Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Danilo Krummrich | 3794 | 98.09% | 4 | 28.57% |
Jesse Barnes | 19 | 0.49% | 1 | 7.14% |
Eric Anholt | 18 | 0.47% | 2 | 14.29% |
Noralf Trönnes | 15 | 0.39% | 1 | 7.14% |
Rob Clark | 13 | 0.34% | 1 | 7.14% |
Chris Wilson | 4 | 0.10% | 1 | 7.14% |
Dave Airlie | 2 | 0.05% | 1 | 7.14% |
Steven Price | 1 | 0.03% | 1 | 7.14% |
Thomas Hellstrom | 1 | 0.03% | 1 | 7.14% |
Lucas De Marchi | 1 | 0.03% | 1 | 7.14% |
Total | 3868 | 14 |
// SPDX-License-Identifier: GPL-2.0-only OR MIT /* * Copyright (c) 2022 Red Hat. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: * Danilo Krummrich <dakr@redhat.com> * */ #include <drm/drm_gpuvm.h> #include <linux/interval_tree_generic.h> #include <linux/mm.h> /** * DOC: Overview * * The DRM GPU VA Manager, represented by struct drm_gpuvm keeps track of a * GPU's virtual address (VA) space and manages the corresponding virtual * mappings represented by &drm_gpuva objects. It also keeps track of the * mapping's backing &drm_gem_object buffers. * * &drm_gem_object buffers maintain a list of &drm_gpuva objects representing * all existent GPU VA mappings using this &drm_gem_object as backing buffer. * * GPU VAs can be flagged as sparse, such that drivers may use GPU VAs to also * keep track of sparse PTEs in order to support Vulkan 'Sparse Resources'. * * The GPU VA manager internally uses a rb-tree to manage the * &drm_gpuva mappings within a GPU's virtual address space. * * The &drm_gpuvm structure contains a special &drm_gpuva representing the * portion of VA space reserved by the kernel. This node is initialized together * with the GPU VA manager instance and removed when the GPU VA manager is * destroyed. * * In a typical application drivers would embed struct drm_gpuvm and * struct drm_gpuva within their own driver specific structures, there won't be * any memory allocations of its own nor memory allocations of &drm_gpuva * entries. * * The data structures needed to store &drm_gpuvas within the &drm_gpuvm are * contained within struct drm_gpuva already. Hence, for inserting &drm_gpuva * entries from within dma-fence signalling critical sections it is enough to * pre-allocate the &drm_gpuva structures. */ /** * DOC: Split and Merge * * Besides its capability to manage and represent a GPU VA space, the * GPU VA manager also provides functions to let the &drm_gpuvm calculate a * sequence of operations to satisfy a given map or unmap request. * * Therefore the DRM GPU VA manager provides an algorithm implementing splitting * and merging of existent GPU VA mappings with the ones that are requested to * be mapped or unmapped. This feature is required by the Vulkan API to * implement Vulkan 'Sparse Memory Bindings' - drivers UAPIs often refer to this * as VM BIND. * * Drivers can call drm_gpuvm_sm_map() to receive a sequence of callbacks * containing map, unmap and remap operations for a given newly requested * mapping. The sequence of callbacks represents the set of operations to * execute in order to integrate the new mapping cleanly into the current state * of the GPU VA space. * * Depending on how the new GPU VA mapping intersects with the existent mappings * of the GPU VA space the &drm_gpuvm_ops callbacks contain an arbitrary amount * of unmap operations, a maximum of two remap operations and a single map * operation. The caller might receive no callback at all if no operation is * required, e.g. if the requested mapping already exists in the exact same way. * * The single map operation represents the original map operation requested by * the caller. * * &drm_gpuva_op_unmap contains a 'keep' field, which indicates whether the * &drm_gpuva to unmap is physically contiguous with the original mapping * request. Optionally, if 'keep' is set, drivers may keep the actual page table * entries for this &drm_gpuva, adding the missing page table entries only and * update the &drm_gpuvm's view of things accordingly. * * Drivers may do the same optimization, namely delta page table updates, also * for remap operations. This is possible since &drm_gpuva_op_remap consists of * one unmap operation and one or two map operations, such that drivers can * derive the page table update delta accordingly. * * Note that there can't be more than two existent mappings to split up, one at * the beginning and one at the end of the new mapping, hence there is a * maximum of two remap operations. * * Analogous to drm_gpuvm_sm_map() drm_gpuvm_sm_unmap() uses &drm_gpuvm_ops to * call back into the driver in order to unmap a range of GPU VA space. The * logic behind this function is way simpler though: For all existent mappings * enclosed by the given range unmap operations are created. For mappings which * are only partically located within the given range, remap operations are * created such that those mappings are split up and re-mapped partically. * * As an alternative to drm_gpuvm_sm_map() and drm_gpuvm_sm_unmap(), * drm_gpuvm_sm_map_ops_create() and drm_gpuvm_sm_unmap_ops_create() can be used * to directly obtain an instance of struct drm_gpuva_ops containing a list of * &drm_gpuva_op, which can be iterated with drm_gpuva_for_each_op(). This list * contains the &drm_gpuva_ops analogous to the callbacks one would receive when * calling drm_gpuvm_sm_map() or drm_gpuvm_sm_unmap(). While this way requires * more memory (to allocate the &drm_gpuva_ops), it provides drivers a way to * iterate the &drm_gpuva_op multiple times, e.g. once in a context where memory * allocations are possible (e.g. to allocate GPU page tables) and once in the * dma-fence signalling critical path. * * To update the &drm_gpuvm's view of the GPU VA space drm_gpuva_insert() and * drm_gpuva_remove() may be used. These functions can safely be used from * &drm_gpuvm_ops callbacks originating from drm_gpuvm_sm_map() or * drm_gpuvm_sm_unmap(). However, it might be more convenient to use the * provided helper functions drm_gpuva_map(), drm_gpuva_remap() and * drm_gpuva_unmap() instead. * * The following diagram depicts the basic relationships of existent GPU VA * mappings, a newly requested mapping and the resulting mappings as implemented * by drm_gpuvm_sm_map() - it doesn't cover any arbitrary combinations of these. * * 1) Requested mapping is identical. Replace it, but indicate the backing PTEs * could be kept. * * :: * * 0 a 1 * old: |-----------| (bo_offset=n) * * 0 a 1 * req: |-----------| (bo_offset=n) * * 0 a 1 * new: |-----------| (bo_offset=n) * * * 2) Requested mapping is identical, except for the BO offset, hence replace * the mapping. * * :: * * 0 a 1 * old: |-----------| (bo_offset=n) * * 0 a 1 * req: |-----------| (bo_offset=m) * * 0 a 1 * new: |-----------| (bo_offset=m) * * * 3) Requested mapping is identical, except for the backing BO, hence replace * the mapping. * * :: * * 0 a 1 * old: |-----------| (bo_offset=n) * * 0 b 1 * req: |-----------| (bo_offset=n) * * 0 b 1 * new: |-----------| (bo_offset=n) * * * 4) Existent mapping is a left aligned subset of the requested one, hence * replace the existent one. * * :: * * 0 a 1 * old: |-----| (bo_offset=n) * * 0 a 2 * req: |-----------| (bo_offset=n) * * 0 a 2 * new: |-----------| (bo_offset=n) * * .. note:: * We expect to see the same result for a request with a different BO * and/or non-contiguous BO offset. * * * 5) Requested mapping's range is a left aligned subset of the existent one, * but backed by a different BO. Hence, map the requested mapping and split * the existent one