Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Alex Deucher | 7131 | 35.92% | 33 | 12.69% |
Evan Quan | 3935 | 19.82% | 41 | 15.77% |
Kevin Wang | 1436 | 7.23% | 11 | 4.23% |
Rex Zhu | 1310 | 6.60% | 25 | 9.62% |
Eric Huang | 861 | 4.34% | 11 | 4.23% |
Lijo Lazar | 737 | 3.71% | 9 | 3.46% |
Tom St Denis | 669 | 3.37% | 4 | 1.54% |
Sathishkumar S | 408 | 2.05% | 4 | 1.54% |
Darren Powell | 401 | 2.02% | 13 | 5.00% |
Huang Rui | 366 | 1.84% | 9 | 3.46% |
Mario Limonciello | 290 | 1.46% | 6 | 2.31% |
Luben Tuikov | 241 | 1.21% | 2 | 0.77% |
Tong Liu01 | 224 | 1.13% | 3 | 1.15% |
Xiaomeng Hou | 199 | 1.00% | 1 | 0.38% |
Dennis Li | 136 | 0.68% | 2 | 0.77% |
Kent Russell | 114 | 0.57% | 5 | 1.92% |
Asad kamal | 112 | 0.56% | 4 | 1.54% |
Kun Liu | 105 | 0.53% | 1 | 0.38% |
Le Ma | 99 | 0.50% | 1 | 0.38% |
Xiaojian Du | 99 | 0.50% | 4 | 1.54% |
Kees Cook | 88 | 0.44% | 1 | 0.38% |
Grazvydas Ignotas | 85 | 0.43% | 1 | 0.38% |
Danijel Slivka | 76 | 0.38% | 2 | 0.77% |
Nirmoy Das | 72 | 0.36% | 1 | 0.38% |
Ma Jun | 63 | 0.32% | 4 | 1.54% |
Yang Wang | 58 | 0.29% | 3 | 1.15% |
welu | 53 | 0.27% | 1 | 0.38% |
Jean Delvare | 42 | 0.21% | 1 | 0.38% |
Likun Gao | 41 | 0.21% | 6 | 2.31% |
Kenneth Feng | 40 | 0.20% | 3 | 1.15% |
Tian Tao | 31 | 0.16% | 1 | 0.38% |
James Yao | 29 | 0.15% | 2 | 0.77% |
Marina Nikolic | 28 | 0.14% | 2 | 0.77% |
Chengming Gui | 24 | 0.12% | 4 | 1.54% |
Bas Nieuwenhuizen | 22 | 0.11% | 2 | 0.77% |
Marko Zekovic | 22 | 0.11% | 1 | 0.38% |
Dan Carpenter | 18 | 0.09% | 2 | 0.77% |
Gustavo A. R. Silva | 17 | 0.09% | 1 | 0.38% |
Vignesh Chander | 14 | 0.07% | 1 | 0.38% |
limingyu | 13 | 0.07% | 1 | 0.38% |
Victor Zhao | 13 | 0.07% | 1 | 0.38% |
Jack Xiao | 12 | 0.06% | 1 | 0.38% |
Yintian Tao | 11 | 0.06% | 1 | 0.38% |
Flora Cui | 10 | 0.05% | 1 | 0.38% |
Matt Coffin | 10 | 0.05% | 1 | 0.38% |
Andrey Grodzovsky | 8 | 0.04% | 2 | 0.77% |
Jiawei | 8 | 0.04% | 1 | 0.38% |
ZhenGuo Yin | 7 | 0.04% | 1 | 0.38% |
Shaoyun Liu | 6 | 0.03% | 1 | 0.38% |
Christian König | 6 | 0.03% | 1 | 0.38% |
Jinzhou.Su | 6 | 0.03% | 1 | 0.38% |
Aurabindo Pillai | 5 | 0.03% | 1 | 0.38% |
Monk Liu | 5 | 0.03% | 1 | 0.38% |
Dave Airlie | 5 | 0.03% | 1 | 0.38% |
Perry Yuan | 4 | 0.02% | 1 | 0.38% |
Tom Rix | 4 | 0.02% | 1 | 0.38% |
Ken Wang | 4 | 0.02% | 1 | 0.38% |
Roy Sun | 4 | 0.02% | 1 | 0.38% |
Srinivasan S | 4 | 0.02% | 1 | 0.38% |
horchen | 2 | 0.01% | 1 | 0.38% |
Li Ma | 2 | 0.01% | 1 | 0.38% |
Dmitrii Galantsev | 2 | 0.01% | 1 | 0.38% |
Guilherme G. Piccoli | 1 | 0.01% | 1 | 0.38% |
Geliang Tang | 1 | 0.01% | 1 | 0.38% |
Julia Lawall | 1 | 0.01% | 1 | 0.38% |
Sam Ravnborg | 1 | 0.01% | 1 | 0.38% |
Jammy Zhou | 1 | 0.01% | 1 | 0.38% |
Muhammad Usama Anjum | 1 | 0.01% | 1 | 0.38% |
Hunter Chasens | 1 | 0.01% | 1 | 0.38% |
Amber Lin | 1 | 0.01% | 1 | 0.38% |
Total | 19855 | 260 |
/* * Copyright 2017 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: Rafał Miłecki <zajec5@gmail.com> * Alex Deucher <alexdeucher@gmail.com> */ #include "amdgpu.h" #include "amdgpu_drv.h" #include "amdgpu_pm.h" #include "amdgpu_dpm.h" #include "atom.h" #include <linux/pci.h> #include <linux/hwmon.h> #include <linux/hwmon-sysfs.h> #include <linux/nospec.h> #include <linux/pm_runtime.h> #include <asm/processor.h> #define MAX_NUM_OF_FEATURES_PER_SUBSET 8 #define MAX_NUM_OF_SUBSETS 8 struct od_attribute { struct kobj_attribute attribute; struct list_head entry; }; struct od_kobj { struct kobject kobj; struct list_head entry; struct list_head attribute; void *priv; }; struct od_feature_ops { umode_t (*is_visible)(struct amdgpu_device *adev); ssize_t (*show)(struct kobject *kobj, struct kobj_attribute *attr, char *buf); ssize_t (*store)(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t count); }; struct od_feature_item { const char *name; struct od_feature_ops ops; }; struct od_feature_container { char *name; struct od_feature_ops ops; struct od_feature_item sub_feature[MAX_NUM_OF_FEATURES_PER_SUBSET]; }; struct od_feature_set { struct od_feature_container containers[MAX_NUM_OF_SUBSETS]; }; static const struct hwmon_temp_label { enum PP_HWMON_TEMP channel; const char *label; } temp_label[] = { {PP_TEMP_EDGE, "edge"}, {PP_TEMP_JUNCTION, "junction"}, {PP_TEMP_MEM, "mem"}, }; const char * const amdgpu_pp_profile_name[] = { "BOOTUP_DEFAULT", "3D_FULL_SCREEN", "POWER_SAVING", "VIDEO", "VR", "COMPUTE", "CUSTOM", "WINDOW_3D", "CAPPED", "UNCAPPED", }; /** * DOC: power_dpm_state * * The power_dpm_state file is a legacy interface and is only provided for * backwards compatibility. The amdgpu driver provides a sysfs API for adjusting * certain power related parameters. The file power_dpm_state is used for this. * It accepts the following arguments: * * - battery * * - balanced * * - performance * * battery * * On older GPUs, the vbios provided a special power state for battery * operation. Selecting battery switched to this state. This is no * longer provided on newer GPUs so the option does nothing in that case. * * balanced * * On older GPUs, the vbios provided a special power state for balanced * operation. Selecting balanced switched to this state. This is no * longer provided on newer GPUs so the option does nothing in that case. * * performance * * On older GPUs, the vbios provided a special power state for performance * operation. Selecting performance switched to this state. This is no * longer provided on newer GPUs so the option does nothing in that case. * */ static ssize_t amdgpu_get_power_dpm_state(struct device *dev, struct device_attribute *attr, char *buf) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = drm_to_adev(ddev); enum amd_pm_state_type pm; int ret; if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; ret = pm_runtime_get_sync(ddev->dev); if (ret < 0) { pm_runtime_put_autosuspend(ddev->dev); return ret; } amdgpu_dpm_get_current_power_state(adev, &pm); pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); return sysfs_emit(buf, "%s\n", (pm == POWER_STATE_TYPE_BATTERY) ? "battery" : (pm == POWER_STATE_TYPE_BALANCED) ? "balanced" : "performance"); } static ssize_t amdgpu_set_power_dpm_state(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = drm_to_adev(ddev); enum amd_pm_state_type state; int ret; if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; if (strncmp("battery", buf, strlen("battery")) == 0) state = POWER_STATE_TYPE_BATTERY; else if (strncmp("balanced", buf, strlen("balanced")) == 0) state = POWER_STATE_TYPE_BALANCED; else if (strncmp("performance", buf, strlen("performance")) == 0) state = POWER_STATE_TYPE_PERFORMANCE; else return -EINVAL; ret = pm_runtime_get_sync(ddev->dev); if (ret < 0) { pm_runtime_put_autosuspend(ddev->dev); return ret; } amdgpu_dpm_set_power_state(adev, state); pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); return count; } /** * DOC: power_dpm_force_performance_level * * The amdgpu driver provides a sysfs API for adjusting certain power * related parameters. The file power_dpm_force_performance_level is * used for this. It accepts the following arguments: * * - auto * * - low * * - high * * - manual * * - profile_standard * * - profile_min_sclk * * - profile_min_mclk * * - profile_peak * * auto * * When auto is selected, the driver will attempt to dynamically select * the optimal power profile for current conditions in the driver. * * low * * When low is selected, the clocks are forced to the lowest power state. * * high * * When high is selected, the clocks are forced to the highest power state. * * manual * * When manual is selected, the user can manually adjust which power states * are enabled for each clock domain via the sysfs pp_dpm_mclk, pp_dpm_sclk, * and pp_dpm_pcie files and adjust the power state transition heuristics * via the pp_power_profile_mode sysfs file. * * profile_standard * profile_min_sclk * profile_min_mclk * profile_peak * * When the profiling modes are selected, clock and power gating are * disabled and the clocks are set for different profiling cases. This * mode is recommended for profiling specific work loads where you do * not want clock or power gating for clock fluctuation to interfere * with your results. profile_standard sets the clocks to a fixed clock * level which varies from asic to asic. profile_min_sclk forces the sclk * to the lowest level. profile_min_mclk forces the mclk to the lowest level. * profile_peak sets all clocks (mclk, sclk, pcie) to the highest levels. * */ static ssize_t amdgpu_get_power_dpm_force_performance_level(struct device *dev, struct device_attribute *attr, char *buf) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = drm_to_adev(ddev); enum amd_dpm_forced_level level = 0xff; int ret; if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; ret = pm_runtime_get_sync(ddev->dev); if (ret < 0) { pm_runtime_put_autosuspend(ddev->dev); return ret; } level = amdgpu_dpm_get_performance_level(adev); pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); return sysfs_emit(buf, "%s\n", (level == AMD_DPM_FORCED_LEVEL_AUTO) ? "auto" : (level == AMD_DPM_FORCED_LEVEL_LOW) ? "low" : (level == AMD_DPM_FORCED_LEVEL_HIGH) ? "high" : (level == AMD_DPM_FORCED_LEVEL_MANUAL) ? "manual" : (level == AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD) ? "profile_standard" : (level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK) ? "profile_min_sclk" : (level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK) ? "profile_min_mclk" : (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) ? "profile_peak" : (level == AMD_DPM_FORCED_LEVEL_PERF_DETERMINISM) ? "perf_determinism" : "unknown"); } static ssize_t amdgpu_set_power_dpm_force_performance_level(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = drm_to_adev(ddev); enum amd_dpm_forced_level level; int ret = 0; if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; if (strncmp("low", buf, strlen("low")) == 0) { level = AMD_DPM_FORCED_LEVEL_LOW; } else if (strncmp("high", buf, strlen("high")) == 0) { level = AMD_DPM_FORCED_LEVEL_HIGH; } else if (strncmp("auto", buf, strlen("auto")) == 0) { level = AMD_DPM_FORCED_LEVEL_AUTO; } else if (strncmp("manual", buf, strlen("manual")) == 0) { level = AMD_DPM_FORCED_LEVEL_MANUAL; } else if (strncmp("profile_exit", buf, strlen("profile_exit")) == 0) { level = AMD_DPM_FORCED_LEVEL_PROFILE_EXIT; } else if (strncmp("profile_standard", buf, strlen("profile_standard")) == 0) { level = AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD; } else if (strncmp("profile_min_sclk", buf, strlen("profile_min_sclk")) == 0) { level = AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK; } else if (strncmp("profile_min_mclk", buf, strlen("profile_min_mclk")) == 0) { level = AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK; } else if (strncmp("profile_peak", buf, strlen("profile_peak")) == 0) { level = AMD_DPM_FORCED_LEVEL_PROFILE_PEAK; } else if (strncmp("perf_determinism", buf, strlen("perf_determinism")) == 0) { level = AMD_DPM_FORCED_LEVEL_PERF_DETERMINISM; } else { return -EINVAL; } ret = pm_runtime_get_sync(ddev->dev); if (ret < 0) { pm_runtime_put_autosuspend(ddev->dev); return ret; } mutex_lock(&adev->pm.stable_pstate_ctx_lock); if (amdgpu_dpm_force_performance_level(adev, level)) { pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); mutex_unlock(&adev->pm.stable_pstate_ctx_lock); return -EINVAL; } /* override whatever a user ctx may have set */ adev->pm.stable_pstate_ctx = NULL; mutex_unlock(&adev->pm.stable_pstate_ctx_lock); pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); return count; } static ssize_t amdgpu_get_pp_num_states(struct device *dev, struct device_attribute *attr, char *buf) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = drm_to_adev(ddev); struct pp_states_info data; uint32_t i; int buf_len, ret; if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; ret = pm_runtime_get_sync(ddev->dev); if (ret < 0) { pm_runtime_put_autosuspend(ddev->dev); return ret; } if (amdgpu_dpm_get_pp_num_states(adev, &data)) memset(&data, 0, sizeof(data)); pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); buf_len = sysfs_emit(buf, "states: %d\n", data.nums); for (i = 0; i < data.nums; i++) buf_len += sysfs_emit_at(buf, buf_len, "%d %s\n", i, (data.states[i] == POWER_STATE_TYPE_INTERNAL_BOOT) ? "boot" : (data.states[i] == POWER_STATE_TYPE_BATTERY) ? "battery" : (data.states[i] == POWER_STATE_TYPE_BALANCED) ? "balanced" : (data.states[i] == POWER_STATE_TYPE_PERFORMANCE) ? "performance" : "default"); return buf_len; } static ssize_t amdgpu_get_pp_cur_state(struct device *dev, struct device_attribute *attr, char *buf) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = drm_to_adev(ddev); struct pp_states_info data = {0}; enum amd_pm_state_type pm = 0; int i = 0, ret = 0; if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; ret = pm_runtime_get_sync(ddev->dev); if (ret < 0) { pm_runtime_put_autosuspend(ddev->dev); return ret; } amdgpu_dpm_get_current_power_state(adev, &pm); ret = amdgpu_dpm_get_pp_num_states(adev, &data); pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); if (ret) return ret; for (i = 0; i < data.nums; i++) { if (pm == data.states[i]) break; } if (i == data.nums) i = -EINVAL; return sysfs_emit(buf, "%d\n", i); } static ssize_t amdgpu_get_pp_force_state(struct device *dev, struct device_attribute *attr, char *buf) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = drm_to_adev(ddev); if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; if (adev->pm.pp_force_state_enabled) return amdgpu_get_pp_cur_state(dev, attr, buf); else return sysfs_emit(buf, "\n"); } static ssize_t amdgpu_set_pp_force_state(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = drm_to_adev(ddev); enum amd_pm_state_type state = 0; struct pp_states_info data; unsigned long idx; int ret; if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; adev->pm.pp_force_state_enabled = false; if (strlen(buf) == 1) return count; ret = kstrtoul(buf, 0, &idx); if (ret || idx >= ARRAY_SIZE(data.states)) return -EINVAL; idx = array_index_nospec(idx, ARRAY_SIZE(data.states)); ret = pm_runtime_get_sync(ddev->dev); if (ret < 0) { pm_runtime_put_autosuspend(ddev->dev); return ret; } ret = amdgpu_dpm_get_pp_num_states(adev, &data); if (ret) goto err_out; state = data.states[idx]; /* only set user selected power states */ if (state != POWER_STATE_TYPE_INTERNAL_BOOT && state != POWER_STATE_TYPE_DEFAULT) { ret = amdgpu_dpm_dispatch_task(adev, AMD_PP_TASK_ENABLE_USER_STATE, &state); if (ret) goto err_out; adev->pm.pp_force_state_enabled = true; } pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); return count; err_out: pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); return ret; } /** * DOC: pp_table * * The amdgpu driver provides a sysfs API for uploading new powerplay * tables. The file pp_table is used for this. Reading the file * will dump the current power play table. Writing to the file * will attempt