_us;
	dc->dml2_options.svp_pstate.subvp_prefetch_end_to_mall_start_us = dc->caps.subvp_prefetch_end_to_mall_start_us;
	dc->dml2_options.svp_pstate.subvp_pstate_allow_width_us = dc->caps.subvp_pstate_allow_width_us;
	dc->dml2_options.svp_pstate.subvp_swath_height_margin_lines = dc->caps.subvp_swath_height_margin_lines;

	dc->dml2_options.svp_pstate.force_disable_subvp = dc->debug.force_disable_subvp;
	dc->dml2_options.svp_pstate.force_enable_subvp = dc->debug.force_subvp_mclk_switch;

	dc->dml2_options.mall_cfg.cache_line_size_bytes = dc->caps.cache_line_size;
	dc->dml2_options.mall_cfg.cache_num_ways = dc->caps.cache_num_ways;
	dc->dml2_options.mall_cfg.max_cab_allocation_bytes = dc->caps.max_cab_allocation_bytes;
	dc->dml2_options.mall_cfg.mblk_height_4bpe_pixels = DCN3_2_MBLK_HEIGHT_4BPE;
	dc->dml2_options.mall_cfg.mblk_height_8bpe_pixels = DCN3_2_MBLK_HEIGHT_8BPE;
	dc->dml2_options.mall_cfg.mblk_size_bytes = DCN3_2_MALL_MBLK_SIZE_BYTES;
	dc->dml2_options.mall_cfg.mblk_width_pixels = DCN3_2_MBLK_WIDTH;

	dc->dml2_options.max_segments_per_hubp = 18;
	dc->dml2_options.det_segment_size = DCN3_2_DET_SEG_SIZE;
	dc->dml2_options.map_dc_pipes_with_callbacks = true;

	if (ASICREV_IS_GC_11_0_3(dc->ctx->asic_id.hw_internal_rev) && (dc->config.sdpif_request_limit_words_per_umc == 0))
		dc->config.sdpif_request_limit_words_per_umc = 16;

	DC_FP_END();

	return true;

create_fail:

	DC_FP_END();

	dcn32_resource_destruct(pool);

	return false;
}

struct resource_pool *dcn32_create_resource_pool(
		const struct dc_init_data *init_data,
		struct dc *dc)
{
	struct dcn32_resource_pool *pool =
		kzalloc(sizeof(struct dcn32_resource_pool), GFP_KERNEL);

	if (!pool)
		return NULL;

	if (dcn32_resource_construct(init_data->num_virtual_links, dc, pool))
		return &pool->base;

	BREAK_TO_DEBUGGER();
	kfree(pool);
	return NULL;
}

/*
 * Find the most optimal free pipe from res_ctx, which could be used as a
 * secondary dpp pipe for input opp head pipe.
 *
 * a free pipe - a pipe in input res_ctx not yet used for any streams or
 * planes.
 * secondary dpp pipe - a pipe gets inserted to a head OPP pipe's MPC blending
 * tree. This is typical used for rendering MPO planes or additional offset
 * areas in MPCC combine.
 *
 * Hardware Transition Minimization Algorithm for Finding a Secondary DPP Pipe
 * -------------------------------------------------------------------------
 *
 * PROBLEM:
 *
 * 1. There is a hardware limitation that a secondary DPP pipe cannot be
 * transferred from one MPC blending tree to the other in a single frame.
 * Otherwise it could cause glitches on the screen.
 *
 * For instance, we cannot transition from state 1 to state 2 in one frame. This
 * is because PIPE1 is transferred from PIPE0's MPC blending tree over to
 * PIPE2's MPC blending tree, which is not supported by hardware.
 * To support this transition we need to first remove PIPE1 from PIPE0's MPC
 * blending tree in one frame and then insert PIPE1 to PIPE2's MPC blending tree
 * in the next frame. This is not optimal as it will delay the flip for two
 * frames.
 *
 *	State 1:
 *	PIPE0 -- secondary DPP pipe --> (PIPE1)
 *	PIPE2 -- secondary DPP pipe --> NONE
 *
 *	State 2:
 *	PIPE0 -- secondary DPP pipe --> NONE
 *	PIPE2 -- secondary DPP pipe --> (PIPE1)
 *
 * 2. We want to in general minimize the unnecessary changes in pipe topology.
 * If a pipe is already added in current blending tree and there are no changes
 * to plane topology, we don't want to swap it with another free pipe
 * unnecessarily in every update. Powering up and down a pipe would require a
 * full update which delays the flip for 1 frame. If we use the original pipe
 * we don't have to toggle its power. So we can flip faster.
 */
static int find_optimal_free_pipe_as_secondary_dpp_pipe(
		const struct resource_context *cur_res_ctx,
		struct resource_context *new_res_ctx,
		const struct resource_pool *pool,
		const struct pipe_ctx *new_opp_head)
{
	const struct pipe_ctx *cur_opp_head;
	int free_pipe_idx;

	cur_opp_head = &cur_res_ctx->pipe_ctx[new_opp_head->pipe_idx];
	free_pipe_idx = resource_find_free_pipe_used_in_cur_mpc_blending_tree(
			cur_res_ctx, new_res_ctx, cur_opp_head);