adjusting its BO offset. * * :: * * 0 a 2 * old: |-----------| (bo_offset=n) * * 0 b 1 * req: |-----| (bo_offset=n) * * 0 b 1 a' 2 * new: |-----|-----| (b.bo_offset=n, a.bo_offset=n+1) * * .. note:: * We expect to see the same result for a request with a different BO * and/or non-contiguous BO offset. * * * 6) Existent mapping is a superset of the requested mapping. Split it up, but * indicate that the backing PTEs could be kept. * * :: * * 0 a 2 * old: |-----------| (bo_offset=n) * * 0 a 1 * req: |-----| (bo_offset=n) * * 0 a 1 a' 2 * new: |-----|-----| (a.bo_offset=n, a'.bo_offset=n+1) * * * 7) Requested mapping's range is a right aligned subset of the existent one, * but backed by a different BO. Hence, map the requested mapping and split * the existent one, without adjusting the BO offset. * * :: * * 0 a 2 * old: |-----------| (bo_offset=n) * * 1 b 2 * req: |-----| (bo_offset=m) * * 0 a 1 b 2 * new: |-----|-----| (a.bo_offset=n,b.bo_offset=m) * * * 8) Existent mapping is a superset of the requested mapping. Split it up, but * indicate that the backing PTEs could be kept. * * :: * * 0 a 2 * old: |-----------| (bo_offset=n) * * 1 a 2 * req: |-----| (bo_offset=n+1) * * 0 a' 1 a 2 * new: |-----|-----| (a'.bo_offset=n, a.bo_offset=n+1) * * * 9) Existent mapping is overlapped at the end by the requested mapping backed * by a different BO. Hence, map the requested mapping and split up the * existent one, without adjusting the BO offset. * * :: * * 0 a 2 * old: |-----------| (bo_offset=n) * * 1 b 3 * req: |-----------| (bo_offset=m) * * 0 a 1 b 3 * new: |-----|-----------| (a.bo_offset=n,b.bo_offset=m) * * * 10) Existent mapping is overlapped by the requested mapping, both having the * same backing BO with a contiguous offset. Indicate the backing PTEs of * the old mapping could be kept. * * :: * * 0 a 2 * old: |-----------| (bo_offset=n) * * 1 a 3 * req: |-----------| (bo_offset=n+1) * * 0 a' 1 a 3 * new: |-----|-----------| (a'.bo_offset=n, a.bo_offset=n+1) * * * 11) Requested mapping's range is a centered subset of the existent one * having a different backing BO. Hence, map the requested mapping and split * up the existent one in two mappings, adjusting the BO offset of the right * one accordingly. * * :: * * 0 a 3 * old: |-----------------| (bo_offset=n) * * 1 b 2 * req: |-----| (bo_offset=m) * * 0 a 1 b 2 a' 3 * new: |-----|-----|-----| (a.bo_offset=n,b.bo_offset=m,a'.bo_offset=n+2) * * * 12) Requested mapping is a contiguous subset of the existent one. Split it * up, but indicate that the backing PTEs could be kept. * * :: * * 0 a 3 * old: |-----------------| (bo_offset=n) * * 1 a 2 * req: |-----| (bo_offset=n+1) * * 0 a' 1 a 2 a'' 3 * old: |-----|-----|-----| (a'.bo_offset=n, a.bo_offset=n+1, a''.bo_offset=n+2) * * * 13) Existent mapping is a right aligned subset of the requested one, hence * replace the existent one. * * :: * * 1 a 2 * old: |-----| (bo_offset=n+1) * * 0 a 2 * req: |-----------| (bo_offset=n) * * 0 a 2 * new: |-----------| (bo_offset=n) * * .. note:: * We expect to see the same result for a request with a different bo * and/or non-contiguous bo_offset. * * * 14) Existent mapping is a centered subset of the requested one, hence * replace the existent one. * * :: * * 1 a 2 * old: |-----| (bo_offset=n+1) * * 0 a 3 * req: |----------------| (bo_offset=n) * * 0 a 3 * new: |----------------| (bo_offset=n) * * .. note:: * We expect to see the same result for a request with a different bo * and/or non-contiguous bo_offset. * * * 15) Existent mappings is overlapped at the beginning by the requested mapping * backed by a different BO. Hence, map the requested mapping and split up * the existent one, adjusting its BO offset accordingly. * * :: * * 1 a 3 * old: |-----------| (bo_offset=n) * * 