to upload a new powerplay table and re-initialize * powerplay using that new table. * */ static ssize_t amdgpu_get_pp_table(struct device *dev, struct device_attribute *attr, char *buf) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = drm_to_adev(ddev); char *table = NULL; int size, ret; if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; ret = pm_runtime_get_sync(ddev->dev); if (ret < 0) { pm_runtime_put_autosuspend(ddev->dev); return ret; } size = amdgpu_dpm_get_pp_table(adev, &table); pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); if (size <= 0) return size; if (size >= PAGE_SIZE) size = PAGE_SIZE - 1; memcpy(buf, table, size); return size; } static ssize_t amdgpu_set_pp_table(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = drm_to_adev(ddev); int ret = 0; if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; ret = pm_runtime_get_sync(ddev->dev); if (ret < 0) { pm_runtime_put_autosuspend(ddev->dev); return ret; } ret = amdgpu_dpm_set_pp_table(adev, buf, count); pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); if (ret) return ret; return count; } /** * DOC: pp_od_clk_voltage * * The amdgpu driver provides a sysfs API for adjusting the clocks and voltages * in each power level within a power state. The pp_od_clk_voltage is used for * this. * * Note that the actual memory controller clock rate are exposed, not * the effective memory clock of the DRAMs. To translate it, use the * following formula: * * Clock conversion (Mhz): * * HBM: effective_memory_clock = memory_controller_clock * 1 * * G5: effective_memory_clock = memory_controller_clock * 1 * * G6: effective_memory_clock = memory_controller_clock * 2 * * DRAM data rate (MT/s): * * HBM: effective_memory_clock * 2 = data_rate * * G5: effective_memory_clock * 4 = data_rate * * G6: effective_memory_clock * 8 = data_rate * * Bandwidth (MB/s): * * data_rate * vram_bit_width / 8 = memory_bandwidth * * Some examples: * * G5 on RX460: * * memory_controller_clock = 1750 Mhz * * effective_memory_clock = 1750 Mhz * 1 = 1750 Mhz * * data rate = 1750 * 4 = 7000 MT/s * * memory_bandwidth = 7000 * 128 bits / 8 = 112000 MB/s * * G6 on RX5700: * * memory_controller_clock = 875 Mhz * * effective_memory_clock = 875 Mhz * 2 = 1750 Mhz * * data rate = 1750 * 8 = 14000 MT/s * * memory_bandwidth = 14000 * 256 bits / 8 = 448000 MB/s * * < For Vega10 and previous ASICs > * * Reading the file will display: * * - a list of engine clock levels and voltages labeled OD_SCLK * * - a list of memory clock levels and voltages labeled OD_MCLK * * - a list of valid ranges for sclk, mclk, and voltage labeled OD_RANGE * * To manually adjust these settings, first select manual using * power_dpm_force_performance_level. Enter a new value for each * level by writing a string that contains "s/m level clock voltage" to * the file. E.g., "s 1 500 820" will update sclk level 1 to be 500 MHz * at 820 mV; "m 0 350 810" will update mclk level 0 to be 350 MHz at * 810 mV. When you have edited all of the states as needed, write * "c" (commit) to the file to commit your changes. If you want to reset to the * default power levels, write "r" (reset) to the file to reset them. * * * < For Vega20 and newer ASICs > * * Reading the file will display: * * - minimum and maximum engine clock labeled OD_SCLK * * - minimum(not available for Vega20 and Navi1x) and maximum memory * clock labeled OD_MCLK * * - three <frequency, voltage> points labeled OD_VDDC_CURVE. * They can be used to calibrate the sclk voltage curve. This is * available for Vega20 and NV1X. * * - voltage offset(in mV) applied on target voltage calculation. * This is available for Sienna Cichlid, Navy Flounder, Dimgrey * Cavefish and some later SMU13 ASICs. For these ASICs, the target * voltage calculation can be illustrated by "voltage = voltage * calculated from v/f curve + overdrive vddgfx offset" * * - a list of valid ranges for sclk, mclk, voltage curve points * or voltage offset labeled OD_RANGE * * < For APUs > * * Reading the file will display: * * - minimum and maximum engine clock labeled OD_SCLK * * - a list of valid ranges for sclk labeled OD_RANGE * * < For VanGogh > * * Reading the file will display: * * - minimum and maximum engine clock labeled OD_SCLK * - minimum and maximum core clocks labeled OD_CCLK * * - a list of valid ranges for sclk and cclk labeled OD_RANGE * * To manually adjust these settings: * * - First select manual using power_dpm_force_performance_level * * - For clock frequency setting, enter a new value by writing a * string that contains "s/m index clock" to the file. The index * should be 0 if to set minimum clock. And 1 if to set maximum * clock. E.g., "s 0 500" will update minimum sclk to be 500 MHz. * "m 1 800" will update maximum mclk to be 800Mhz. For core * clocks on VanGogh, the string contains "p core index clock". * E.g., "p 2 0 800" would set the minimum core clock on core * 2 to 800Mhz. * * For sclk voltage curve supported by Vega20 and NV1X, enter the new * values by writing a string that contains "vc point clock voltage" * to the file. The points are indexed by 0, 1 and 2. E.g., "vc 0 300 * 600" will update point1 with clock set as 300Mhz and voltage as 600mV. * "vc 2 1000 1000" will update point3 with clock set as 1000Mhz and * voltage 1000mV. * * For voltage offset supported by Sienna Cichlid, Navy Flounder, Dimgrey * Cavefish and some later SMU13 ASICs, enter the new value by writing a * string that contains "vo offset". E.g., "vo -10" will update the extra * voltage offset applied to the whole v/f curve line as -10mv. * * - When you have edited all of the states as needed, write "c" (commit) * to the file to commit your changes * * - If you want to reset to the default power levels, write "r" (reset) * to the file to reset them * */ static ssize_t amdgpu_set_pp_od_clk_voltage(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = drm_to_adev(ddev); int ret; uint32_t parameter_size = 0; long parameter[64]; char buf_cpy[128]; char *tmp_str; char *sub_str; const char delimiter[3] = {' ', '\n', '\0'}; uint32_t type; if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; if (count > 127 || count == 0) return -EINVAL; if (*buf == 's') type = PP_OD_EDIT_SCLK_VDDC_TABLE; else if (*buf == 'p') type = PP_OD_EDIT_CCLK_VDDC_TABLE; else if (*buf == 'm') type = PP_OD_EDIT_MCLK_VDDC_TABLE; else if (*buf == 'r') type = PP_OD_RESTORE_DEFAULT_TABLE; else if (*buf == 'c') type = PP_OD_COMMIT_DPM_TABLE; else if (!strncmp(buf, "vc", 2)) type = PP_OD_EDIT_VDDC_CURVE; else if (!strncmp(buf, "vo", 2)) type = PP_OD_EDIT_VDDGFX_OFFSET; else return -EINVAL; memcpy(buf_cpy, buf, count); buf_cpy[count] = 0; tmp_str = buf_cpy; if ((type == PP_OD_EDIT_VDDC_CURVE) || (type == PP_OD_EDIT_VDDGFX_OFFSET)) tmp_str++; while (isspace(*++tmp_str)); while ((sub_str = strsep(&tmp_str, delimiter)) != NULL) { if (strlen(sub_str) == 0) continue; ret = kstrtol(sub_str, 0, ¶meter[parameter_size]); if (ret) return -EINVAL; parameter_size++; if (!tmp_str) break; while (isspace(*tmp_str)) tmp_str++; } ret = pm_runtime_get_sync(ddev->dev); if (ret < 0) { pm_runtime_put_autosuspend(ddev->dev); return ret; } if (amdgpu_dpm_set_fine_grain_clk_vol(adev, type, parameter, parameter_size)) goto err_out; if (amdgpu_dpm_odn_edit_dpm_table(adev, type, parameter, parameter_size)) goto err_out; if (type == PP_OD_COMMIT_DPM_TABLE) { if (amdgpu_dpm_dispatch_task(adev, AMD_PP_TASK_READJUST_POWER_STATE, NULL)) goto err_out; } pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); return count; err_out: pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); return -EINVAL; } static ssize_t amdgpu_get_pp_od_clk_voltage(struct device *dev, struct device_attribute *attr, char *buf) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = drm_to_adev(ddev); int size = 0; int ret; enum pp_clock_type od_clocks[6] = { OD_SCLK, OD_MCLK, OD_VDDC_CURVE, OD_RANGE, OD_VDDGFX_OFFSET, OD_CCLK, }; uint clk_index; if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; ret = pm_runtime_get_sync(ddev->dev); if (ret < 0) { pm_runtime_put_autosuspend(ddev->dev); return ret; } for (clk_index = 0 ; clk_index < 6 ; clk_index++) { ret = amdgpu_dpm_emit_clock_levels(adev, od_clocks[clk_index], buf, &size); if (ret) break; } if (ret == -ENOENT) { size = amdgpu_dpm_print_clock_levels(adev, OD_SCLK, buf); size += amdgpu_dpm_print_clock_levels(adev, OD_MCLK, buf + size); size += amdgpu_dpm_print_clock_levels(adev, OD_VDDC_CURVE, buf + size); size += amdgpu_dpm_print_clock_levels(adev, OD_VDDGFX_OFFSET, buf + size); size += amdgpu_dpm_print_clock_levels(adev, OD_RANGE, buf + size); size += amdgpu_dpm_print_clock_levels(adev, OD_CCLK, buf + size); } if (size == 0) size = sysfs_emit(buf, "\n"); pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); return size; } /** * DOC: pp_features * * The amdgpu driver provides a sysfs API for adjusting what powerplay * features to be enabled. The file pp_features is used for this. And * this is only available for Vega10 and later dGPUs. * * Reading back the file will show you the followings: * - Current ppfeature masks * - List of the all supported powerplay features with their naming, * bitmasks and enablement status('Y'/'N' means "enabled"/"disabled"). * * To manually enable or disable a specific feature, just set or clear * the corresponding bit from original ppfeature masks and input the * new ppfeature masks. */ static ssize_t amdgpu_set_pp_features(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = drm_to_adev(ddev); uint64_t featuremask; int ret; if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; ret = kstrtou64(buf, 0, &featuremask); if (ret) return -EINVAL; ret = pm_runtime_get_sync(ddev->dev); if (ret < 0) { pm_runtime_put_autosuspend(ddev->dev); return ret; } ret = amdgpu_dpm_set_ppfeature_status(adev, featuremask); pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); if (ret) return -EINVAL; return count; } static ssize_t amdgpu_get_pp_features(struct device *dev, struct device_attribute *attr, char *buf) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = drm_to_adev(ddev); ssize_t size; int ret; if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; ret = pm_runtime_get_sync(ddev->dev); if (ret < 0) { pm_runtime_put_autosuspend(ddev->dev); return ret; } size = amdgpu_dpm_get_ppfeature_status(adev, buf); if (size <= 0) size = sysfs_emit(buf, "\n"); pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); return size; } /** * DOC: pp_dpm_sclk pp_dpm_mclk pp_dpm_socclk pp_dpm_fclk pp_dpm_dcefclk pp_dpm_pcie * * The amdgpu driver provides a sysfs API for adjusting what power levels * are enabled for a given power state. The files pp_dpm_sclk, pp_dpm_mclk, * pp_dpm_socclk, pp_dpm_fclk, pp_dpm_dcefclk and pp_dpm_pcie are used for * this. * * pp_dpm_socclk and pp_dpm_dcefclk interfaces are only available for * Vega10 and later ASICs. * pp_dpm_fclk interface is only available for Vega20 and later ASICs. * * Reading back the files will show you the available power levels within * the power state and the clock information for those levels. If deep sleep is * applied to a clock, the level will be denoted by a special level 'S:' * E.g., :: * * S: 19Mhz * * 0: 615Mhz * 1: 800Mhz * 2: 888Mhz * 3: 1000Mhz * * * To manually adjust these states, first select manual using * power_dpm_force_performance_level. * Secondly, enter a new value for each level by inputing a string that * contains " echo xx xx xx > pp_dpm_sclk/mclk/pcie" * E.g., * * .. code-block:: bash * * echo "4 5 6" > pp_dpm_sclk * * will enable sclk levels 4, 5, and 6. * * NOTE: change to the dcefclk max dpm level is not supported now */ static ssize_t amdgpu_get_pp_dpm_clock(struct device *dev, enum pp_clock_type type, char *buf) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = drm_to_adev(ddev); int size = 0; int ret = 0; if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; ret = pm_runtime_get_sync(ddev->dev); if (ret < 0) { pm_runtime_put_autosuspend(ddev->dev); return ret; } ret = amdgpu_dpm_emit_clock_levels(adev, type, buf, &size); if (ret == -ENOENT) size = amdgpu_dpm_print_clock_levels(adev, type, buf); if (size == 0) size = sysfs_emit(buf, "\n"); pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); return size; } /* * Worst case: 32 bits individually specified, in octal at 12 characters * per line (+1 for \n). */ #define AMDGPU_MASK_BUF_MAX (32 * 13) static ssize_t amdgpu_read_mask(const char *buf, size_t count, uint32_t *mask) { int ret; unsigned long level; char *sub_str = NULL; char *tmp; char buf_cpy[AMDGPU_MASK_BUF_MAX + 1]; const char delimiter[3] = {' ', '\n', '\0'}; size_t bytes; *mask = 0; bytes = min(count, sizeof(buf_cpy) - 1); memcpy(buf_cpy, buf, bytes); buf_cpy[bytes] = '\0'; tmp = buf_cpy; while ((sub_str = strsep(&tmp, delimiter)) != NULL) { if (strlen(sub_str)) { ret = kstrtoul(sub_str, 0, &level); if (ret || level > 31) return -EINVAL; *mask |= 1 << level; } else break; } return 0; } static ssize_t amdgpu_set_pp_dpm_clock(struct device *dev, enum pp_clock_type type, const char *buf, size_t count) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = drm_to_adev(ddev); int ret; uint32_t mask = 0; if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; ret = amdgpu_read_mask(buf, count, &mask); if (ret) return ret; ret = pm_runtime_get_sync(ddev->dev); if (ret < 0) { pm_runtime_put_autosuspend(ddev->dev); return ret; } ret = amdgpu_dpm_force_clock_level(adev, type, mask); pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); if (ret) return -EINVAL; return count; } static ssize_t amdgpu_get_pp_dpm_sclk(struct device *dev, struct device_attribute *attr, char *buf) { return amdgpu_get_pp_dpm_clock(dev, PP_SCLK, buf); } static ssize_t amdgpu_set_pp_dpm_sclk(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { return amdgpu_set_pp_dpm_clock(dev, PP_SCLK, buf, count); } static ssize_t amdgpu_get_pp_dpm_mclk(struct device *dev, struct device_attribute *attr, char *buf) { return amdgpu_get_pp_dpm_clock(dev, PP_MCLK, buf); } static ssize_t amdgpu_set_pp_dpm_mclk(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { return amdgpu_set_pp_dpm_clock(dev, PP_MCLK, buf, count); } static ssize_t amdgpu_get_pp_dpm_socclk(struct device *dev, struct device_attribute *attr, char *buf) { return amdgpu_get_pp_dpm_clock(dev, PP_SOCCLK, buf); } static ssize_t amdgpu_set_pp_dpm_socclk(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { return amdgpu_set_pp_dpm_clock(dev, PP_SOCCLK, buf, count); } static ssize_t amdgpu_get_pp_dpm_fclk(struct device *dev, struct device_attribute *attr, char *buf) { return amdgpu_get_pp_dpm_clock(dev, PP_FCLK, buf); } static ssize_t amdgpu_set_pp_dpm_fclk(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { return amdgpu_set_pp_dpm_clock(dev, PP_FCLK, buf, count); } static ssize_t amdgpu_get_pp_dpm_vclk(struct device *dev, struct device_attribute *attr, char *buf) { return