	/* Up until here if we have not found a free secondary pipe, we will
	 * need to wait for at least one frame to complete the transition
	 * sequence.
	 */
	if (free_pipe_idx == FREE_PIPE_INDEX_NOT_FOUND)
		free_pipe_idx = recource_find_free_pipe_not_used_in_cur_res_ctx(
				cur_res_ctx, new_res_ctx, pool);

	/* Up until here if we have not found a free secondary pipe, we will
	 * need to wait for at least two frames to complete the transition
	 * sequence. It really doesn't matter which pipe we decide take from
	 * current enabled pipes. It won't save our frame time when we swap only
	 * one pipe or more pipes.
	 */
	if (free_pipe_idx == FREE_PIPE_INDEX_NOT_FOUND)
		free_pipe_idx = resource_find_free_pipe_used_as_cur_sec_dpp_in_mpcc_combine(
				cur_res_ctx, new_res_ctx, pool);

	if (free_pipe_idx == FREE_PIPE_INDEX_NOT_FOUND)
		free_pipe_idx = resource_find_any_free_pipe(new_res_ctx, pool);

	return free_pipe_idx;
}

static struct pipe_ctx *find_idle_secondary_pipe_check_mpo(
		struct resource_context *res_ctx,
		const struct resource_pool *pool,
		const struct pipe_ctx *primary_pipe)
{
	int i;
	struct pipe_ctx *secondary_pipe = NULL;
	struct pipe_ctx *next_odm_mpo_pipe = NULL;
	int primary_index, preferred_pipe_idx;
	struct pipe_ctx *old_primary_pipe = NULL;

	/*
	 * Modified from find_idle_secondary_pipe
	 * With windowed MPO and ODM, we want to avoid the case where we want a
	 *  free pipe for the left side but the free pipe is being used on the
	 *  right side.
	 * Add check on current_state if the primary_pipe is the left side,
	 *  to check the right side ( primary_pipe->next_odm_pipe ) to see if
	 *  it is using a pipe for MPO ( primary_pipe->next_odm_pipe->bottom_pipe )
	 * - If so, then don't use this pipe
	 * EXCEPTION - 3 plane ( 2 MPO plane ) case
	 * - in this case, the primary pipe has already gotten a free pipe for the
	 *  MPO window in the left
	 * - when it tries to get a free pipe for the MPO window on the right,
	 *  it will see that it is already assigned to the right side
	 *  ( primary_pipe->next_odm_pipe ).  But in this case, we want this
	 *  free pipe, since it will be for the right side.  So add an
	 *  additional condition, that skipping the free pipe on the right only
	 *  applies if the primary pipe has no bottom pipe currently assigned
	 */
	if (primary_pipe) {
		primary_index = primary_pipe->pipe_idx;
		old_primary_pipe = &primary_pipe->stream->ctx->dc->current_state->res_ctx.pipe_ctx[primary_index];
		if ((old_primary_pipe->next_odm_pipe) && (old_primary_pipe->next_odm_pipe->bottom_pipe)
			&& (!primary_pipe->bottom_pipe))
			next_odm_mpo_pipe = old_primary_pipe->next_odm_pipe->bottom_pipe;

		preferred_pipe_idx = (pool->pipe_count - 1) - primary_pipe->pipe_idx;
		if ((res_ctx->pipe_ctx[preferred_pipe_idx].stream == NULL) &&
			!(next_odm_mpo_pipe && next_odm_mpo_pipe->pipe_idx == preferred_pipe_idx)) {
			secondary_pipe = &res_ctx->pipe_ctx[preferred_pipe_idx];
			secondary_pipe->pipe_idx = preferred_pipe_idx;
		}
	}

	/*
	 * search backwards for the second pipe to keep pipe
	 * assignment more consistent
	 */
	if (!secondary_pipe)
		for (i = pool->pipe_count - 1; i >= 0; i--) {
			if ((res_ctx->pipe_ctx[i].stream == NULL) &&
				!(next_odm_mpo_pipe && next_odm_mpo_pipe->pipe_idx == i)) {
				secondary_pipe = &res_ctx->pipe_ctx[i];
				secondary_pipe->pipe_idx = i;
				break;
			}
		}

	return secondary_pipe;
}

static struct pipe_ctx *dcn32_acquire_idle_pipe_for_head_pipe_in_layer(
		struct dc_state *state,
		const struct resource_pool *pool,
		struct dc_stream_state *stream,
		const struct pipe_ctx *head_pipe)
{
	struct resource_context *res_ctx = &state->res_ctx;
	struct pipe_ctx *idle_pipe, *pipe;
	struct resource_context *old_ctx = &stream->ctx->dc->current_state->res_ctx;
	int head_index;

	if (!head_pipe)
		ASSERT(0);