0 b 2 * req: |-----------| (bo_offset=m) * * 0 b 2 a' 3 * new: |-----------|-----| (b.bo_offset=m,a.bo_offset=n+2) */ /** * DOC: Locking * * Generally, the GPU VA manager does not take care of locking itself, it is * the drivers responsibility to take care about locking. Drivers might want to * protect the following operations: inserting, removing and iterating * &drm_gpuva objects as well as generating all kinds of operations, such as * split / merge or prefetch. * * The GPU VA manager also does not take care of the locking of the backing * &drm_gem_object buffers GPU VA lists by itself; drivers are responsible to * enforce mutual exclusion using either the GEMs dma_resv lock or alternatively * a driver specific external lock. For the latter see also * drm_gem_gpuva_set_lock(). * * However, the GPU VA manager contains lockdep checks to ensure callers of its * API hold the corresponding lock whenever the &drm_gem_objects GPU VA list is * accessed by functions such as drm_gpuva_link() or drm_gpuva_unlink(). */ /** * DOC: Examples * * This section gives two examples on how to let the DRM GPUVA Manager generate * &drm_gpuva_op in order to satisfy a given map or unmap request and how to * make use of them. * * The below code is strictly limited to illustrate the generic usage pattern. * To maintain simplicitly, it doesn't make use of any abstractions for common * code, different (asyncronous) stages with fence signalling critical paths, * any other helpers or error handling in terms of freeing memory and dropping * previously taken locks. * * 1) Obtain a list of &drm_gpuva_op to create a new mapping:: * * // Allocates a new &drm_gpuva. * struct drm_gpuva * driver_gpuva_alloc(void); * * // Typically drivers would embedd the &drm_gpuvm and &drm_gpuva * // structure in individual driver structures and lock the dma-resv with * // drm_exec or similar helpers. * int driver_mapping_create(struct drm_gpuvm *gpuvm, * u64 addr, u64 range, * struct drm_gem_object *obj, u64 offset) * { * struct drm_gpuva_ops *ops; * struct drm_gpuva_op *op * * driver_lock_va_space(); * ops = drm_gpuvm_sm_map_ops_create(gpuvm, addr, range, * obj, offset); * if (IS_ERR(ops)) * return PTR_ERR(ops); * * drm_gpuva_for_each_op(op, ops) { * struct drm_gpuva *va; * * switch (op->op) { * case DRM_GPUVA_OP_MAP: * va = driver_gpuva_alloc(); * if (!va) * ; // unwind previous VA space updates, * // free memory and unlock * * driver_vm_map(); * drm_gpuva_map(gpuvm, va, &op->map); * drm_gpuva_link(va); * * break; * case DRM_GPUVA_OP_REMAP: { * struct drm_gpuva *prev = NULL, *next = NULL; * * va = op->remap.unmap->va; * * if (op->remap.prev) { * prev = driver_gpuva_alloc(); * if (!prev) * ; // unwind previous VA space * // updates, free memory and * // unlock * } * * if (op->remap.next) { * next = driver_gpuva_alloc(); * if (!next) * ; // unwind previous VA space * // updates, free memory and * // unlock * } * * driver_vm_remap(); * drm_gpuva_remap(prev, next, &op->remap); * * drm_gpuva_unlink(va); * if (prev) * drm_gpuva_link(prev); * if (next) * drm_gpuva_link(next); * * break; * } * case DRM_GPUVA_OP_UNMAP: * va = op->unmap->va; * * driver_vm_unmap(); * drm_gpuva_unlink(va); * drm_gpuva_unmap(&op->unmap); * * break; * default: * break; * } * } * driver_unlock_va_space(); * * return 0; * } * * 2) Receive a callback for each &drm_gpuva_op to create a new mapping:: * * struct driver_context { * struct drm_gpuvm *gpuvm; * struct drm_gpuva *new_va; * struct drm_gpuva *prev_va; * struct drm_gpuva *next_va; * }; * * // ops to pass to drm_gpuvm_init() * static const struct drm_gpuvm_ops driver_gpuvm_ops = { * .sm_step_map = driver_gpuva_map, * .sm_step_remap = driver_gpuva_remap, * .sm_step_unmap = driver_gpuva_unmap, * }; * * // Typically