amdgpu_get_pp_dpm_clock(dev, PP_VCLK, buf); } static ssize_t amdgpu_set_pp_dpm_vclk(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { return amdgpu_set_pp_dpm_clock(dev, PP_VCLK, buf, count); } static ssize_t amdgpu_get_pp_dpm_vclk1(struct device *dev, struct device_attribute *attr, char *buf) { return amdgpu_get_pp_dpm_clock(dev, PP_VCLK1, buf); } static ssize_t amdgpu_set_pp_dpm_vclk1(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { return amdgpu_set_pp_dpm_clock(dev, PP_VCLK1, buf, count); } static ssize_t amdgpu_get_pp_dpm_dclk(struct device *dev, struct device_attribute *attr, char *buf) { return amdgpu_get_pp_dpm_clock(dev, PP_DCLK, buf); } static ssize_t amdgpu_set_pp_dpm_dclk(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { return amdgpu_set_pp_dpm_clock(dev, PP_DCLK, buf, count); } static ssize_t amdgpu_get_pp_dpm_dclk1(struct device *dev, struct device_attribute *attr, char *buf) { return amdgpu_get_pp_dpm_clock(dev, PP_DCLK1, buf); } static ssize_t amdgpu_set_pp_dpm_dclk1(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { return amdgpu_set_pp_dpm_clock(dev, PP_DCLK1, buf, count); } static ssize_t amdgpu_get_pp_dpm_dcefclk(struct device *dev, struct device_attribute *attr, char *buf) { return amdgpu_get_pp_dpm_clock(dev, PP_DCEFCLK, buf); } static ssize_t amdgpu_set_pp_dpm_dcefclk(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { return amdgpu_set_pp_dpm_clock(dev, PP_DCEFCLK, buf, count); } static ssize_t amdgpu_get_pp_dpm_pcie(struct device *dev, struct device_attribute *attr, char *buf) { return amdgpu_get_pp_dpm_clock(dev, PP_PCIE, buf); } static ssize_t amdgpu_set_pp_dpm_pcie(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { return amdgpu_set_pp_dpm_clock(dev, PP_PCIE, buf, count); } static ssize_t amdgpu_get_pp_sclk_od(struct device *dev, struct device_attribute *attr, char *buf) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = drm_to_adev(ddev); uint32_t value = 0; int ret; if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; ret = pm_runtime_get_sync(ddev->dev); if (ret < 0) { pm_runtime_put_autosuspend(ddev->dev); return ret; } value = amdgpu_dpm_get_sclk_od(adev); pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); return sysfs_emit(buf, "%d\n", value); } static ssize_t amdgpu_set_pp_sclk_od(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = drm_to_adev(ddev); int ret; long int value; if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; ret = kstrtol(buf, 0, &value); if (ret) return -EINVAL; ret = pm_runtime_get_sync(ddev->dev); if (ret < 0) { pm_runtime_put_autosuspend(ddev->dev); return ret; } amdgpu_dpm_set_sclk_od(adev, (uint32_t)value); pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); return count; } static ssize_t amdgpu_get_pp_mclk_od(struct device *dev, struct device_attribute *attr, char *buf) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = drm_to_adev(ddev); uint32_t value = 0; int ret; if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; ret = pm_runtime_get_sync(ddev->dev); if (ret < 0) { pm_runtime_put_autosuspend(ddev->dev); return ret; } value = amdgpu_dpm_get_mclk_od(adev); pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); return sysfs_emit(buf, "%d\n", value); } static ssize_t amdgpu_set_pp_mclk_od(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = drm_to_adev(ddev); int ret; long int value; if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; ret = kstrtol(buf, 0, &value); if (ret) return -EINVAL; ret = pm_runtime_get_sync(ddev->dev); if (ret < 0) { pm_runtime_put_autosuspend(ddev->dev); return ret; } amdgpu_dpm_set_mclk_od(adev, (uint32_t)value); pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); return count; } /** * DOC: pp_power_profile_mode * * The amdgpu driver provides a sysfs API for adjusting the heuristics * related to switching between power levels in a power state. The file * pp_power_profile_mode is used for this. * * Reading this file outputs a list of all of the predefined power profiles * and the relevant heuristics settings for that profile. * * To select a profile or create a custom profile, first select manual using * power_dpm_force_performance_level. Writing the number of a predefined * profile to pp_power_profile_mode will enable those heuristics. To * create a custom set of heuristics, write a string of numbers to the file * starting with the number of the custom profile along with a setting * for each heuristic parameter. Due to differences across asic families * the heuristic parameters vary from family to family. * */ static ssize_t amdgpu_get_pp_power_profile_mode(struct device *dev, struct device_attribute *attr, char *buf) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = drm_to_adev(ddev); ssize_t size; int ret; if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; ret = pm_runtime_get_sync(ddev->dev); if (ret < 0) { pm_runtime_put_autosuspend(ddev->dev); return ret; } size = amdgpu_dpm_get_power_profile_mode(adev, buf); if (size <= 0) size = sysfs_emit(buf, "\n"); pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); return size; } static ssize_t amdgpu_set_pp_power_profile_mode(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int ret; struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = drm_to_adev(ddev); uint32_t parameter_size = 0; long parameter[64]; char *sub_str, buf_cpy[128]; char *tmp_str; uint32_t i = 0; char tmp[2]; long int profile_mode = 0; const char delimiter[3] = {' ', '\n', '\0'}; if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; tmp[0] = *(buf); tmp[1] = '\0'; ret = kstrtol(tmp, 0, &profile_mode); if (ret) return -EINVAL; if (profile_mode == PP_SMC_POWER_PROFILE_CUSTOM) { if (count < 2 || count > 127) return -EINVAL; while (isspace(*++buf)) i++; memcpy(buf_cpy, buf, count-i); tmp_str = buf_cpy; while ((sub_str = strsep(&tmp_str, delimiter)) != NULL) { if (strlen(sub_str) == 0) continue; ret = kstrtol(sub_str, 0, ¶meter[parameter_size]); if (ret) return -EINVAL; parameter_size++; while (isspace(*tmp_str)) tmp_str++; } } parameter[parameter_size] = profile_mode; ret = pm_runtime_get_sync(ddev->dev); if (ret < 0) { pm_runtime_put_autosuspend(ddev->dev); return ret; } ret = amdgpu_dpm_set_power_profile_mode(adev, parameter, parameter_size); pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); if (!ret) return count; return -EINVAL; } static int amdgpu_hwmon_get_sensor_generic(struct amdgpu_device *adev, enum amd_pp_sensors sensor, void *query) { int r, size = sizeof(uint32_t); if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; r = pm_runtime_get_sync(adev_to_drm(adev)->dev); if (r < 0) { pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); return r; } /* get the sensor value */ r = amdgpu_dpm_read_sensor(adev, sensor, query, &size); pm_runtime_mark_last_busy(adev_to_drm(adev)->dev); pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); return r; } /** * DOC: gpu_busy_percent * * The amdgpu driver provides a sysfs API for reading how busy the GPU * is as a percentage. The file gpu_busy_percent is used for this. * The SMU firmware computes a percentage of load based on the * aggregate activity level in the IP cores. */ static ssize_t amdgpu_get_gpu_busy_percent(struct device *dev, struct device_attribute *attr, char *buf) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = drm_to_adev(ddev); unsigned int value; int r; r = amdgpu_hwmon_get_sensor_generic(adev, AMDGPU_PP_SENSOR_GPU_LOAD, &value); if (r) return r; return sysfs_emit(buf, "%d\n", value); } /** * DOC: mem_busy_percent * * The amdgpu driver provides a sysfs API for reading how busy the VRAM * is as a percentage. The file mem_busy_percent is used for this. * The SMU firmware computes a percentage of load based on the * aggregate activity level in the IP cores. */ static ssize_t amdgpu_get_mem_busy_percent(struct device *dev, struct device_attribute *attr, char *buf) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = drm_to_adev(ddev); unsigned int value; int r; r = amdgpu_hwmon_get_sensor_generic(adev, AMDGPU_PP_SENSOR_MEM_LOAD, &value); if (r) return r; return sysfs_emit(buf, "%d\n", value); } /** * DOC: pcie_bw * * The amdgpu driver provides a sysfs API for estimating how much data * has been received and sent by the GPU in the last second through PCIe. * The file pcie_bw is used for this. * The Perf counters count the number of received and sent messages and return * those values, as well as the maximum payload size of a PCIe packet (mps). * Note that it is not possible to easily and quickly obtain the size of each * packet transmitted, so we output the max payload size (mps) to allow for * quick estimation of the PCIe bandwidth usage */ static ssize_t amdgpu_get_pcie_bw(struct device *dev, struct device_attribute *attr, char *buf) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = drm_to_adev(ddev); uint64_t count0 = 0, count1 = 0; int ret; if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; if (adev->flags & AMD_IS_APU) return -ENODATA; if (!adev->asic_funcs->get_pcie_usage) return -ENODATA; ret = pm_runtime_get_sync(ddev->dev); if (ret < 0) { pm_runtime_put_autosuspend(ddev->dev); return ret; } amdgpu_asic_get_pcie_usage(adev, &count0, &count1); pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); return sysfs_emit(buf, "%llu %llu %i\n", count0, count1, pcie_get_mps(adev->pdev)); } /** * DOC: unique_id * * The amdgpu driver provides a sysfs API for providing a unique ID for the GPU * The file unique_id is used for this. * This will provide a Unique ID that will persist from machine to machine * * NOTE: This will only work for GFX9 and newer. This file will be absent * on unsupported ASICs (GFX8 and older) */ static ssize_t amdgpu_get_unique_id(struct device *dev, struct device_attribute *attr, char *buf) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = drm_to_adev(ddev); if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; if (adev->unique_id) return sysfs_emit(buf, "%016llx\n", adev->unique_id); return 0; } /** * DOC: thermal_throttling_logging * * Thermal throttling pulls down the clock frequency and thus the performance. * It's an useful mechanism to protect the chip from overheating. Since it * impacts performance, the user controls whether it is enabled and if so, * the log frequency. * * Reading back the file shows you the status(enabled or disabled) and * the interval(in seconds) between each thermal logging. * * Writing an integer to the file, sets a new logging interval, in seconds. * The value should be between 1 and 3600. If the value is less than 1, * thermal logging is disabled. Values greater than 3600 are ignored. */ static ssize_t amdgpu_get_thermal_throttling_logging(struct device *dev, struct device_attribute *attr, char *buf) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = drm_to_adev(ddev); return sysfs_emit(buf, "%s: thermal throttling logging %s, with interval %d seconds\n", adev_to_drm(adev)->unique, atomic_read(&adev->throttling_logging_enabled) ? "enabled" : "disabled", adev->throttling_logging_rs.interval / HZ + 1); } static ssize_t amdgpu_set_thermal_throttling_logging(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = drm_to_adev(ddev); long throttling_logging_interval; unsigned long flags; int ret = 0; ret = kstrtol(buf, 0, &throttling_logging_interval); if (ret) return ret; if (throttling_logging_interval > 3600) return -EINVAL; if (throttling_logging_interval > 0) { raw_spin_lock_irqsave(&adev->throttling_logging_rs.lock, flags); /* * Reset the ratelimit timer internals. * This can effectively restart the timer. */ adev->throttling_logging_rs.interval = (throttling_logging_interval - 1) * HZ; adev->throttling_logging_rs.begin = 0; adev->throttling_logging_rs.printed = 0; adev->throttling_logging_rs.missed = 0; raw_spin_unlock_irqrestore(&adev->throttling_logging_rs.lock, flags); atomic_set(&adev->throttling_logging_enabled, 1); } else { atomic_set(&adev->throttling_logging_enabled, 0); } return count; } /** * DOC: apu_thermal_cap * * The amdgpu driver provides a sysfs API for retrieving/updating thermal * limit temperature in millidegrees Celsius * * Reading back the file shows you core limit value * * Writing an integer to the file, sets a new thermal limit. The value * should be between 0 and 100. If the value is less than 0 or greater * than 100, then the write request will be ignored. */ static ssize_t amdgpu_get_apu_thermal_cap(struct device *dev, struct device_attribute *attr, char *buf) { int ret, size; u32 limit; struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = drm_to_adev(ddev); ret = pm_runtime_get_sync(ddev->dev); if (ret < 0) { pm_runtime_put_autosuspend(ddev->dev); return ret; } ret = amdgpu_dpm_get_apu_thermal_limit(adev, &limit); if (!ret) size = sysfs_emit(buf, "%u\n", limit); else size = sysfs_emit(buf, "failed to get thermal limit\n"); pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); return size; } static ssize_t amdgpu_set_apu_thermal_cap(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int ret; u32 value; struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = drm_to_adev(ddev); ret = kstrtou32(buf, 10, &value); if (ret) return ret; if (value > 100) { dev_err(dev, "Invalid argument !