	/*
	 * Modified from dcn20_acquire_idle_pipe_for_layer
	 * Check if head_pipe in old_context already has bottom_pipe allocated.
	 * - If so, check if that pipe is available in the current context.
	 * --  If so, reuse pipe from old_context
	 */
	head_index = head_pipe->pipe_idx;
	pipe = &old_ctx->pipe_ctx[head_index];
	if (pipe->bottom_pipe && res_ctx->pipe_ctx[pipe->bottom_pipe->pipe_idx].stream == NULL) {
		idle_pipe = &res_ctx->pipe_ctx[pipe->bottom_pipe->pipe_idx];
		idle_pipe->pipe_idx = pipe->bottom_pipe->pipe_idx;
	} else {
		idle_pipe = find_idle_secondary_pipe_check_mpo(res_ctx, pool, head_pipe);
		if (!idle_pipe)
			return NULL;
	}

	idle_pipe->stream = head_pipe->stream;
	idle_pipe->stream_res.tg = head_pipe->stream_res.tg;
	idle_pipe->stream_res.opp = head_pipe->stream_res.opp;

	idle_pipe->plane_res.hubp = pool->hubps[idle_pipe->pipe_idx];
	idle_pipe->plane_res.ipp = pool->ipps[idle_pipe->pipe_idx];
	idle_pipe->plane_res.dpp = pool->dpps[idle_pipe->pipe_idx];
	idle_pipe->plane_res.mpcc_inst = pool->dpps[idle_pipe->pipe_idx]->inst;

	return idle_pipe;
}

static int find_optimal_free_pipe_as_secondary_opp_head(
		const struct resource_context *cur_res_ctx,
		struct resource_context *new_res_ctx,
		const struct resource_pool *pool,
		const struct pipe_ctx *new_otg_master)
{
	const struct pipe_ctx *cur_otg_master;
	int free_pipe_idx;

	cur_otg_master =  &cur_res_ctx->pipe_ctx[new_otg_master->pipe_idx];
	free_pipe_idx = resource_find_free_pipe_used_as_sec_opp_head_by_cur_otg_master(
			cur_res_ctx, new_res_ctx, cur_otg_master);

	/* Up until here if we have not found a free secondary pipe, we will
	 * need to wait for at least one frame to complete the transition
	 * sequence.
	 */
	if (free_pipe_idx == FREE_PIPE_INDEX_NOT_FOUND)
		free_pipe_idx = recource_find_free_pipe_not_used_in_cur_res_ctx(
				cur_res_ctx, new_res_ctx, pool);

	if (free_pipe_idx == FREE_PIPE_INDEX_NOT_FOUND)
		free_pipe_idx = resource_find_any_free_pipe(new_res_ctx, pool);

	return free_pipe_idx;
}

struct pipe_ctx *dcn32_acquire_free_pipe_as_secondary_dpp_pipe(
		const struct dc_state *cur_ctx,
		struct dc_state *new_ctx,
		const struct resource_pool *pool,
		const struct pipe_ctx *opp_head_pipe)
{

	int free_pipe_idx;
	struct pipe_ctx *free_pipe;

	if (!opp_head_pipe->stream->ctx->dc->config.enable_windowed_mpo_odm)
		return dcn32_acquire_idle_pipe_for_head_pipe_in_layer(
				new_ctx, pool, opp_head_pipe->stream, opp_head_pipe);

	free_pipe_idx = find_optimal_free_pipe_as_secondary_dpp_pipe(
					&cur_ctx->res_ctx, &new_ctx->res_ctx,
					pool, opp_head_pipe);
	if (free_pipe_idx >= 0) {
		free_pipe = &new_ctx->res_ctx.pipe_ctx[free_pipe_idx];
		free_pipe->pipe_idx = free_pipe_idx;
		free_pipe->stream = opp_head_pipe->stream;
		free_pipe->stream_res.tg = opp_head_pipe->stream_res.tg;
		free_pipe->stream_res.opp = opp_head_pipe->stream_res.opp;

		free_pipe->plane_res.hubp = pool->hubps[free_pipe->pipe_idx];
		free_pipe->plane_res.ipp = pool->ipps[free_pipe->pipe_idx];
		free_pipe->plane_res.dpp = pool->dpps[free_pipe->pipe_idx];
		free_pipe->plane_res.mpcc_inst =
				pool->dpps[free_pipe->pipe_idx]->inst;
	} else {
		ASSERT(opp_head_pipe);
		free_pipe = NULL;
	}