drivers would embedd the &drm_gpuvm and &drm_gpuva * // structure in individual driver structures and lock the dma-resv with * // drm_exec or similar helpers. * int driver_mapping_create(struct drm_gpuvm *gpuvm, * u64 addr, u64 range, * struct drm_gem_object *obj, u64 offset) * { * struct driver_context ctx; * struct drm_gpuva_ops *ops; * struct drm_gpuva_op *op; * int ret = 0; * * ctx.gpuvm = gpuvm; * * ctx.new_va = kzalloc(sizeof(*ctx.new_va), GFP_KERNEL); * ctx.prev_va = kzalloc(sizeof(*ctx.prev_va), GFP_KERNEL); * ctx.next_va = kzalloc(sizeof(*ctx.next_va), GFP_KERNEL); * if (!ctx.new_va || !ctx.prev_va || !ctx.next_va) { * ret = -ENOMEM; * goto out; * } * * driver_lock_va_space(); * ret = drm_gpuvm_sm_map(gpuvm, &ctx, addr, range, obj, offset); * driver_unlock_va_space(); * * out: * kfree(ctx.new_va); * kfree(ctx.prev_va); * kfree(ctx.next_va); * return ret; * } * * int driver_gpuva_map(struct drm_gpuva_op *op, void *__ctx) * { * struct driver_context *ctx = __ctx; * * drm_gpuva_map(ctx->vm, ctx->new_va, &op->map); * * drm_gpuva_link(ctx->new_va); * * // prevent the new GPUVA from being freed in * // driver_mapping_create() * ctx->new_va = NULL; * * return 0; * } * * int driver_gpuva_remap(struct drm_gpuva_op *op, void *__ctx) * { * struct driver_context *ctx = __ctx; * * drm_gpuva_remap(ctx->prev_va, ctx->next_va, &op->remap); * * drm_gpuva_unlink(op->remap.unmap->va); * kfree(op->remap.unmap->va); * * if (op->remap.prev) { * drm_gpuva_link(ctx->prev_va); * ctx->prev_va = NULL; * } * * if (op->remap.next) { * drm_gpuva_link(ctx->next_va); * ctx->next_va = NULL; * } * * return 0; * } * * int driver_gpuva_unmap(struct drm_gpuva_op *op, void *__ctx) * { * drm_gpuva_unlink(op->unmap.va); * drm_gpuva_unmap(&op->unmap); * kfree(op->unmap.va); * * return 0; * } */ #define to_drm_gpuva(__node) container_of((__node), struct drm_gpuva, rb.node) #define GPUVA_START(node) ((node)->va.addr) #define GPUVA_LAST(node) ((node)->va.addr + (node)->va.range - 1) /* We do not actually use drm_gpuva_it_next(), tell the compiler to not complain * about this. */ INTERVAL_TREE_DEFINE(struct drm_gpuva, rb.node, u64, rb.__subtree_last, GPUVA_START, GPUVA_LAST, static __maybe_unused, drm_gpuva_it) static int __drm_gpuva_insert(struct drm_gpuvm *gpuvm, struct drm_gpuva *va); static void __drm_gpuva_remove(struct drm_gpuva *va); static bool drm_gpuvm_check_overflow(u64 addr, u64 range) { u64 end; return WARN(check_add_overflow(addr, range, &end), "GPUVA address limited to %zu bytes.\n", sizeof(end)); } static bool drm_gpuvm_in_mm_range(struct drm_gpuvm *gpuvm, u64 addr, u64 range) { u64 end = addr + range; u64 mm_start = gpuvm->mm_start; u64 mm_end = mm_start + gpuvm->mm_range; return addr >= mm_start && end <= mm_end; } static bool drm_gpuvm_in_kernel_node(struct drm_gpuvm *gpuvm, u64 addr, u64 range) { u64 end = addr + range; u64 kstart = gpuvm->kernel_alloc_node.va.addr; u64 krange = gpuvm->kernel_alloc_node.va.range; u64 kend = kstart + krange; return krange && addr < kend && kstart < end; } static bool drm_gpuvm_range_valid(struct drm_gpuvm *gpuvm, u64 addr, u64 range) { return !drm_gpuvm_check_overflow(addr, range) && drm_gpuvm_in_mm_range(gpuvm, addr, range) && !drm_gpuvm_in_kernel_node(gpuvm, addr, range); } /** * drm_gpuvm_init() - initialize a &drm_gpuvm * @gpuvm: pointer to the &drm_gpuvm to initialize * @name: the name of the GPU VA space * @start_offset: the start offset of the GPU VA space * @range: the size of the GPU VA space * @reserve_offset: the start of the kernel reserved GPU VA area * @reserve_range: the size of the kernel reserved GPU VA area * @ops: &drm_gpuvm_ops called on &drm_gpuvm_sm_map / &drm_gpuvm_sm_unmap * * The &drm_gpuvm must be initialized with this function