\n"); return -EINVAL; } ret = pm_runtime_get_sync(ddev->dev); if (ret < 0) { pm_runtime_put_autosuspend(ddev->dev); return ret; } ret = amdgpu_dpm_set_apu_thermal_limit(adev, value); if (ret) { dev_err(dev, "failed to update thermal limit\n"); return ret; } pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); return count; } /** * DOC: gpu_metrics * * The amdgpu driver provides a sysfs API for retrieving current gpu * metrics data. The file gpu_metrics is used for this. Reading the * file will dump all the current gpu metrics data. * * These data include temperature, frequency, engines utilization, * power consume, throttler status, fan speed and cpu core statistics( * available for APU only). That's it will give a snapshot of all sensors * at the same time. */ static ssize_t amdgpu_get_gpu_metrics(struct device *dev, struct device_attribute *attr, char *buf) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = drm_to_adev(ddev); void *gpu_metrics; ssize_t size = 0; int ret; if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; ret = pm_runtime_get_sync(ddev->dev); if (ret < 0) { pm_runtime_put_autosuspend(ddev->dev); return ret; } size = amdgpu_dpm_get_gpu_metrics(adev, &gpu_metrics); if (size <= 0) goto out; if (size >= PAGE_SIZE) size = PAGE_SIZE - 1; memcpy(buf, gpu_metrics, size); out: pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); return size; } static int amdgpu_show_powershift_percent(struct device *dev, char *buf, enum amd_pp_sensors sensor) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = drm_to_adev(ddev); uint32_t ss_power; int r = 0, i; r = amdgpu_hwmon_get_sensor_generic(adev, sensor, (void *)&ss_power); if (r == -EOPNOTSUPP) { /* sensor not available on dGPU, try to read from APU */ adev = NULL; mutex_lock(&mgpu_info.mutex); for (i = 0; i < mgpu_info.num_gpu; i++) { if (mgpu_info.gpu_ins[i].adev->flags & AMD_IS_APU) { adev = mgpu_info.gpu_ins[i].adev; break; } } mutex_unlock(&mgpu_info.mutex); if (adev) r = amdgpu_hwmon_get_sensor_generic(adev, sensor, (void *)&ss_power); } if (r) return r; return sysfs_emit(buf, "%u%%\n", ss_power); } /** * DOC: smartshift_apu_power * * The amdgpu driver provides a sysfs API for reporting APU power * shift in percentage if platform supports smartshift. Value 0 means that * there is no powershift and values between [1-100] means that the power * is shifted to APU, the percentage of boost is with respect to APU power * limit on the platform. */ static ssize_t amdgpu_get_smartshift_apu_power(struct device *dev, struct device_attribute *attr, char *buf) { return amdgpu_show_powershift_percent(dev, buf, AMDGPU_PP_SENSOR_SS_APU_SHARE); } /** * DOC: smartshift_dgpu_power * * The amdgpu driver provides a sysfs API for reporting dGPU power * shift in percentage if platform supports smartshift. Value 0 means that * there is no powershift and values between [1-100] means that the power is * shifted to dGPU, the percentage of boost is with respect to dGPU power * limit on the platform. */ static ssize_t amdgpu_get_smartshift_dgpu_power(struct device *dev, struct device_attribute *attr, char *buf) { return amdgpu_show_powershift_percent(dev, buf, AMDGPU_PP_SENSOR_SS_DGPU_SHARE); } /** * DOC: smartshift_bias * * The amdgpu driver provides a sysfs API for reporting the * smartshift(SS2.0) bias level. The value ranges from -100 to 100 * and the default is 0. -100 sets maximum preference to APU * and 100 sets max perference to dGPU. */ static ssize_t amdgpu_get_smartshift_bias(struct device *dev, struct device_attribute *attr, char *buf) { int r = 0; r = sysfs_emit(buf, "%d\n", amdgpu_smartshift_bias); return r; } static ssize_t amdgpu_set_smartshift_bias(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = drm_to_adev(ddev); int r = 0; int bias = 0; if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; r = pm_runtime_get_sync(ddev->dev); if (r < 0) { pm_runtime_put_autosuspend(ddev->dev); return r; } r = kstrtoint(buf, 10, &bias); if (r) goto out; if (bias > AMDGPU_SMARTSHIFT_MAX_BIAS) bias = AMDGPU_SMARTSHIFT_MAX_BIAS; else if (bias < AMDGPU_SMARTSHIFT_MIN_BIAS) bias = AMDGPU_SMARTSHIFT_MIN_BIAS; amdgpu_smartshift_bias = bias; r = count; /* TODO: update bias level with SMU message */ out: pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); return r; } static int ss_power_attr_update(struct amdgpu_device *adev, struct amdgpu_device_attr *attr, uint32_t mask, enum amdgpu_device_attr_states *states) { if (!amdgpu_device_supports_smart_shift(adev_to_drm(adev))) *states = ATTR_STATE_UNSUPPORTED; return 0; } static int ss_bias_attr_update(struct amdgpu_device *adev, struct amdgpu_device_attr *attr, uint32_t mask, enum amdgpu_device_attr_states *states) { uint32_t ss_power; if (!amdgpu_device_supports_smart_shift(adev_to_drm(adev))) *states = ATTR_STATE_UNSUPPORTED; else if (amdgpu_hwmon_get_sensor_generic(adev, AMDGPU_PP_SENSOR_SS_APU_SHARE, (void *)&ss_power)) *states = ATTR_STATE_UNSUPPORTED; else if (amdgpu_hwmon_get_sensor_generic(adev, AMDGPU_PP_SENSOR_SS_DGPU_SHARE, (void *)&ss_power)) *states = ATTR_STATE_UNSUPPORTED; return 0; } /* Following items will be read out to indicate current plpd policy: * - -1: none * - 0: disallow * - 1: default * - 2: optimized */ static ssize_t amdgpu_get_xgmi_plpd_policy(struct device *dev, struct device_attribute *attr, char *buf) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = drm_to_adev(ddev); char *mode_desc = "none"; int mode; if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; mode = amdgpu_dpm_get_xgmi_plpd_mode(adev, &mode_desc); return sysfs_emit(buf, "%d: %s\n", mode, mode_desc); } /* Following argument value is expected from user to change plpd policy * - arg 0: disallow plpd * - arg 1: default policy * - arg 2: optimized policy */ static ssize_t amdgpu_set_xgmi_plpd_policy(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = drm_to_adev(ddev); int mode, ret; if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; ret = kstrtos32(buf, 0, &mode); if (ret) return -EINVAL; ret = pm_runtime_get_sync(ddev->dev); if (ret < 0) { pm_runtime_put_autosuspend(ddev->dev); return ret; } ret = amdgpu_dpm_set_xgmi_plpd_mode(adev, mode); pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); if (ret) return ret; return count; } static struct amdgpu_device_attr amdgpu_device_attrs[] = { AMDGPU_DEVICE_ATTR_RW(power_dpm_state, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF), AMDGPU_DEVICE_ATTR_RW(power_dpm_force_performance_level, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF), AMDGPU_DEVICE_ATTR_RO(pp_num_states, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF), AMDGPU_DEVICE_ATTR_RO(pp_cur_state, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF), AMDGPU_DEVICE_ATTR_RW(pp_force_state, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF), AMDGPU_DEVICE_ATTR_RW(pp_table, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF), AMDGPU_DEVICE_ATTR_RW(pp_dpm_sclk, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF), AMDGPU_DEVICE_ATTR_RW(pp_dpm_mclk, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF), AMDGPU_DEVICE_ATTR_RW(pp_dpm_socclk, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF), AMDGPU_DEVICE_ATTR_RW(pp_dpm_fclk, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF), AMDGPU_DEVICE_ATTR_RW(pp_dpm_vclk, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF), AMDGPU_DEVICE_ATTR_RW(pp_dpm_vclk1, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF), AMDGPU_DEVICE_ATTR_RW(pp_dpm_dclk, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF), AMDGPU_DEVICE_ATTR_RW(pp_dpm_dclk1, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF), AMDGPU_DEVICE_ATTR_RW(pp_dpm_dcefclk, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF), AMDGPU_DEVICE_ATTR_RW(pp_dpm_pcie, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF), AMDGPU_DEVICE_ATTR_RW(pp_sclk_od, ATTR_FLAG_BASIC), AMDGPU_DEVICE_ATTR_RW(pp_mclk_od, ATTR_FLAG_BASIC), AMDGPU_DEVICE_ATTR_RW(pp_power_profile_mode, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF), AMDGPU_DEVICE_ATTR_RW(pp_od_clk_voltage, ATTR_FLAG_BASIC), AMDGPU_DEVICE_ATTR_RO(gpu_busy_percent, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF), AMDGPU_DEVICE_ATTR_RO(mem_busy_percent, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF), AMDGPU_DEVICE_ATTR_RO(pcie_bw, ATTR_FLAG_BASIC), AMDGPU_DEVICE_ATTR_RW(pp_features, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF), AMDGPU_DEVICE_ATTR_RO(unique_id, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF), AMDGPU_DEVICE_ATTR_RW(thermal_throttling_logging, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF), AMDGPU_DEVICE_ATTR_RW(apu_thermal_cap, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF), AMDGPU_DEVICE_ATTR_RO(gpu_metrics, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF), AMDGPU_DEVICE_ATTR_RO(smartshift_apu_power, ATTR_FLAG_BASIC, .attr_update = ss_power_attr_update), AMDGPU_DEVICE_ATTR_RO(smartshift_dgpu_power, ATTR_FLAG_BASIC, .attr_update = ss_power_attr_update), AMDGPU_DEVICE_ATTR_RW(smartshift_bias, ATTR_FLAG_BASIC, .attr_update = ss_bias_attr_update), AMDGPU_DEVICE_ATTR_RW(xgmi_plpd_policy, ATTR_FLAG_BASIC), }; static int default_attr_update(struct amdgpu_device *adev, struct amdgpu_device_attr *attr, uint32_t mask, enum amdgpu_device_attr_states *states) { struct device_attribute *dev_attr = &attr->dev_attr; uint32_t mp1_ver = amdgpu_ip_version(adev, MP1_HWIP, 0); uint32_t gc_ver = amdgpu_ip_version(adev, GC_HWIP, 0); const char *attr_name = dev_attr->attr.name; if (!(attr->flags & mask)) { *states = ATTR_STATE_UNSUPPORTED; return 0; } #define DEVICE_ATTR_IS(_name) (!strcmp(attr_name, #_name)) if (DEVICE_ATTR_IS(pp_dpm_socclk)) { if (gc_ver < IP_VERSION(9, 0, 0)) *states = ATTR_STATE_UNSUPPORTED; } else if (DEVICE_ATTR_IS(pp_dpm_dcefclk)) { if (gc_ver < IP_VERSION(9, 0, 0) || !amdgpu_device_has_display_hardware(adev)) *states = ATTR_STATE_UNSUPPORTED; } else if (DEVICE_ATTR_IS(pp_dpm_fclk)) { if (mp1_ver < IP_VERSION(10, 0, 0)) *states = ATTR_STATE_UNSUPPORTED; } else if (DEVICE_ATTR_IS(pp_od_clk_voltage)) { *states = ATTR_STATE_UNSUPPORTED; if (amdgpu_dpm_is_overdrive_supported(adev)) *states = ATTR_STATE_SUPPORTED; } else if (DEVICE_ATTR_IS(mem_busy_percent)) { if ((adev->flags & AMD_IS_APU && gc_ver != IP_VERSION(9, 4, 3)) || gc_ver == IP_VERSION(9, 0, 1)) *states = ATTR_STATE_UNSUPPORTED; } else if (DEVICE_ATTR_IS(pcie_bw)) { /* PCIe Perf counters won't work on APU nodes */ if (adev->flags & AMD_IS_APU) *states = ATTR_STATE_UNSUPPORTED; } else if (DEVICE_ATTR_IS(unique_id)) { switch (gc_ver) { case IP_VERSION(9, 0, 1): case IP_VERSION(9, 4, 0): case IP_VERSION(9, 4, 1): case IP_VERSION(9, 4, 2): case IP_VERSION(9, 4, 3): case IP_VERSION(10, 3, 0): case IP_VERSION(11, 0, 0): case IP_VERSION(11, 0, 1): case IP_VERSION(11, 0, 2): case IP_VERSION(11, 0, 3): *states = ATTR_STATE_SUPPORTED; break; default: *states = ATTR_STATE_UNSUPPORTED; } } else if (DEVICE_ATTR_IS(pp_features)) { if ((adev->flags & AMD_IS_APU && gc_ver != IP_VERSION(9, 4, 3)) || gc_ver < IP_VERSION(9, 0, 0)) *states = ATTR_STATE_UNSUPPORTED; } else if (DEVICE_ATTR_IS(gpu_metrics)) { if (gc_ver < IP_VERSION(9, 1, 0)) *states = ATTR_STATE_UNSUPPORTED; } else if (DEVICE_ATTR_IS(pp_dpm_vclk)) { if (!(gc_ver == IP_VERSION(10, 3, 1) || gc_ver == IP_VERSION(10, 3, 0) || gc_ver == IP_VERSION(10, 1, 2) || gc_ver == IP_VERSION(11, 0, 0) || gc_ver == IP_VERSION(11, 0, 2) || gc_ver == IP_VERSION(11, 0, 3) || gc_ver == IP_VERSION(9, 4, 3))) *states = ATTR_STATE_UNSUPPORTED; } else if (DEVICE_ATTR_IS(pp_dpm_vclk1)) { if (!((gc_ver == IP_VERSION(10, 3, 1) || gc_ver == IP_VERSION(10, 3, 0) || gc_ver == IP_VERSION(11, 0, 2) || gc_ver == IP_VERSION(11, 0, 3)) && adev->vcn.num_vcn_inst >= 2)) *states = ATTR_STATE_UNSUPPORTED; } else if (DEVICE_ATTR_IS(pp_dpm_dclk)) { if (!(gc_ver == IP_VERSION(10, 3, 1) || gc_ver == IP_VERSION(10, 3, 0) || gc_ver == IP_VERSION(10, 1, 2) || gc_ver == IP_VERSION(11, 0, 0) || gc_ver == IP_VERSION(11, 0, 2) || gc_ver == IP_VERSION(11, 0, 3) || gc_ver == IP_VERSION(9, 4, 3))) *states = ATTR_STATE_UNSUPPORTED; } else if (DEVICE_ATTR_IS(pp_dpm_dclk1)) { if (!((gc_ver == IP_VERSION(10, 3, 1) || gc_ver == IP_VERSION(10, 3, 0) || gc_ver == IP_VERSION(11, 0, 2) || gc_ver == IP_VERSION(11, 0, 3)) && adev->vcn.num_vcn_inst >= 2)) *states = ATTR_STATE_UNSUPPORTED; } else if (DEVICE_ATTR_IS(pp_power_profile_mode)) { if (amdgpu_dpm_get_power_profile_mode(adev, NULL) == -EOPNOTSUPP) *states = ATTR_STATE_UNSUPPORTED; else if ((gc_ver == IP_VERSION(10, 3, 0) || gc_ver == IP_VERSION(11, 0, 3)) && amdgpu_sriov_vf(adev)) *states = ATTR_STATE_UNSUPPORTED; } else if (DEVICE_ATTR_IS(xgmi_plpd_policy)) { if (amdgpu_dpm_get_xgmi_plpd_mode(adev, NULL) == XGMI_PLPD_NONE) *states = ATTR_STATE_UNSUPPORTED; } else if (DEVICE_ATTR_IS(pp_mclk_od)) { if (amdgpu_dpm_get_mclk_od(adev) == -EOPNOTSUPP) *states = ATTR_STATE_UNSUPPORTED; } else if (DEVICE_ATTR_IS(pp_sclk_od)) { if (amdgpu_dpm_get_sclk_od(adev) == -EOPNOTSUPP) *states = ATTR_STATE_UNSUPPORTED; } else if (DEVICE_ATTR_IS(apu_thermal_cap)) { u32 limit; if (amdgpu_dpm_get_apu_thermal_limit(adev, &limit) == -EOPNOTSUPP) *states = ATTR_STATE_UNSUPPORTED; } else if (DEVICE_ATTR_IS(pp_dpm_pcie)) { if (gc_ver == IP_VERSION(9, 4, 2) || gc_ver == IP_VERSION(9, 4, 3)) *states = ATTR_STATE_UNSUPPORTED; } switch (gc_ver) { case IP_VERSION(9, 4, 1): case IP_VERSION(9, 4, 2): /* the Mi series card does not support standalone mclk/socclk/fclk level setting */ if (DEVICE_ATTR_IS(pp_dpm_mclk) || DEVICE_ATTR_IS(pp_dpm_socclk) || DEVICE_ATTR_IS(pp_dpm_fclk)) { dev_attr->attr.mode &= ~S_IWUGO; dev_attr->store = NULL; } break; case IP_VERSION(10, 3, 0): if (DEVICE_ATTR_IS(power_dpm_force_performance_level) && amdgpu_sriov_vf(adev)) { dev_attr->attr.mode &= ~0222; dev_attr->store = NULL; } break; default: break; } if (DEVICE_ATTR_IS(pp_dpm_dcefclk)) { /* SMU MP1 does not support dcefclk level setting */ if (gc_ver >= IP_VERSION(10, 0, 0)) { dev_attr->attr.mode &= ~S_IWUGO; dev_attr->store = NULL; } } /* setting should not be allowed from VF if not in one VF mode */ if (amdgpu_sriov_vf(adev) && !amdgpu_sriov_is_pp_one_vf(adev)) { dev_attr->attr.mode &= ~S_IWUGO; dev_attr->store = NULL; } #undef DEVICE_ATTR_IS return 0; } static int amdgpu_device_attr_create(struct amdgpu_device *adev, struct amdgpu_device_attr *attr, uint32_t mask, struct list_head *attr_list) { int ret = 0; enum amdgpu_device_attr_states attr_states = ATTR_STATE_SUPPORTED; struct amdgpu_device_attr_entry *attr_entry; struct device_attribute *dev_attr; const char *name; int (*attr_update)(struct amdgpu_device *adev, struct amdgpu_device_attr *attr, uint32_t mask, enum amdgpu_device_attr_states *states) = default_attr_update; if (!attr) return -EINVAL; dev_attr = &attr->dev_attr; name = dev_attr->attr.name; attr_update = attr->attr_update ? attr->attr_update : default_attr_update; ret = attr_update(adev, attr, mask, &attr_states); if (ret) { dev_err(adev->dev, "failed to update device file %s, ret = %d\n", name, ret); return ret; } if (attr_states == ATTR_STATE_UNSUPPORTED) return 0; ret = device_create_file(adev->dev, dev_attr); if (ret) { dev_err(adev->dev, "failed to create device file %s, ret = %d\n", name, ret); } attr_entry = kmalloc(sizeof(*attr_entry), GFP_KERNEL); if (!attr_entry) return -ENOMEM; attr_entry->attr = attr; INIT_LIST_HEAD(&attr_entry->entry); list_add_tail(&attr_entry->entry, attr_list); return ret; } static void amdgpu_device_attr_remove(struct amdgpu_device *adev, struct amdgpu_device_attr *attr) { struct device_attribute *dev_attr = &attr->dev_attr; device_remove_file(adev->dev, dev_attr); } static void amdgpu_device_attr_remove_groups(struct amdgpu_device *adev, struct list_head *attr_list); static int amdgpu_device_attr_create_groups(struct amdgpu_device *adev, struct amdgpu_device_attr *attrs, uint32_t counts, uint32_t mask, struct list_head *attr_list) { int ret = 0; uint32_t i = 0; for (i = 0; i < counts; i++) { ret = amdgpu_device_attr_create(adev, &attrs[i], mask, attr_list); if (ret) goto failed; } return 0; failed: amdgpu_device_attr_remove_groups(adev, attr_list); return ret; } static void amdgpu_device_attr_remove_groups(struct amdgpu_device *adev, struct list_head *attr_list) { struct amdgpu_device_attr_entry *entry, *entry_tmp; if (list_empty(attr_list)) return ; list_for_each_entry_safe(entry, entry_tmp, attr_list, entry) { amdgpu_device_attr_remove(adev, entry->attr); list_del(&entry->entry); kfree(entry); } } static ssize_t amdgpu_hwmon_show_temp(struct device *dev, struct device_attribute *attr, char *buf) { struct