	return free_pipe;
}

struct pipe_ctx *dcn32_acquire_free_pipe_as_secondary_opp_head(
		const struct dc_state *cur_ctx,
		struct dc_state *new_ctx,
		const struct resource_pool *pool,
		const struct pipe_ctx *otg_master)
{
	int free_pipe_idx = find_optimal_free_pipe_as_secondary_opp_head(
			&cur_ctx->res_ctx, &new_ctx->res_ctx,
			pool, otg_master);
	struct pipe_ctx *free_pipe;

	if (free_pipe_idx >= 0) {
		free_pipe = &new_ctx->res_ctx.pipe_ctx[free_pipe_idx];
		free_pipe->pipe_idx = free_pipe_idx;
		free_pipe->stream = otg_master->stream;
		free_pipe->stream_res.tg = otg_master->stream_res.tg;
		free_pipe->stream_res.dsc = NULL;
		free_pipe->stream_res.opp = pool->opps[free_pipe_idx];
		free_pipe->plane_res.mi = pool->mis[free_pipe_idx];
		free_pipe->plane_res.hubp = pool->hubps[free_pipe_idx];
		free_pipe->plane_res.ipp = pool->ipps[free_pipe_idx];
		free_pipe->plane_res.xfm = pool->transforms[free_pipe_idx];
		free_pipe->plane_res.dpp = pool->dpps[free_pipe_idx];
		free_pipe->plane_res.mpcc_inst = pool->dpps[free_pipe_idx]->inst;
		if (free_pipe->stream->timing.flags.DSC == 1) {
			dcn20_acquire_dsc(free_pipe->stream->ctx->dc,
					&new_ctx->res_ctx,
					&free_pipe->stream_res.dsc,
					free_pipe_idx);
			ASSERT(free_pipe->stream_res.dsc);
			if (free_pipe->stream_res.dsc == NULL) {
				memset(free_pipe, 0, sizeof(*free_pipe));
				free_pipe = NULL;
			}
		}
	} else {
		ASSERT(otg_master);
		free_pipe = NULL;
	}

	return free_pipe;
}

unsigned int dcn32_calc_num_avail_chans_for_mall(struct dc *dc, int num_chans)
{
	/*
	 * DCN32 and DCN321 SKUs may have different sizes for MALL
	 *  but we may not be able to access all the MALL space.
	 *  If the num_chans is power of 2, then we can access all
	 *  of the available MALL space.  Otherwise, we can only
	 *  access:
	 *
	 *  max_cab_size_in_bytes = total_cache_size_in_bytes *
	 *    ((2^floor(log2(num_chans)))/num_chans)
	 *
	 * Calculating the MALL sizes for all available SKUs, we
	 *  have come up with the follow simplified check.
	 * - we have max_chans which provides the max MALL size.
	 *  Each chans supports 4MB of MALL so:
	 *
	 *  total_cache_size_in_bytes = max_chans * 4 MB
	 *
	 * - we have avail_chans which shows the number of channels
	 *  we can use if we can't access the entire MALL space.
	 *  It is generally half of max_chans
	 * - so we use the following checks:
	 *
	 *   if (num_chans == max_chans), return max_chans
	 *   if (num_chans < max_chans), return avail_chans
	 *
	 * - exception is GC_11_0_0 where we can't access max_chans,
	 *  so we define max_avail_chans as the maximum available
	 *  MALL space
	 *
	 */
	int gc_11_0_0_max_chans = 48;
	int gc_11_0_0_max_avail_chans = 32;
	int gc_11_0_0_avail_chans = 16;
	int gc_11_0_3_max_chans = 16;
	int gc_11_0_3_avail_chans = 8;
	int gc_11_0_2_max_chans = 8;
	int gc_11_0_2_avail_chans = 4;

	if (ASICREV_IS_GC_11_0_0(dc->ctx->asic_id.hw_internal_rev)) {
		return (num_chans == gc_11_0_0_max_chans) ?
			gc_11_0_0_max_avail_chans : gc_11_0_0_avail_chans;
	} else if (ASICREV_IS_GC_11_0_2(dc->ctx->asic_id.hw_internal_rev)) {
		return (num_chans == gc_11_0_2_max_chans) ?
			gc_11_0_2_max_chans : gc_11_0_2_avail_chans;
	} else { // if (ASICREV_IS_GC_11_0_3(dc->ctx->asic_id.hw_internal_rev)) {
		return (num_chans == gc_11_0_3_max_chans) ?
			gc_11_0_3_max_chans : gc_11_0_3_avail_chans;
	}
}