before use. * * Note that @gpuvm must be cleared to 0 before calling this function. The given * &name is expected to be managed by the surrounding driver structures. */ void drm_gpuvm_init(struct drm_gpuvm *gpuvm, const char *name, u64 start_offset, u64 range, u64 reserve_offset, u64 reserve_range, const struct drm_gpuvm_ops *ops) { gpuvm->rb.tree = RB_ROOT_CACHED; INIT_LIST_HEAD(&gpuvm->rb.list); drm_gpuvm_check_overflow(start_offset, range); gpuvm->mm_start = start_offset; gpuvm->mm_range = range; gpuvm->name = name ? name : "unknown"; gpuvm->ops = ops; memset(&gpuvm->kernel_alloc_node, 0, sizeof(struct drm_gpuva)); if (reserve_range) { gpuvm->kernel_alloc_node.va.addr = reserve_offset; gpuvm->kernel_alloc_node.va.range = reserve_range; if (likely(!drm_gpuvm_check_overflow(reserve_offset, reserve_range))) __drm_gpuva_insert(gpuvm, &gpuvm->kernel_alloc_node); } } EXPORT_SYMBOL_GPL(drm_gpuvm_init); /** * drm_gpuvm_destroy() - cleanup a &drm_gpuvm * @gpuvm: pointer to the &drm_gpuvm to clean up * * Note that it is a bug to call this function on a manager that still * holds GPU VA mappings. */ void drm_gpuvm_destroy(struct drm_gpuvm *gpuvm) { gpuvm->name = NULL; if (gpuvm->kernel_alloc_node.va.range) __drm_gpuva_remove(&gpuvm->kernel_alloc_node); WARN(!RB_EMPTY_ROOT(&gpuvm->rb.tree.rb_root), "GPUVA tree is not empty, potentially leaking memory."); } EXPORT_SYMBOL_GPL(drm_gpuvm_destroy); static int __drm_gpuva_insert(struct drm_gpuvm *gpuvm, struct drm_gpuva *va) { struct rb_node *node; struct list_head *head; if (drm_gpuva_it_iter_first(&gpuvm->rb.tree, GPUVA_START(va), GPUVA_LAST(va))) return -EEXIST; va->vm = gpuvm; drm_gpuva_it_insert(va, &gpuvm->rb.tree); node = rb_prev(&va->rb.node); if (node) head = &(to_drm_gpuva(node))->rb.entry; else head = &gpuvm->rb.list; list_add(&va->rb.entry, head); return 0; } /** * drm_gpuva_insert() - insert a &drm_gpuva * @gpuvm: the &drm_gpuvm to insert the &drm_gpuva in * @va: the &drm_gpuva to insert * * Insert a &drm_gpuva with a given address and range into a * &drm_gpuvm. * * It is safe to use this function using the safe versions of iterating the GPU * VA space, such as drm_gpuvm_for_each_va_safe() and * drm_gpuvm_for_each_va_range_safe(). * * Returns: 0 on success, negative error code on failure. */ int drm_gpuva_insert(struct drm_gpuvm *gpuvm, struct drm_gpuva *va) { u64 addr = va->va.addr; u64 range = va->va.range; if (unlikely(!drm_gpuvm_range_valid(gpuvm, addr, range))) return -EINVAL; return __drm_gpuva_insert(gpuvm, va); } EXPORT_SYMBOL_GPL(drm_gpuva_insert); static void __drm_gpuva_remove(struct drm_gpuva *va) { drm_gpuva_it_remove(va, &va->vm->rb.tree); list_del_init(&va->rb.entry); } /** * drm_gpuva_remove() - remove a &drm_gpuva * @va: the &drm_gpuva to remove * * This removes the given &va from the underlaying tree. * * It is safe to use this function using the safe versions of iterating the GPU * VA space, such as drm_gpuvm_for_each_va_safe() and * drm_gpuvm_for_each_va_range_safe(). */ void drm_gpuva_remove(struct drm_gpuva *va) { struct drm_gpuvm *gpuvm = va->vm; if (unlikely(va == &gpuvm->kernel_alloc_node)) { WARN(1, "Can't destroy kernel reserved node.\n"); return; } __drm_gpuva_remove(va); } EXPORT_SYMBOL_GPL(drm_gpuva_remove); /** * drm_gpuva_link() - link a &drm_gpuva * @va: the &drm_gpuva to link * * This adds the given &va to the GPU VA list of the &drm_gem_object it is * associated with. * * This function expects the caller to protect the GEM's GPUVA list against * concurrent access using the GEMs dma_resv lock. */ void drm_gpuva_link(struct drm_gpuva *va) { struct drm_gem_object *obj = va->gem.obj; if (unlikely(!obj)) return; drm_gem_gpuva_assert_lock_held(obj); list_add_tail(&va->gem.entry, &obj->gpuva.list); } EXPORT_SYMBOL_GPL(drm_gpuva_link); /** * drm_gpuva_unlink() - unlink