amdgpu_device *adev = dev_get_drvdata(dev); int channel = to_sensor_dev_attr(attr)->index; int r, temp = 0; if (channel >= PP_TEMP_MAX) return -EINVAL; switch (channel) { case PP_TEMP_JUNCTION: /* get current junction temperature */ r = amdgpu_hwmon_get_sensor_generic(adev, AMDGPU_PP_SENSOR_HOTSPOT_TEMP, (void *)&temp); break; case PP_TEMP_EDGE: /* get current edge temperature */ r = amdgpu_hwmon_get_sensor_generic(adev, AMDGPU_PP_SENSOR_EDGE_TEMP, (void *)&temp); break; case PP_TEMP_MEM: /* get current memory temperature */ r = amdgpu_hwmon_get_sensor_generic(adev, AMDGPU_PP_SENSOR_MEM_TEMP, (void *)&temp); break; default: r = -EINVAL; break; } if (r) return r; return sysfs_emit(buf, "%d\n", temp); } static ssize_t amdgpu_hwmon_show_temp_thresh(struct device *dev, struct device_attribute *attr, char *buf) { struct amdgpu_device *adev = dev_get_drvdata(dev); int hyst = to_sensor_dev_attr(attr)->index; int temp; if (hyst) temp = adev->pm.dpm.thermal.min_temp; else temp = adev->pm.dpm.thermal.max_temp; return sysfs_emit(buf, "%d\n", temp); } static ssize_t amdgpu_hwmon_show_hotspot_temp_thresh(struct device *dev, struct device_attribute *attr, char *buf) { struct amdgpu_device *adev = dev_get_drvdata(dev); int hyst = to_sensor_dev_attr(attr)->index; int temp; if (hyst) temp = adev->pm.dpm.thermal.min_hotspot_temp; else temp = adev->pm.dpm.thermal.max_hotspot_crit_temp; return sysfs_emit(buf, "%d\n", temp); } static ssize_t amdgpu_hwmon_show_mem_temp_thresh(struct device *dev, struct device_attribute *attr, char *buf) { struct amdgpu_device *adev = dev_get_drvdata(dev); int hyst = to_sensor_dev_attr(attr)->index; int temp; if (hyst) temp = adev->pm.dpm.thermal.min_mem_temp; else temp = adev->pm.dpm.thermal.max_mem_crit_temp; return sysfs_emit(buf, "%d\n", temp); } static ssize_t amdgpu_hwmon_show_temp_label(struct device *dev, struct device_attribute *attr, char *buf) { int channel = to_sensor_dev_attr(attr)->index; if (channel >= PP_TEMP_MAX) return -EINVAL; return sysfs_emit(buf, "%s\n", temp_label[channel].label); } static ssize_t amdgpu_hwmon_show_temp_emergency(struct device *dev, struct device_attribute *attr, char *buf) { struct amdgpu_device *adev = dev_get_drvdata(dev); int channel = to_sensor_dev_attr(attr)->index; int temp = 0; if (channel >= PP_TEMP_MAX) return -EINVAL; switch (channel) { case PP_TEMP_JUNCTION: temp = adev->pm.dpm.thermal.max_hotspot_emergency_temp; break; case PP_TEMP_EDGE: temp = adev->pm.dpm.thermal.max_edge_emergency_temp; break; case PP_TEMP_MEM: temp = adev->pm.dpm.thermal.max_mem_emergency_temp; break; } return sysfs_emit(buf, "%d\n", temp); } static ssize_t amdgpu_hwmon_get_pwm1_enable(struct device *dev, struct device_attribute *attr, char *buf) { struct amdgpu_device *adev = dev_get_drvdata(dev); u32 pwm_mode = 0; int ret; if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; ret = pm_runtime_get_sync(adev_to_drm(adev)->dev); if (ret < 0) { pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); return ret; } ret = amdgpu_dpm_get_fan_control_mode(adev, &pwm_mode); pm_runtime_mark_last_busy(adev_to_drm(adev)->dev); pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); if (ret) return -EINVAL; return sysfs_emit(buf, "%u\n", pwm_mode); } static ssize_t amdgpu_hwmon_set_pwm1_enable(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct amdgpu_device *adev = dev_get_drvdata(dev); int err, ret; int value; if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; err = kstrtoint(buf, 10, &value); if (err) return err; ret = pm_runtime_get_sync(adev_to_drm(adev)->dev); if (ret < 0) { pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); return ret; } ret = amdgpu_dpm_set_fan_control_mode(adev, value); pm_runtime_mark_last_busy(adev_to_drm(adev)->dev); pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); if (ret) return -EINVAL; return count; } static ssize_t amdgpu_hwmon_get_pwm1_min(struct device *dev, struct device_attribute *attr, char *buf) { return sysfs_emit(buf, "%i\n", 0); } static ssize_t amdgpu_hwmon_get_pwm1_max(struct device *dev, struct device_attribute *attr, char *buf) { return sysfs_emit(buf, "%i\n", 255); } static ssize_t amdgpu_hwmon_set_pwm1(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct amdgpu_device *adev = dev_get_drvdata(dev); int err; u32 value; u32 pwm_mode; if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; err = kstrtou32(buf, 10, &value); if (err) return err; err = pm_runtime_get_sync(adev_to_drm(adev)->dev); if (err < 0) { pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); return err; } err = amdgpu_dpm_get_fan_control_mode(adev, &pwm_mode); if (err) goto out; if (pwm_mode != AMD_FAN_CTRL_MANUAL) { pr_info("manual fan speed control should be enabled first\n"); err = -EINVAL; goto out; } err = amdgpu_dpm_set_fan_speed_pwm(adev, value); out: pm_runtime_mark_last_busy(adev_to_drm(adev)->dev); pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); if (err) return err; return count; } static ssize_t amdgpu_hwmon_get_pwm1(struct device *dev, struct device_attribute *attr, char *buf) { struct amdgpu_device *adev = dev_get_drvdata(dev); int err; u32 speed = 0; if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; err = pm_runtime_get_sync(adev_to_drm(adev)->dev); if (err < 0) { pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); return err; } err = amdgpu_dpm_get_fan_speed_pwm(adev, &speed); pm_runtime_mark_last_busy(adev_to_drm(adev)->dev); pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); if (err) return err; return sysfs_emit(buf, "%i\n", speed); } static ssize_t amdgpu_hwmon_get_fan1_input(struct device *dev, struct device_attribute *attr, char *buf) { struct amdgpu_device *adev = dev_get_drvdata(dev); int err; u32 speed = 0; if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; err = pm_runtime_get_sync(adev_to_drm(adev)->dev); if (err < 0) { pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); return err; } err = amdgpu_dpm_get_fan_speed_rpm(adev, &speed); pm_runtime_mark_last_busy(adev_to_drm(adev)->dev); pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); if (err) return err; return sysfs_emit(buf, "%i\n", speed); } static ssize_t amdgpu_hwmon_get_fan1_min(struct device *dev, struct device_attribute *attr, char *buf) { struct amdgpu_device *adev = dev_get_drvdata(dev); u32 min_rpm = 0; int r; r = amdgpu_hwmon_get_sensor_generic(adev, AMDGPU_PP_SENSOR_MIN_FAN_RPM, (void *)&min_rpm); if (r) return r; return sysfs_emit(buf, "%d\n", min_rpm); } static ssize_t amdgpu_hwmon_get_fan1_max(struct device *dev, struct device_attribute *attr, char *buf) { struct amdgpu_device *adev = dev_get_drvdata(dev); u32 max_rpm = 0; int r; r = amdgpu_hwmon_get_sensor_generic(adev, AMDGPU_PP_SENSOR_MAX_FAN_RPM, (void *)&max_rpm); if (r) return r; return sysfs_emit(buf, "%d\n", max_rpm); } static ssize_t amdgpu_hwmon_get_fan1_target(struct device *dev, struct device_attribute *attr, char *buf) { struct amdgpu_device *adev = dev_get_drvdata(dev); int err; u32 rpm = 0; if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; err = pm_runtime_get_sync(adev_to_drm(adev)->dev); if (err < 0) { pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); return err; } err = amdgpu_dpm_get_fan_speed_rpm(adev, &rpm); pm_runtime_mark_last_busy(adev_to_drm(adev)->dev); pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); if (err) return err; return sysfs_emit(buf, "%i\n", rpm); } static ssize_t amdgpu_hwmon_set_fan1_target(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct amdgpu_device *adev = dev_get_drvdata(dev); int err; u32 value; u32 pwm_mode; if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; err = kstrtou32(buf, 10, &value); if (err) return err; err = pm_runtime_get_sync(adev_to_drm(adev)->dev); if (err < 0) { pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); return err; } err = amdgpu_dpm_get_fan_control_mode(adev, &pwm_mode); if (err) goto out; if (pwm_mode != AMD_FAN_CTRL_MANUAL) { err = -ENODATA; goto out; } err = amdgpu_dpm_set_fan_speed_rpm(adev, value); out: pm_runtime_mark_last_busy(adev_to_drm(adev)->dev); pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); if (err) return err; return count; } static ssize_t amdgpu_hwmon_get_fan1_enable(struct device *dev, struct device_attribute *attr, char *buf) { struct amdgpu_device *adev = dev_get_drvdata(dev); u32 pwm_mode = 0; int ret; if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; ret = pm_runtime_get_sync(adev_to_drm(adev)->dev); if (ret < 0) { pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); return ret; } ret = amdgpu_dpm_get_fan_control_mode(adev, &pwm_mode); pm_runtime_mark_last_busy(adev_to_drm(adev)->dev); pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); if (ret) return -EINVAL; return sysfs_emit(buf, "%i\n", pwm_mode == AMD_FAN_CTRL_AUTO ? 0 : 1); } static ssize_t amdgpu_hwmon_set_fan1_enable(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct amdgpu_device *adev = dev_get_drvdata(dev); int err; int value; u32 pwm_mode; if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; err = kstrtoint(buf, 10, &value); if (err) return err; if (value == 0) pwm_mode = AMD_FAN_CTRL_AUTO; else if (value == 1) pwm_mode = AMD_FAN_CTRL_MANUAL; else return -EINVAL; err = pm_runtime_get_sync(adev_to_drm(adev)->dev); if (err < 0) { pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); return err; } err = amdgpu_dpm_set_fan_control_mode(adev, pwm_mode); pm_runtime_mark_last_busy(adev_to_drm(adev)->dev); pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); if (err) return -EINVAL; return count; } static ssize_t amdgpu_hwmon_show_vddgfx(struct device *dev, struct device_attribute *attr, char *buf) { struct amdgpu_device *adev = dev_get_drvdata(dev); u32 vddgfx; int r; /* get the voltage */ r = amdgpu_hwmon_get_sensor_generic(adev, AMDGPU_PP_SENSOR_VDDGFX, (void *)&vddgfx); if (r) return r; return sysfs_emit(buf, "%d\n", vddgfx); } static ssize_t amdgpu_hwmon_show_vddgfx_label(struct device *dev, struct device_attribute *attr, char *buf) { return sysfs_emit(buf, "vddgfx\n"); } static ssize_t amdgpu_hwmon_show_vddnb(struct device *dev, struct device_attribute *attr, char *buf) { struct amdgpu_device *adev = dev_get_drvdata(dev); u32 vddnb; int r; /* only APUs have vddnb */ if (!(adev->flags & AMD_IS_APU)) return -EINVAL; /* get the voltage */ r = amdgpu_hwmon_get_sensor_generic(adev, AMDGPU_PP_SENSOR_VDDNB, (void *)&vddnb); if (r) return r; return sysfs_emit(buf, "%d\n", vddnb); } static ssize_t amdgpu_hwmon_show_vddnb_label(struct device *dev, struct device_attribute *attr, char *buf) { return sysfs_emit(buf, "vddnb\n"); } static int amdgpu_hwmon_get_power(struct device *dev, enum amd_pp_sensors sensor) { struct amdgpu_device *adev = dev_get_drvdata(dev); unsigned int uw; u32 query = 0; int r; r = amdgpu_hwmon_get_sensor_generic(adev, sensor, (void *)&query); if (r) return r; /* convert to microwatts */ uw = (query >> 8) * 1000000 + (query & 0xff) * 1000; return uw; } static ssize_t amdgpu_hwmon_show_power_avg(struct device *dev, struct device_attribute *attr, char *buf) { ssize_t val; val = amdgpu_hwmon_get_power(dev, AMDGPU_PP_SENSOR_GPU_AVG_POWER); if (val < 0) return val; return sysfs_emit(buf, "%zd\n", val); } static ssize_t amdgpu_hwmon_show_power_input(struct device *dev, struct device_attribute *attr, char *buf) { ssize_t val; val = amdgpu_hwmon_get_power(dev, AMDGPU_PP_SENSOR_GPU_INPUT_POWER); if (val < 0) return val; return sysfs_emit(buf, "%zd\n", val); } static ssize_t amdgpu_hwmon_show_power_cap_generic(struct device *dev, struct device_attribute *attr, char *buf, enum pp_power_limit_level pp_limit_level) { struct amdgpu_device *adev = dev_get_drvdata(dev); enum pp_power_type power_type = to_sensor_dev_attr(attr)->index; uint32_t limit; ssize_t size; int r; if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; r = pm_runtime_get_sync(adev_to_drm(adev)->dev); if (r < 0) { pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); return r; } r = amdgpu_dpm_get_power_limit(adev, &limit, pp_limit_level, power_type); if (!r) size = sysfs_emit(buf, "%u\n", limit * 1000000); else size = sysfs_emit(buf, "\n"); pm_runtime_mark_last_busy(adev_to_drm(adev)->dev); pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); return size; } static ssize_t amdgpu_hwmon_show_power_cap_min(struct device *dev, struct device_attribute *attr, char *buf) { return amdgpu_hwmon_show_power_cap_generic(dev, attr, buf, PP_PWR_LIMIT_MIN); } static ssize_t amdgpu_hwmon_show_power_cap_max(struct device *dev, struct device_attribute *attr, char *buf) { return amdgpu_hwmon_show_power_cap_generic(dev, attr, buf, PP_PWR_LIMIT_MAX); } static ssize_t amdgpu_hwmon_show_power_cap(struct device *dev, struct device_attribute *attr, char *buf) { return amdgpu_hwmon_show_power_cap_generic(dev, attr, buf, PP_PWR_LIMIT_CURRENT); } static ssize_t amdgpu_hwmon_show_power_cap_default(struct device *dev, struct device_attribute *attr, char *buf) { return amdgpu_hwmon_show_power_cap_generic(dev, attr, buf, PP_PWR_LIMIT_DEFAULT); } static ssize_t amdgpu_hwmon_show_power_label(struct device *dev, struct device_attribute *attr, char *buf) { struct amdgpu_device *adev = dev_get_drvdata(dev); uint32_t gc_ver = amdgpu_ip_version(adev, GC_HWIP, 0); if (gc_ver == IP_VERSION(10, 3, 1)) return sysfs_emit(buf, "%s\n", to_sensor_dev_attr(attr)->index == PP_PWR_TYPE_FAST ? "fastPPT" : "slowPPT"); else return sysfs_emit(buf, "PPT\n"); } static ssize_t amdgpu_hwmon_set_power_cap(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct amdgpu_device *adev = dev_get_drvdata(dev); int limit_type = to_sensor_dev_attr(attr)->index; int err; u32 value; if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; if (amdgpu_sriov_vf(adev)) return -EINVAL; err = kstrtou32(buf, 10, &value); if (err) return err; value = value / 1000000; /* convert to Watt */ value |= limit_type << 24; err = pm_runtime_get_sync(adev_to_drm(adev)->dev); if (err < 0) { pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); return err; } err = amdgpu_dpm_set_power_limit(adev, value); pm_runtime_mark_last_busy(adev_to_drm(adev)->dev); pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); if (err) return err; return count; } static ssize_t amdgpu_hwmon_show_sclk(struct device *dev, struct device_attribute *attr, char *buf) { struct amdgpu_device *adev = dev_get_drvdata(dev); uint32_t sclk; int r; /* get the sclk */ r = amdgpu_hwmon_get_sensor_generic(adev, AMDGPU_PP_SENSOR_GFX_SCLK, (void *)&sclk); if (r) return r; return sysfs_emit(buf, "%u\n", sclk * 10 * 1000); } static ssize_t amdgpu_hwmon_show_sclk_label(struct device *dev, struct device_attribute *attr, char *buf) { return sysfs_emit(buf, "sclk\n"); } static ssize_t amdgpu_hwmon_show_mclk(struct device *dev, struct device_attribute *attr, char *buf) { struct amdgpu_device *adev = dev_get_drvdata(dev); uint32_t mclk; int r; /* get the sclk */ r = amdgpu_hwmon_get_sensor_generic(adev, AMDGPU_PP_SENSOR_GFX_MCLK, (void *)&mclk); if (r) return r; return sysfs_emit(buf, "%u\n", mclk * 10 * 1000); } static ssize_t amdgpu_hwmon_show_mclk_label(struct device *dev, struct device_attribute *attr, char *buf) { return sysfs_emit(buf, "mclk\n"); } /** * DOC: hwmon * * The amdgpu driver exposes the following sensor interfaces: * * - GPU temperature (via the on-die sensor) * * - GPU voltage * * - Northbridge voltage (APUs only) * * - GPU power * * - GPU fan * * - GPU gfx/compute engine clock * * - GPU memory clock (dGPU only) * * hwmon interfaces for GPU temperature: * * - temp[1-3]_input: the on die GPU temperature in millidegrees Celsius * - temp2_input and temp3_input are supported on SOC15 dGPUs only * * - temp[1-3]_label: temperature channel label * - temp2_label and temp3_label are supported on SOC15 dGPUs only * * - temp[1-3]_crit: temperature critical max value in millidegrees Celsius * - temp2_crit and temp3_crit are supported on SOC15 dGPUs only * * - temp[1-3]_crit_hyst: temperature hysteresis for critical limit in millidegrees Celsius * - temp2_crit_hyst and temp3_crit_hyst are supported on SOC15 dGPUs only * * - temp[1-3]_emergency: temperature emergency max value(asic shutdown) in millidegrees Celsius * - these are supported on SOC15 dGPUs only * * hwmon interfaces for GPU voltage: * * - in0_input: the voltage on the GPU in millivolts * * - in1_input: the voltage on the Northbridge in millivolts * * hwmon interfaces for GPU power: * * - power1_average: average power used by the SoC in microWatts. On APUs this includes the CPU. * * - power1_input: instantaneous power used by the SoC in microWatts. On APUs this includes the CPU. * * - power1_cap_min: minimum cap supported in microWatts * * - power1_cap_max: maximum cap supported in microWatts * * - power1_cap: selected power cap in microWatts * * hwmon interfaces for GPU fan: * * - pwm1: pulse width modulation fan level (0-255) * * - pwm1_enable: pulse width modulation fan control method (0: no fan speed control, 1: manual fan speed control using pwm interface, 2: automatic fan speed control) * * - pwm1_min: pulse width modulation fan control minimum level (0) * * - pwm1_max: pulse width modulation fan control maximum level (255) * * - fan1_min: a minimum value Unit: revolution/min (RPM) * * - fan1_max: a maximum value Unit: revolution/max (RPM) * * - fan1_input: fan speed in RPM * * - fan[1-\*]_target: Desired fan speed Unit: revolution/min (RPM) * * - fan[1-\*]_enable: Enable or disable the sensors.1: Enable 0: Disable * * NOTE: DO NOT set the fan speed via "pwm1" and "fan[1-\*]_target" interfaces at the same time. * That will get the former one overridden. * * hwmon interfaces for GPU clocks: * * - freq1_input: the gfx/compute clock in hertz * * - freq2_input: the memory clock in hertz * * You can use hwmon tools like sensors to view this information on your system. * */ static SENSOR_DEVICE_ATTR(temp1_input, S_IRUGO, amdgpu_hwmon_show_temp, NULL, PP_TEMP_EDGE); static SENSOR_DEVICE_ATTR(temp1_crit, S_IRUGO, amdgpu_hwmon_show_temp_thresh, NULL, 0); static SENSOR_DEVICE_ATTR(temp1_crit_hyst, S_IRUGO, amdgpu_hwmon_show_temp_thresh, NULL, 1); static SENSOR_DEVICE_ATTR(temp1_emergency, S_IRUGO, amdgpu_hwmon_show_temp_emergency, NULL, PP_TEMP_EDGE); static SENSOR_DEVICE_ATTR(temp2_input, S_IRUGO, amdgpu_hwmon_show_temp, NULL, PP_TEMP_JUNCTION); static SENSOR_DEVICE_ATTR(temp2_crit, S_IRUGO, amdgpu_hwmon_show_hotspot_temp_thresh, NULL, 0); static SENSOR_DEVICE_ATTR(temp2_crit_hyst, S_IRUGO, amdgpu_hwmon_show_hotspot_temp_thresh, NULL, 1); static SENSOR_DEVICE_ATTR(temp2_emergency, S_IRUGO, amdgpu_hwmon_show_temp_emergency, NULL, PP_TEMP_JUNCTION); static SENSOR_DEVICE_ATTR(temp3_input, S_IRUGO, amdgpu_hwmon_show_temp, NULL, PP_TEMP_MEM); static SENSOR_DEVICE_ATTR(temp3_crit, S_IRUGO, amdgpu_hwmon_show_mem_temp_thresh, NULL, 0); static SENSOR_DEVICE_ATTR(temp3_crit_hyst, S_IRUGO, amdgpu_hwmon_show_mem_temp_thresh, NULL, 1); static SENSOR_DEVICE_ATTR(temp3_emergency, S_IRUGO, amdgpu_hwmon_show_temp_emergency, NULL, PP_TEMP_MEM); static SENSOR_DEVICE_ATTR(temp1_label, S_IRUGO, amdgpu_hwmon_show_temp_label, NULL, PP_TEMP_EDGE); static SENSOR_DEVICE_ATTR(temp2_label, S_IRUGO, amdgpu_hwmon_show_temp_label, NULL, PP_TEMP_JUNCTION); static SENSOR_DEVICE_ATTR(temp3_label, S_IRUGO, amdgpu_hwmon_show_temp_label, NULL, PP_TEMP_MEM); static SENSOR_DEVICE_ATTR(pwm1, S_IRUGO | S_IWUSR, amdgpu_hwmon_get_pwm1, amdgpu_hwmon_set_pwm1, 0); static SENSOR_DEVICE_ATTR(pwm1_enable, S_IRUGO | S_IWUSR, amdgpu_hwmon_get_pwm1_enable, amdgpu_hwmon_set_pwm1_enable, 0); static SENSOR_DEVICE_ATTR(pwm1_min, S_IRUGO, amdgpu_hwmon_get_pwm1_min, NULL, 0); static SENSOR_DEVICE_ATTR(pwm1_max, S_IRUGO, amdgpu_hwmon_get_pwm1_max, NULL, 0); static SENSOR_DEVICE_ATTR(fan1_input, S_IRUGO, amdgpu_hwmon_get_fan1_input, NULL, 0); static SENSOR_DEVICE_ATTR(fan1_min, S_IRUGO, amdgpu_hwmon_get_fan1_min, NULL, 0); static SENSOR_DEVICE_ATTR(fan1_max, S_IRUGO, amdgpu_hwmon_get_fan1_max, NULL, 0); static SENSOR_DEVICE_ATTR(fan1_target, S_IRUGO | S_IWUSR, amdgpu_hwmon_get_fan1_target, amdgpu_hwmon_set_fan1_target, 0); static SENSOR_DEVICE_ATTR(fan1_enable, S_IRUGO | S_IWUSR, amdgpu_hwmon_get_fan1_enable, amdgpu_hwmon_set_fan1_enable, 0); static SENSOR_DEVICE_ATTR(in0_input, S_IRUGO, amdgpu_hwmon_show_vddgfx, NULL, 0); static SENSOR_DEVICE_ATTR(in0_label, S_IRUGO, amdgpu_hwmon_show_vddgfx_label, NULL, 0); static SENSOR_DEVICE_ATTR(in1_input, S_IRUGO, amdgpu_hwmon_show_vddnb, NULL, 0); static SENSOR_DEVICE_ATTR(in1_label, S_IRUGO, amdgpu_hwmon_show_vddnb_label, NULL, 0); static SENSOR_DEVICE_ATTR(power1_average, S_IRUGO, amdgpu_hwmon_show_power_avg, NULL, 0); static SENSOR_DEVICE_ATTR(power1_input, S_IRUGO, amdgpu_hwmon_show_power_input, NULL, 0); static SENSOR_DEVICE_ATTR(power1_cap_max, S_IRUGO, amdgpu_hwmon_show_power_cap_max, NULL, 0); static SENSOR_DEVICE_ATTR(power1_cap_min, S_IRUGO, amdgpu_hwmon_show_power_cap_min, NULL, 0); static SENSOR_DEVICE_ATTR(power1_cap, S_IRUGO | S_IWUSR, amdgpu_hwmon_show_power_cap, amdgpu_hwmon_set_power_cap, 0); static SENSOR_DEVICE_ATTR(power1_cap_default, S_IRUGO, amdgpu_hwmon_show_power_cap_default, NULL, 0); static SENSOR_DEVICE_ATTR(power1_label, S_IRUGO, amdgpu_hwmon_show_power_label, NULL, 0); static SENSOR_DEVICE_ATTR(power2_average, S_IRUGO, amdgpu_hwmon_show_power_avg, NULL, 1); static SENSOR_DEVICE_ATTR(power2_cap_max, S_IRUGO, amdgpu_hwmon_show_power_cap_max, NULL, 1); static SENSOR_DEVICE_ATTR(power2_cap_min, S_IRUGO, amdgpu_hwmon_show_power_cap_min, NULL, 1); static SENSOR_DEVICE_ATTR(power2_cap, S_IRUGO | S_IWUSR, amdgpu_hwmon_show_power_cap, amdgpu_hwmon_set_power_cap, 1); static SENSOR_DEVICE_ATTR(power2_cap_default, S_IRUGO, amdgpu_hwmon_show_power_cap_default, NULL, 1); static SENSOR_DEVICE_ATTR(power2_label, S_IRUGO, amdgpu_hwmon_show_power_label, NULL, 1); static SENSOR_DEVICE_ATTR(freq1_input, S_IRUGO, amdgpu_hwmon_show_sclk, NULL, 0); static SENSOR_DEVICE_ATTR(freq1_label, S_IRUGO, amdgpu_hwmon_show_sclk_label, NULL, 0); static SENSOR_DEVICE_ATTR(freq2_input, S_IRUGO, amdgpu_hwmon_show_mclk, NULL, 0); static SENSOR_DEVICE_ATTR(freq2_label, S_IRUGO, amdgpu_hwmon_show_mclk_label, NULL, 0); static struct attribute *hwmon_attributes[] = { &sensor_dev_attr_temp1_input.dev_attr.attr, &sensor_dev_attr_temp1_crit.dev_attr.attr, &sensor_dev_attr_temp1_crit_hyst.dev_attr.attr, &sensor_dev_attr_temp2_input.dev_attr.attr, &sensor_dev_attr_temp2_crit.dev_attr.attr, &sensor_dev_attr_temp2_crit_hyst.dev_attr.attr, &sensor_dev_attr_temp3_input.dev_attr.attr, &sensor_dev_attr_temp3_crit.dev_attr.attr, &sensor_dev_attr_temp3_crit_hyst.dev_attr.attr, &sensor_dev_attr_temp1_emergency.dev_attr.attr, &sensor_dev_attr_temp2_emergency.dev_attr.attr, &sensor_dev_attr_temp3_emergency.dev_attr.attr, &sensor_dev_attr_temp1_label.dev_attr.attr, &sensor_dev_attr_temp2_label.dev_attr.attr, &sensor_dev_attr_temp3_label.dev_attr.attr, &sensor_dev_attr_pwm1.dev_attr.attr, &sensor_dev_attr_pwm1_enable.dev_attr.attr, &sensor_dev_attr_pwm1_min.dev_attr.attr, &sensor_dev_attr_pwm1_max.dev_attr.attr, &sensor_dev_attr_fan1_input.dev_attr.attr, &sensor_dev_attr_fan1_min.dev_attr.attr, &sensor_dev_attr_fan1_max.dev_attr.attr, &sensor_dev_attr_fan1_target.dev_attr.attr, &sensor_dev_attr_fan1_enable.dev_attr.attr, &sensor_dev_attr_in0_input.dev_attr.attr, &sensor_dev_attr_in0_label.dev_attr.attr, &sensor_dev_attr_in1_input.dev_attr.attr, &sensor_dev_attr_in1_label.dev_attr.attr, &sensor_dev_attr_power1_average.dev_attr.attr, &sensor_dev_attr_power1_input.dev_attr.attr, &sensor_dev_attr_power1_cap_max.dev_attr.attr, &sensor_dev_attr_power1_cap_min.dev_attr.attr, &sensor_dev_attr_power1_cap.dev_attr.attr, &sensor_dev_attr_power1_cap_default.dev_attr.attr, &sensor_dev_attr_power1_label.dev_attr.attr, &sensor_dev_attr_power2_average.dev_attr.attr, &sensor_dev_attr_power2_cap_max.dev_attr.attr, &sensor_dev_attr_power2_cap_min.dev_attr.attr, &sensor_dev_attr_power2_cap.dev_attr.attr, &sensor_dev_attr_power2_cap_default.dev_attr.attr, &sensor_dev_attr_power2_label.dev_attr.attr, &sensor_dev_attr_freq1_input.dev_attr.attr, &sensor_dev_attr_freq1_label.dev_attr.attr, &sensor_dev_attr_freq2_input.dev_attr.attr, &sensor_dev_attr_freq2_label.dev_attr.attr, NULL }; static umode_t hwmon_attributes_visible(struct kobject *kobj, struct attribute *attr, int index) { struct device *dev = kobj_to_dev(kobj); struct amdgpu_device *adev = dev_get_drvdata(dev); umode_t effective_mode = attr->mode; uint32_t gc_ver = amdgpu_ip_version(adev, GC_HWIP, 0); uint32_t tmp; /* under pp one vf mode manage of hwmon attributes is not supported */ if (amdgpu_sriov_is_pp_one_vf(adev)) effective_mode &= ~S_IWUSR; /* Skip fan attributes if fan is not present */ if (adev->pm.no_fan && (attr == &sensor_dev_attr_pwm1.dev_attr.attr || attr == &sensor_dev_attr_pwm1_enable.dev_attr.attr || attr == &sensor_dev_attr_pwm1_max.dev_attr.attr || attr == &sensor_dev_attr_pwm1_min.dev_attr.attr || attr == &sensor_dev_attr_fan1_input.dev_attr.attr || attr == &sensor_dev_attr_fan1_min.dev_attr.attr || attr == &sensor_dev_attr_fan1_max.dev_attr.attr || attr == &sensor_dev_attr_fan1_target.dev_attr.attr || attr == &sensor_dev_attr_fan1_enable.dev_attr.attr)) return 0; /* Skip fan attributes on APU */ if ((adev->flags & AMD_IS_APU) && (attr == &sensor_dev_attr_pwm1.dev_attr.attr || attr == &sensor_dev_attr_pwm1_enable.dev_attr.attr || attr == &sensor_dev_attr_pwm1_max.dev_attr.attr || attr == &sensor_dev_attr_pwm1_min.dev_attr.attr || attr == &sensor_dev_attr_fan1_input.dev_attr.attr || attr == &sensor_dev_attr_fan1_min.dev_attr.attr || attr == &sensor_dev_attr_fan1_max.dev_attr.attr || attr == &sensor_dev_attr_fan1_target.dev_attr.attr || attr == &sensor_dev_attr_fan1_enable.dev_attr.attr)) return 0; /* Skip crit temp on APU */ if ((((adev->flags & AMD_IS_APU) && (adev->family >= AMDGPU_FAMILY_CZ)) || (gc_ver == IP_VERSION(9, 4, 3))) && (attr == &sensor_dev_attr_temp1_crit.dev_attr.attr || attr == &sensor_dev_attr_temp1_crit_hyst.dev_attr.attr)) return 0; /* Skip limit attributes if DPM is not enabled */ if (!adev->pm.dpm_enabled && (attr == &sensor_dev_attr_temp1_crit.dev_attr.attr || attr == &sensor_dev_attr_temp1_crit_hyst.dev_attr.attr || attr == &sensor_dev_attr_pwm1.dev_attr.attr || attr == &sensor_dev_attr_pwm1_enable.dev_attr.attr || attr == &sensor_dev_attr_pwm1_max.dev_attr.attr || attr == &sensor_dev_attr_pwm1_min.dev_attr.attr || attr == &sensor_dev_attr_fan1_input.dev_attr.attr || attr == &sensor_dev_attr_fan1_min.dev_attr.attr || attr == &sensor_dev_attr_fan1_max.dev_attr.attr || attr == &sensor_dev_attr_fan1_target.dev_attr.attr || attr == &sensor_dev_attr_fan1_enable.dev_attr.attr)) return 0; /* mask fan attributes if we have no bindings for this asic to expose */ if (((amdgpu_dpm_get_fan_speed_pwm(adev, NULL) == -EOPNOTSUPP) && attr == &sensor_dev_attr_pwm1.dev_attr.attr) || /* can't query fan */ ((amdgpu_dpm_get_fan_control_mode(adev, NULL) == -EOPNOTSUPP) && attr == &sensor_dev_attr_pwm1_enable.dev_attr.attr)) /* can't query state */ effective_mode &= ~S_IRUGO; if (((amdgpu_dpm_set_fan_speed_pwm(adev, U32_MAX) == -EOPNOTSUPP) && attr == &sensor_dev_attr_pwm1.dev_attr.attr) || /* can't manage fan */ ((amdgpu_dpm_set_fan_control_mode(adev, U32_MAX) == -EOPNOTSUPP) && attr == &sensor_dev_attr_pwm1_enable.dev_attr.attr)) /* can't manage state */ effective_mode &= ~S_IWUSR; /* not implemented yet for APUs other than GC 10.3.1 (vangogh) and 9.4.3 */ if (((adev->family == AMDGPU_FAMILY_SI) || ((adev->flags & AMD_IS_APU) && (gc_ver != IP_VERSION(10, 3, 1)) && (gc_ver != IP_VERSION(9, 4, 3)))) && (attr == &sensor_dev_attr_power1_cap_max.dev_attr.attr || attr == &sensor_dev_attr_power1_cap_min.dev_attr.attr || attr == &sensor_dev_attr_power1_cap.dev_attr.attr || attr == &sensor_dev_attr_power1_cap_default.dev_attr.attr)) return 0; /* not implemented yet for APUs having < GC 9.3.0 (Renoir) */ if (((adev->family == AMDGPU_FAMILY_SI) || ((adev->flags & AMD_IS_APU) && (gc_ver < IP_VERSION(9, 3, 0)))) && (attr == &sensor_dev_attr_power1_average.dev_attr.attr)) return 0; /* not all products support both average and instantaneous */ if (attr == &sensor_dev_attr_power1_average.dev_attr.attr && amdgpu_hwmon_get_sensor_generic(adev, AMDGPU_PP_SENSOR_GPU_AVG_POWER, (void *)&tmp) == -EOPNOTSUPP) return 0; if (attr == &sensor_dev_attr_power1_input.dev_attr.attr && amdgpu_hwmon_get_sensor_generic(adev, AMDGPU_PP_SENSOR_GPU_INPUT_POWER, (void *)&tmp) == -EOPNOTSUPP) return 0; /* hide max/min values if we can't both query and manage the fan */ if (((amdgpu_dpm_set_fan_speed_pwm(adev, U32_MAX) == -EOPNOTSUPP) && (amdgpu_dpm_get_fan_speed_pwm(adev, NULL) == -EOPNOTSUPP) && (amdgpu_dpm_set_fan_speed_rpm(adev, U32_MAX) == -EOPNOTSUPP) && (amdgpu_dpm_get_fan_speed_rpm(adev, NULL) == -EOPNOTSUPP)) && (attr == &sensor_dev_attr_pwm1_max.dev_attr.attr || attr == &sensor_dev_attr_pwm1_min.dev_attr.attr)) return 0; if ((amdgpu_dpm_set_fan_speed_rpm(adev, U32_MAX) == -EOPNOTSUPP) && (amdgpu_dpm_get_fan_speed_rpm(adev, NULL) == -EOPNOTSUPP) && (attr == &sensor_dev_attr_fan1_max.dev_attr.attr || attr == &sensor_dev_attr_fan1_min.dev_attr.attr)) return 0; if ((adev->family == AMDGPU_FAMILY_SI || /* not implemented yet */ adev->family == AMDGPU_FAMILY_KV || /* not implemented yet */ (gc_ver == IP_VERSION(9, 4, 3))) && (attr == &sensor_dev_attr_in0_input.dev_attr.attr || attr == &sensor_dev_attr_in0_label.dev_attr.attr)) return 0; /* only APUs other than gc 9,4,3 have vddnb */ if ((!(adev->flags & AMD_IS_APU) || (gc_ver == IP_VERSION(9, 4, 3))) && (attr == &sensor_dev_attr_in1_input.dev_attr.attr || attr == &sensor_dev_attr_in1_label.dev_attr.attr)) return 0; /* no mclk on APUs other than gc 9,4,3*/ if (((adev->flags & AMD_IS_APU) && (gc_ver != IP_VERSION(9, 4, 3))) && (attr == &sensor_dev_attr_freq2_input.dev_attr.attr || attr == &sensor_dev_attr_freq2_label.dev_attr.attr)) return 0; if (((adev->flags & AMD_IS_APU) || gc_ver < IP_VERSION(9, 0, 0)) && (gc_ver != IP_VERSION(9, 4, 3)) && (attr == &sensor_dev_attr_temp2_input.dev_attr.attr || attr == &sensor_dev_attr_temp2_label.dev_attr.attr || attr == &sensor_dev_attr_temp2_crit.dev_attr.attr || attr == &sensor_dev_attr_temp3_input.dev_attr.attr || attr == &sensor_dev_attr_temp3_label.dev_attr.attr || attr == &sensor_dev_attr_temp3_crit.dev_attr.attr)) return 0; /* hotspot temperature for gc 9,4,3*/ if (gc_ver == IP_VERSION(9, 4, 3)) { if (attr == &sensor_dev_attr_temp1_input.dev_attr.attr || attr == &sensor_dev_attr_temp1_emergency.dev_attr.attr || attr == &sensor_dev_attr_temp1_label.dev_attr.attr) return 0; if (attr == &sensor_dev_attr_temp2_emergency.dev_attr.attr || attr == &sensor_dev_attr_temp3_emergency.dev_attr.attr) return attr->mode; } /* only SOC15 dGPUs support hotspot and mem temperatures */ if (((adev->flags & AMD_IS_APU) || gc_ver < IP_VERSION(9, 0, 0)) && (attr == &sensor_dev_attr_temp2_crit_hyst.dev_attr.attr || attr == &sensor_dev_attr_temp3_crit_hyst.dev_attr.attr || attr == &sensor_dev_attr_temp1_emergency.dev_attr.attr || attr == &sensor_dev_attr_temp2_emergency.dev_attr.attr || attr == &sensor_dev_attr_temp3_emergency.dev_attr.attr)) return 0; /* only Vangogh has fast PPT limit and power labels */ if (!(gc_ver == IP_VERSION(10, 3, 1)) && (attr == &sensor_dev_attr_power2_average.dev_attr.attr || attr == &sensor_dev_attr_power2_cap_max.dev_attr.attr || attr == &sensor_dev_attr_power2_cap_min.dev_attr.attr || attr == &sensor_dev_attr_power2_cap.dev_attr.attr || attr == &sensor_dev_attr_power2_cap_default.dev_attr.attr || attr == &sensor_dev_attr_power2_label.dev_attr.attr)) return 0; return effective_mode; } static const struct attribute_group hwmon_attrgroup = { .attrs = hwmon_attributes, .is_visible = hwmon_attributes_visible, }; static const struct attribute_group *hwmon_groups[] = { &hwmon_attrgroup, NULL }; static int amdgpu_retrieve_od_settings(struct amdgpu_device *adev, enum pp_clock_type od_type, char *buf) { int size = 0; int ret; if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; ret = pm_runtime_get_sync(adev->dev); if (ret < 0) { pm_runtime_put_autosuspend(adev->dev); return ret; } size = amdgpu_dpm_print_clock_levels(adev, od_type, buf); if (size == 0) size = sysfs_emit(buf, "\n"); pm_runtime_mark_last_busy(adev->dev); pm_runtime_put_autosuspend(adev->dev); return size; } static int parse_input_od_command_lines(const char *buf, size_t count, u32 *type, long *params, uint32_t *num_of_params) { const char delimiter[3] = {' ', '\n', '\0'}; uint32_t parameter_size = 0; char buf_cpy[128] = {0}; char *tmp_str, *sub_str; int ret; if (count > sizeof(buf_cpy) - 1) return -EINVAL; memcpy(buf_cpy, buf, count); tmp_str = buf_cpy; /* skip heading spaces */ while (isspace(*tmp_str)) tmp_str++; switch (*tmp_str) { case 'c': *type = PP_OD_COMMIT_DPM_TABLE; return 0; case 'r': params[parameter_size] = *type; *num_of_params = 1; *type = PP_OD_RESTORE_DEFAULT_TABLE; return 0; default: break; } while ((sub_str = strsep(&tmp_str, delimiter)) != NULL) { if (strlen(sub_str) == 0) continue; ret = kstrtol(sub_str, 0, ¶ms[parameter_size]); if (ret) return -EINVAL; parameter_size++; while (isspace(*tmp_str)) tmp_str++; } *num_of_params = parameter_size; return 0; } static int amdgpu_distribute_custom_od_settings(struct amdgpu_device *adev, enum PP_OD_DPM_TABLE_COMMAND cmd_type, const char *in_buf, size_t count) { uint32_t parameter_size = 0; long parameter[64]; int ret; if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; ret = parse_input_od_command_lines(in_buf, count, &cmd_type, parameter, ¶meter_size); if (ret) return ret; ret = pm_runtime_get_sync(adev->dev); if (ret < 0) goto err_out0; ret = amdgpu_dpm_odn_edit_dpm_table(adev, cmd_type, parameter, parameter_size); if (ret) goto err_out1; if (cmd_type == PP_OD_COMMIT_DPM_TABLE) { ret = amdgpu_dpm_dispatch_task(adev, AMD_PP_TASK_READJUST_POWER_STATE, NULL); if (ret) goto err_out1; } pm_runtime_mark_last_busy(adev->dev); pm_runtime_put_autosuspend(adev->dev); return count; err_out1: pm_runtime_mark_last_busy(adev->dev); err_out0: pm_runtime_put_autosuspend(adev->dev); return ret; } /** * DOC: fan_curve * * The amdgpu driver provides a sysfs API for checking and adjusting the fan * control curve line. * * Reading back the file shows you the current settings(temperature in Celsius * degree and fan speed in pwm) applied to every anchor point of the curve line * and their permitted ranges if changable. * * Writing a desired string(with the format like "anchor_point_index temperature * fan_speed_in_pwm") to the file, change the settings for the specific anchor * point accordingly. * * When you have finished the editing, write "c" (commit) to the file to commit * your changes. * * If you want to reset to the default value, write "r" (reset) to the file to * reset them * * There are two fan control modes supported: auto and manual. With auto mode, * PMFW handles the fan speed control(how fan speed reacts to ASIC temperature). * While with manual mode, users can set their own fan curve line as what * described here. Normally the ASIC is booted up with auto mode. Any * settings via this interface will switch the fan control to manual mode * implicitly. */ static ssize_t fan_curve_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { struct od_kobj *container = container_of(kobj, struct od_kobj, kobj); struct amdgpu_device *adev = (struct amdgpu_device *)container->priv; return (ssize_t)amdgpu_retrieve_od_settings(adev, OD_FAN_CURVE, buf); } static ssize_t fan_curve_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t count) { struct od_kobj *container = container_of(kobj, struct od_kobj, kobj); struct amdgpu_device *adev = (struct amdgpu_device *)container->priv; return (ssize_t)amdgpu_distribute_custom_od_settings(adev, PP_OD_EDIT_FAN_CURVE, buf, count); } static umode_t fan_curve_visible(struct amdgpu_device *adev) { umode_t umode = 0000; if (adev->pm.od_feature_mask & OD_OPS_SUPPORT_FAN_CURVE_RETRIEVE) umode |= S_IRUSR | S_IRGRP | S_IROTH; if (adev->pm.od_feature_mask & OD_OPS_SUPPORT_FAN_CURVE_SET) umode |= S_IWUSR; return umode; } /** * DOC: acoustic_limit_rpm_threshold * * The amdgpu driver provides a sysfs API for checking and adjusting the * acoustic limit in RPM for fan control. * * Reading back the file shows you the current setting and the permitted * ranges if changable. * * Writing an integer to the file, change the setting accordingly. * * When you have finished the editing, write "c" (commit) to the file to commit * your changes. * * If you want to reset to the default value, write "r" (reset) to the file to * reset them * * This setting works under auto fan control mode only. It adjusts the PMFW's * behavior about the maximum speed in RPM the fan can spin. Setting via this * interface will switch the fan control to auto mode implicitly. */ static ssize_t acoustic_limit_threshold_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { struct od_kobj *container = container_of(kobj, struct od_kobj, kobj); struct amdgpu_device *adev = (struct amdgpu_device *)container->priv; return (ssize_t)amdgpu_retrieve_od_settings(adev, OD_ACOUSTIC_LIMIT, buf); } static ssize_t acoustic_limit_threshold_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t count) { struct od_kobj *container = container_of(kobj, struct od_kobj, kobj); struct amdgpu_device *adev = (struct amdgpu_device *)container->priv; return (ssize_t)amdgpu_distribute_custom_od_settings(adev, PP_OD_EDIT_ACOUSTIC_LIMIT, buf, count); } static umode_t acoustic_limit_threshold_visible(struct amdgpu_device *adev) { umode_t umode = 0000; if (adev->pm.od_feature_mask & OD_OPS_SUPPORT_ACOUSTIC_LIMIT_THRESHOLD_RETRIEVE) umode |= S_IRUSR | S_IRGRP | S_IROTH; if (adev->pm.od_feature_mask & OD_OPS_SUPPORT_ACOUSTIC_LIMIT_THRESHOLD_SET) umode |= S_IWUSR; return umode; } /** * DOC: acoustic_target_rpm_threshold * * The amdgpu driver provides a sysfs API for checking and adjusting the * acoustic target in RPM for fan control. * * Reading back the file shows you the current setting and the permitted * ranges if changable. * * Writing an integer to the file, change the setting accordingly. * * When you have finished the editing, write "c" (commit) to the file to commit * your changes. * * If you want to reset to the default value, write "r" (reset) to the file to * reset them * * This setting works under auto fan control mode only. It can co-exist with * other settings which can work also under auto mode. It adjusts the PMFW's * behavior about the maximum speed in RPM the fan can spin when ASIC * temperature is not greater than target temperature. Setting via this * interface will switch the fan control to auto mode implicitly. */ static ssize_t acoustic_target_threshold_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { struct od_kobj *container = container_of(kobj, struct od_kobj, kobj); struct amdgpu_device *adev = (struct amdgpu_device *)container->priv; return (ssize_t)amdgpu_retrieve_od_settings(adev, OD_ACOUSTIC_TARGET, buf); } static ssize_t acoustic_target_threshold_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t count) { struct od_kobj *container = container_of(kobj, struct od_kobj, kobj); struct amdgpu_device *adev = (struct amdgpu_device *)container->priv; return (ssize_t)amdgpu_distribute_custom_od_settings(adev, PP_OD_EDIT_ACOUSTIC_TARGET, buf, count); } static umode_t acoustic_target_threshold_visible(struct amdgpu_device *adev) { umode_t umode = 0000; if (adev->pm.od_feature_mask & OD_OPS_SUPPORT_ACOUSTIC_TARGET_THRESHOLD_RETRIEVE) umode |= S_IRUSR | S_IRGRP | S_IROTH; if (adev->pm.od_feature_mask & OD_OPS_SUPPORT_ACOUSTIC_TARGET_THRESHOLD_SET) umode |= S_IWUSR; return umode; } /** * DOC: fan_target_temperature * * The amdgpu driver provides a sysfs API for checking and adjusting the * target tempeature in Celsius degree for fan control. * * Reading back the file shows you the current setting and the permitted * ranges if changable. * * Writing an integer to the file, change the setting accordingly. * * When you have finished the editing, write "c" (commit) to the file to commit * your changes. * * If you want to reset to the default value, write "r" (reset) to the file to * reset them * * This setting works under auto fan control mode only. It can co-exist with * other settings which can work also under auto mode. Paring with the * acoustic_target_rpm_threshold setting, they define the maximum speed in * RPM the fan can spin when ASIC temperature is not greater than target * temperature. Setting via this interface will switch the fan control to * auto mode implicitly. */ static ssize_t fan_target_temperature_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { struct od_kobj *container = container_of(kobj, struct od_kobj, kobj); struct amdgpu_device *adev = (struct amdgpu_device *)container->priv; return (ssize_t)amdgpu_retrieve_od_settings(adev, OD_FAN_TARGET_TEMPERATURE, buf); } static ssize_t fan_target_temperature_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t count) { struct od_kobj *container = container_of(kobj, struct od_kobj, kobj); struct amdgpu_device *adev = (struct amdgpu_device *)container->priv; return (ssize_t)amdgpu_distribute_custom_od_settings(adev, PP_OD_EDIT_FAN_TARGET_TEMPERATURE, buf, count); } static umode_t fan_target_temperature_visible(struct amdgpu_device *adev) { umode_t umode = 0000; if (adev->pm.od_feature_mask & OD_OPS_SUPPORT_FAN_TARGET_TEMPERATURE_RETRIEVE) umode |= S_IRUSR | S_IRGRP | S_IROTH; if (adev->pm.od_feature_mask & OD_OPS_SUPPORT_FAN_TARGET_TEMPERATURE_SET) umode |= S_IWUSR; return umode; } /** * DOC: fan_minimum_pwm * * The amdgpu driver provides a sysfs API for checking and adjusting the * minimum fan speed in PWM. * * Reading back the file shows you the current setting and the permitted * ranges if changable. * * Writing an integer to the file, change the setting accordingly. * * When you have finished the editing, write "c" (commit) to the file to commit * your changes. * * If you want to reset to the default value, write "r" (reset) to the file to * reset them * * This setting works under auto fan control mode only. It can co-exist with * other settings which can work also under auto mode. It adjusts the PMFW's * behavior about the minimum fan speed in PWM the fan should spin. Setting * via this interface will switch the fan control to auto mode implicitly. */ static ssize_t fan_minimum_pwm_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { struct od_kobj *container = container_of(kobj, struct od_kobj, kobj); struct amdgpu_device *adev = (struct amdgpu_device *)container->priv; return (ssize_t)amdgpu_retrieve_od_settings(adev, OD_FAN_MINIMUM_PWM, buf); } static ssize_t fan_minimum_pwm_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t count) { struct od_kobj *container = container_of(kobj, struct od_kobj, kobj); struct amdgpu_device *adev = (struct amdgpu_device *)container->priv; return (ssize_t)amdgpu_distribute_custom_od_settings(adev, PP_OD_EDIT_FAN_MINIMUM_PWM, buf, count); } static umode_t fan_minimum_pwm_visible(struct amdgpu_device *adev) { umode_t umode = 0000; if (adev->pm.od_feature_mask & OD_OPS_SUPPORT_FAN_MINIMUM_PWM_RETRIEVE) umode |= S_IRUSR | S_IRGRP | S_IROTH; if (adev->pm.od_feature_mask & OD_OPS_SUPPORT_FAN_MINIMUM_PWM_SET) umode |= S_IWUSR; return umode; } static struct od_feature_set amdgpu_od_set = { .containers = { [0] = { .name = "fan_ctrl", .sub_feature = { [0] = { .name = "fan_curve", .ops = { .is_visible = fan_curve_visible, .show = fan_curve_show, .store = fan_curve_store, }, }, [1] = { .name = "acoustic_limit_rpm_threshold", .ops = { .is_visible = acoustic_limit_threshold_visible, .show = acoustic_limit_threshold_show, .store = acoustic_limit_threshold_store, }, }, [2] = { .name = "acoustic_target_rpm_threshold", .ops = { .is_visible = acoustic_target_threshold_visible, .show = acoustic_target_threshold_show, .store = acoustic_target_threshold_store, }, }, [3] = { .name = "fan_target_temperature", .ops = { .is_visible = fan_target_temperature_visible, .show = fan_target_temperature_show, .store = fan_target_temperature_store, }, }, [4] = { .name = "fan_minimum_pwm", .ops = { .is_visible = fan_minimum_pwm_visible, .show = fan_minimum_pwm_show, .store = fan_minimum_pwm_store, }, }, }, }, }, }; static void od_kobj_release(struct kobject *kobj) { struct od_kobj *od_kobj = container_of(kobj, struct od_kobj, kobj); kfree(od_kobj); } static const struct kobj_type od_ktype = { .release = od_kobj_release, .sysfs_ops = &kobj_sysfs_ops, }; static void amdgpu_od_set_fini(struct amdgpu_device *adev) { struct od_kobj *container, *container_next; struct od_attribute *attribute, *attribute_next; if (list_empty(&adev->pm.od_kobj_list)) return; list_for_each_entry_safe(container, container_next, &adev->pm.od_kobj_list, entry) { list_del(&container->entry); list_for_each_entry_safe(attribute, attribute_next, &container->attribute, entry) { list_del(&attribute->entry); sysfs_remove_file(&container->kobj, &attribute->attribute.attr); kfree(attribute); } kobject_put(&container->kobj); } } static bool amdgpu_is_od_feature_supported(struct amdgpu_device *adev, struct od_feature_ops *feature_ops) { umode_t mode; if (!feature_ops->is_visible) return false; /* * If the feature has no user read and write mode set, * we can assume the feature is actually not supported.(?) * And the revelant sysfs interface should not be exposed. */ mode = feature_ops->is_visible(adev); if (mode & (S_IRUSR | S_IWUSR)) return true; return false; } static bool amdgpu_od_is_self_contained(struct amdgpu_device *adev, struct od_feature_container *container) { int i; /* * If there is no valid entry within the container, the container * is recognized as a self contained container. And the valid entry * here means it has a valid naming and it is visible/supported by * the ASIC. */ for (i = 0; i < ARRAY_SIZE(container->sub_feature); i++) { if (container->sub_feature[i].name && amdgpu_is_od_feature_supported(adev, &container->sub_feature[i].ops)) return false; } return true; } static int amdgpu_od_set_init(struct amdgpu_device *adev) { struct od_kobj *top_set, *sub_set; struct od_attribute *attribute; struct od_feature_container *container; struct od_feature_item *feature; int i, j; int ret; /* Setup the top `gpu_od` directory which holds all other OD interfaces */ top_set = kzalloc(sizeof(*top_set), GFP_KERNEL); if (!top_set) return -ENOMEM; list_add(&top_set->entry, &adev->pm.od_kobj_list); ret = kobject_init_and_add(&top_set->kobj, &od_ktype, &adev->dev->kobj, "%s", "gpu_od"); if (ret) goto err_out; INIT_LIST_HEAD(&top_set->attribute); top_set->priv = adev; for (i = 0; i < ARRAY_SIZE(amdgpu_od_set.containers); i++) { container = &amdgpu_od_set.containers[i]; if (!container->name) continue; /* * If there is valid entries within the container, the container * will be presented as a sub directory and all its holding entries * will be presented as plain files under it. * While if there is no valid entry within the container, the container * itself will be presented as a plain file under top `gpu_od` directory. */ if (amdgpu_od_is_self_contained(adev, container)) { if (!amdgpu_is_od_feature_supported(adev, &container->ops)) continue; /* * The container is presented as a plain file under top `gpu_od` * directory. */ attribute = kzalloc(sizeof(*attribute), GFP_KERNEL); if (!attribute) { ret = -ENOMEM; goto err_out; } list_add(&attribute->entry, &top_set->attribute); attribute->attribute.attr.mode = container->ops.is_visible(adev); attribute->attribute.attr.name = container->name; attribute->attribute.show = container->ops.show; attribute->attribute.store = container->ops.store; ret = sysfs_create_file(&top_set->kobj, &attribute->attribute.attr); if (ret) goto err_out; } else { /* The container is presented as a sub directory. */ sub_set = kzalloc(sizeof(*sub_set), GFP_KERNEL); if (!sub_set) { ret = -ENOMEM; goto err_out; } list_add(&sub_set->entry, &adev->pm.od_kobj_list); ret = kobject_init_and_add(&sub_set->kobj, &od_ktype, &top_set->kobj, "%s", container->name); if (ret) goto err_out; INIT_LIST_HEAD(&sub_set->attribute); sub_set->priv = adev; for (j = 0; j < ARRAY_SIZE(container->sub_feature); j++) { feature = &container->sub_feature[j]; if (!feature->name) continue; if (!amdgpu_is_od_feature_supported(adev, &feature->ops)) continue; /* * With the container presented as a sub directory, the entry within * it is presented as a plain file under the sub directory. */ attribute = kzalloc(sizeof(*attribute), GFP_KERNEL); if (!attribute) { ret = -ENOMEM; goto err_out; } list_add(&attribute->entry, &sub_set->attribute); attribute->attribute.attr.mode = feature->ops.is_visible(adev); attribute->attribute.attr.name = feature->name; attribute->attribute.show = feature->ops.show; attribute->attribute.store = feature->ops.store; ret = sysfs_create_file(&sub_set->kobj, &attribute->attribute.attr); if (ret) goto err_out; } } } return 0; err_out: amdgpu_od_set_fini(adev); return ret; } int amdgpu_pm_sysfs_init(struct amdgpu_device *adev) { enum amdgpu_sriov_vf_mode mode; uint32_t mask = 0; int ret; if (adev->pm.sysfs_initialized) return 0; INIT_LIST_HEAD(&adev->pm.pm_attr_list); if (adev->pm.dpm_enabled == 0) return 0; mode = amdgpu_virt_get_sriov_vf_mode(adev); /* under multi-vf mode, the hwmon attributes are all not supported */ if (mode != SRIOV_VF_MODE_MULTI_VF) { adev->pm.int_hwmon_dev = hwmon_device_register_with_groups(adev->dev, DRIVER_NAME, adev, hwmon_groups); if (IS_ERR(adev->pm.int_hwmon_dev)) { ret = PTR_ERR(adev->pm.int_hwmon_dev); dev_err(adev->dev, "Unable to register hwmon device: %d\n", ret); return ret; } } switch (mode) { case SRIOV_VF_MODE_ONE_VF: mask = ATTR_FLAG_ONEVF; break; case SRIOV_VF_MODE_MULTI_VF: mask = 0; break; case SRIOV_VF_MODE_BARE_METAL: default: mask = ATTR_FLAG_MASK_ALL; break; } ret = amdgpu_device_attr_create_groups(adev, amdgpu_device_attrs, ARRAY_SIZE(amdgpu_device_attrs), mask, &adev->pm.pm_attr_list); if (ret) goto err_out0; if (amdgpu_dpm_is_overdrive_supported(adev)) { ret = amdgpu_od_set_init(adev); if (ret) goto err_out1; } adev->pm.sysfs_initialized = true; return 0; err_out1: amdgpu_device_attr_remove_groups(adev, &adev->pm.pm_attr_list); err_out0: if (adev->pm.int_hwmon_dev) hwmon_device_unregister(adev->pm.int_hwmon_dev); return ret; } void amdgpu_pm_sysfs_fini(struct amdgpu_device *adev) { amdgpu_od_set_fini(adev); if (adev->pm.int_hwmon_dev) hwmon_device_unregister(adev->pm.int_hwmon_dev); amdgpu_device_attr_remove_groups(adev, &adev->pm.pm_attr_list); } /* * Debugfs info */ #if defined(CONFIG_DEBUG_FS) static void amdgpu_debugfs_prints_cpu_info(struct seq_file *m, struct amdgpu_device *adev) { uint16_t *p_val; uint32_t size; int i; uint32_t num_cpu_cores = amdgpu_dpm_get_num_cpu_cores(adev); if (amdgpu_dpm_is_cclk_dpm_supported(adev)) { p_val = kcalloc(num_cpu_cores, sizeof(uint16_t), GFP_KERNEL); if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_CPU_CLK, (void *)p_val, &size)) { for (i = 0; i < num_cpu_cores; i++) seq_printf(m, "\t%u MHz (CPU%d)\n", *(p_val + i), i); } kfree(p_val); } } static int amdgpu_debugfs_pm_info_pp(struct seq_file *m, struct amdgpu_device *adev) { uint32_t mp1_ver = amdgpu_ip_version(adev, MP1_HWIP, 0); uint32_t gc_ver = amdgpu_ip_version(adev, GC_HWIP, 0); uint32_t value; uint64_t value64 = 0; uint32_t query = 0; int size; /* GPU Clocks */ size = sizeof(value); seq_printf(m, "GFX Clocks and Power:\n"); amdgpu_debugfs_prints_cpu_info(m, adev); if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_GFX_MCLK, (void *)&value, &size)) seq_printf(m, "\t%u MHz (MCLK)\n", value/100); if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_GFX_SCLK, (void *)&value, &size)) seq_printf(m, "\t%u MHz (SCLK)\n", value/100); if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_STABLE_PSTATE_SCLK, (void *)&value, &size)) seq_printf(m, "\t%u MHz (PSTATE_SCLK)\n", value/100); if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_STABLE_PSTATE_MCLK, (void *)&value, &size)) seq_printf(m, "\t%u MHz (PSTATE_MCLK)\n", value/100); if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_VDDGFX, (void *)&value, &size)) seq_printf(m, "\t%u mV (VDDGFX)\n", value); if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_VDDNB, (void *)&value, &size)) seq_printf(m, "\t%u mV (VDDNB)\n", value); size = sizeof(uint32_t); if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_GPU_AVG_POWER, (void *)&query, &size)) seq_printf(m, "\t%u.%02u W (average GPU)\n", query >> 8, query & 0xff); size = sizeof(uint32_t); if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_GPU_INPUT_POWER, (void *)&query, &size)) seq_printf(m, "\t%u.%02u W (current GPU)\n", query >> 8, query & 0xff); size = sizeof(value); seq_printf(m, "\n"); /* GPU Temp */ if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_GPU_TEMP, (void *)&value, &size)) seq_printf(m, "GPU Temperature: %u C\n", value/1000); /* GPU Load */ if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_GPU_LOAD, (void *)&value, &size)) seq_printf(m, "GPU Load: %u %%\n", value); /* MEM Load */ if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_MEM_LOAD, (void *)&value, &size)) seq_printf(m, "MEM Load: %u %%\n", value); seq_printf(m, "\n"); /* SMC feature mask */ if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_ENABLED_SMC_FEATURES_MASK, (void *)&value64, &size)) seq_printf(m, "SMC Feature Mask: 0x%016llx\n", value64); /* ASICs greater than CHIP_VEGA20 supports these sensors */ if (gc_ver != IP_VERSION(9, 4, 0) && mp1_ver > IP_VERSION(9, 0, 0)) { /* VCN clocks */ if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_VCN_POWER_STATE, (void *)&value, &size)) { if (!value) { seq_printf(m, "VCN: Disabled\n"); } else { seq_printf(m, "VCN: Enabled\n"); if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_UVD_DCLK, (void *)&value, &size)) seq_printf(m, "\t%u MHz (DCLK)\n", value/100); if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_UVD_VCLK, (void *)&value, &size)) seq_printf(m, "\t%u MHz (VCLK)\n", value/100); } } seq_printf(m, "\n"); } else { /* UVD clocks */ if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_UVD_POWER, (void *)&value, &size)) { if (!value) { seq_printf(m, "UVD: Disabled\n"); } else { seq_printf(m, "UVD: Enabled\n"); if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_UVD_DCLK, (void *)&value, &size)) seq_printf(m, "\t%u MHz (DCLK)\n", value/100); if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_UVD_VCLK, (void *)&value, &size)) seq_printf(m, "\t%u MHz (VCLK)\n", value/100); } } seq_printf(m, "\n"); /* VCE clocks */ if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_VCE_POWER, (void *)&value, &size)) { if (!value) { seq_printf(m, "VCE: Disabled\n"); } else { seq_printf(m, "VCE: Enabled\n"); if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_VCE_ECCLK, (void *)&value, &size)) seq_printf(m, "\t%u MHz (ECCLK)\n", value/100); } } } return 0; } static const struct cg_flag_name clocks[] = { {AMD_CG_SUPPORT_GFX_FGCG, "Graphics Fine Grain Clock Gating"}, {AMD_CG_SUPPORT_GFX_MGCG, "Graphics Medium Grain Clock Gating"}, {AMD_CG_SUPPORT_GFX_MGLS, "Graphics Medium Grain memory Light Sleep"}, {AMD_CG_SUPPORT_GFX_CGCG, "Graphics Coarse Grain Clock Gating"}, {AMD_CG_SUPPORT_GFX_CGLS, "Graphics Coarse Grain memory Light Sleep"}, {AMD_CG_SUPPORT_GFX_CGTS, "Graphics Coarse Grain Tree Shader Clock Gating"}, {AMD_CG_SUPPORT_GFX_CGTS_LS, "Graphics Coarse Grain Tree Shader Light Sleep"}, {AMD_CG_SUPPORT_GFX_CP_LS, "Graphics Command Processor Light Sleep"}, {AMD_CG_SUPPORT_GFX_RLC_LS, "Graphics Run List Controller Light Sleep"}, {AMD_CG_SUPPORT_GFX_3D_CGCG, "Graphics 3D Coarse Grain Clock Gating"}, {AMD_CG_SUPPORT_GFX_3D_CGLS, "Graphics 3D Coarse Grain memory Light Sleep"}, {AMD_CG_SUPPORT_MC_LS, "Memory Controller Light Sleep"}, {AMD_CG_SUPPORT_MC_MGCG, "Memory Controller Medium Grain Clock Gating"}, {AMD_CG_SUPPORT_SDMA_LS, "System Direct Memory Access Light Sleep"}, {AMD_CG_SUPPORT_SDMA_MGCG, "System Direct Memory Access Medium Grain Clock Gating"}, {AMD_CG_SUPPORT_BIF_MGCG, "Bus Interface Medium Grain Clock Gating"}, {AMD_CG_SUPPORT_BIF_LS, "Bus Interface Light Sleep"}, {AMD_CG_SUPPORT_UVD_MGCG, "Unified Video Decoder Medium Grain Clock Gating"}, {AMD_CG_SUPPORT_VCE_MGCG, "Video Compression Engine Medium Grain Clock Gating"}, {AMD_CG_SUPPORT_HDP_LS, "Host Data Path Light Sleep"}, {AMD_CG_SUPPORT_HDP_MGCG, "Host Data Path Medium Grain Clock Gating"}, {AMD_CG_SUPPORT_DRM_MGCG, "Digital Right Management Medium Grain Clock Gating"}, {AMD_CG_SUPPORT_DRM_LS, "Digital Right Management Light Sleep"}, {AMD_CG_SUPPORT_ROM_MGCG, "Rom Medium Grain Clock Gating"}, {AMD_CG_SUPPORT_DF_MGCG, "Data Fabric Medium Grain Clock Gating"}, {AMD_CG_SUPPORT_VCN_MGCG, "VCN Medium Grain Clock Gating"}, {AMD_CG_SUPPORT_HDP_DS, "Host Data Path Deep Sleep"}, {AMD_CG_SUPPORT_HDP_SD, "Host Data Path Shutdown"}, {AMD_CG_SUPPORT_IH_CG, "Interrupt Handler Clock Gating"}, {AMD_CG_SUPPORT_JPEG_MGCG, "JPEG Medium Grain Clock Gating"}, {AMD_CG_SUPPORT_REPEATER_FGCG, "Repeater Fine Grain Clock Gating"}, {AMD_CG_SUPPORT_GFX_PERF_CLK, "Perfmon Clock Gating"}, {AMD_CG_SUPPORT_ATHUB_MGCG, "Address Translation Hub Medium Grain Clock Gating"}, {AMD_CG_SUPPORT_ATHUB_LS, "Address Translation Hub Light Sleep"}, {0, NULL}, }; static void amdgpu_parse_cg_state(struct seq_file *m, u64 flags) { int i; for (i = 0; clocks[i].flag; i++) seq_printf(m, "\t%s: %s\n", clocks[i].name, (flags & clocks[i].flag) ? "On" : "Off"); } static int amdgpu_debugfs_pm_info_show(struct seq_file *m, void *unused) { struct amdgpu_device *adev = (struct amdgpu_device *)m->private; struct drm_device *dev = adev_to_drm(adev); u64 flags = 0; int r; if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; r = pm_runtime_get_sync(dev->dev); if (r < 0) { pm_runtime_put_autosuspend(dev->dev); return r; } if (amdgpu_dpm_debugfs_print_current_performance_level(adev, m)) { r = amdgpu_debugfs_pm_info_pp(m, adev); if (r) goto out; } amdgpu_device_ip_get_clockgating_state(adev, &flags); seq_printf(m, "Clock Gating Flags Mask: 0x%llx\n", flags); amdgpu_parse_cg_state(m, flags); seq_printf(m, "\n"); out: pm_runtime_mark_last_busy(dev->dev); pm_runtime_put_autosuspend(dev->dev); return r; } DEFINE_SHOW_ATTRIBUTE(amdgpu_debugfs_pm_info); /* * amdgpu_pm_priv_buffer_read - Read memory region allocated to FW * * Reads debug memory region allocated to PMFW */ static ssize_t amdgpu_pm_prv_buffer_read(struct file *f, char __user *buf, size_t size, loff_t *pos) { struct amdgpu_device *adev = file_inode(f)->i_private; size_t smu_prv_buf_size; void *smu_prv_buf; int ret = 0; if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; ret = amdgpu_dpm_get_smu_prv_buf_details(adev, &smu_prv_buf, &smu_prv_buf_size); if (ret) return ret; if (!smu_prv_buf || !smu_prv_buf_size) return -EINVAL; return simple_read_from_buffer(buf, size, pos, smu_prv_buf, smu_prv_buf_size); } static const struct file_operations amdgpu_debugfs_pm_prv_buffer_fops = { .owner = THIS_MODULE, .open = simple_open, .read = amdgpu_pm_prv_buffer_read, .llseek = default_llseek, }; #endif void amdgpu_debugfs_pm_init(struct amdgpu_device *adev) { #if defined(CONFIG_DEBUG_FS) struct drm_minor *minor = adev_to_drm(adev)->primary; struct dentry *root = minor->debugfs_root; if (!adev->pm.dpm_enabled) return; debugfs_create_file("amdgpu_pm_info", 0444, root, adev, &amdgpu_debugfs_pm_info_fops); if (adev->pm.smu_prv_buffer_size > 0) debugfs_create_file_size("amdgpu_pm_prv_buffer", 0444, root, adev, &amdgpu_debugfs_pm_prv_buffer_fops, adev->pm.smu_prv_buffer_size); amdgpu_dpm_stb_debug_fs_init(adev); #endif }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1