a &drm_gpuva * @va: the &drm_gpuva to unlink * * This removes the given &va from the GPU VA list of the &drm_gem_object it is * associated with. * * This function expects the caller to protect the GEM's GPUVA list against * concurrent access using the GEMs dma_resv lock. */ void drm_gpuva_unlink(struct drm_gpuva *va) { struct drm_gem_object *obj = va->gem.obj; if (unlikely(!obj)) return; drm_gem_gpuva_assert_lock_held(obj); list_del_init(&va->gem.entry); } EXPORT_SYMBOL_GPL(drm_gpuva_unlink); /** * drm_gpuva_find_first() - find the first &drm_gpuva in the given range * @gpuvm: the &drm_gpuvm to search in * @addr: the &drm_gpuvas address * @range: the &drm_gpuvas range * * Returns: the first &drm_gpuva within the given range */ struct drm_gpuva * drm_gpuva_find_first(struct drm_gpuvm *gpuvm, u64 addr, u64 range) { u64 last = addr + range - 1; return drm_gpuva_it_iter_first(&gpuvm->rb.tree, addr, last); } EXPORT_SYMBOL_GPL(drm_gpuva_find_first); /** * drm_gpuva_find() - find a &drm_gpuva * @gpuvm: the &drm_gpuvm to search in * @addr: the &drm_gpuvas address * @range: the &drm_gpuvas range * * Returns: the &drm_gpuva at a given &addr and with a given &range */ struct drm_gpuva * drm_gpuva_find(struct drm_gpuvm *gpuvm, u64 addr, u64 range) { struct drm_gpuva *va; va = drm_gpuva_find_first(gpuvm, addr, range); if (!va) goto out; if (va->va.addr != addr || va->va.range != range) goto out; return va; out: return NULL; } EXPORT_SYMBOL_GPL(drm_gpuva_find); /** * drm_gpuva_find_prev() - find the &drm_gpuva before the given address * @gpuvm: the &drm_gpuvm to search in * @start: the given GPU VA's start address * * Find the adjacent &drm_gpuva before the GPU VA with given &start address. * * Note that if there is any free space between the GPU VA mappings no mapping * is returned. * * Returns: a pointer to the found &drm_gpuva or NULL if none was found */ struct drm_gpuva * drm_gpuva_find_prev(struct drm_gpuvm *gpuvm, u64 start) { if (!drm_gpuvm_range_valid(gpuvm, start - 1, 1)) return NULL; return drm_gpuva_it_iter_first(&gpuvm->rb.tree, start - 1, start); } EXPORT_SYMBOL_GPL(drm_gpuva_find_prev); /** * drm_gpuva_find_next() - find the &drm_gpuva after the given address * @gpuvm: the &drm_gpuvm to search in * @end: the given GPU VA's end address * * Find the adjacent &drm_gpuva after the GPU VA with given &end address. * * Note that if there is any free space between the GPU VA mappings no mapping * is returned. * * Returns: a pointer to the found &drm_gpuva or NULL if none was found */ struct drm_gpuva * drm_gpuva_find_next(struct drm_gpuvm *gpuvm, u64 end) { if (!drm_gpuvm_range_valid(gpuvm, end, 1)) return NULL; return drm_gpuva_it_iter_first(&gpuvm->rb.tree, end, end + 1); } EXPORT_SYMBOL_GPL(drm_gpuva_find_next); /** * drm_gpuvm_interval_empty() - indicate whether a given interval of the VA space * is empty * @gpuvm: the &drm_gpuvm to check the range for * @addr: the start address of the range * @range: the range of the interval * * Returns: true if the interval is empty, false otherwise */ bool drm_gpuvm_interval_empty(struct drm_gpuvm *gpuvm, u64 addr, u64 range) { return !drm_gpuva_find_first(gpuvm, addr, range); } EXPORT_SYMBOL_GPL(drm_gpuvm_interval_empty); /** * drm_gpuva_map() - helper to insert a &drm_gpuva according to a * &drm_gpuva_op_map * @gpuvm: the &drm_gpuvm * @va: the &drm_gpuva to insert * @op: the &drm_gpuva_op_map to initialize @va with * * Initializes the @va from the @op and inserts it into the given @gpuvm. */ void drm_gpuva_map(struct drm_gpuvm *gpuvm, struct drm_gpuva *va, struct drm_gpuva_op_map *op) { drm_gpuva_init_from_op(va, op); drm_gpuva_insert(gpuvm, va); } EXPORT_SYMBOL_GPL(drm_gpuva_map); /** * drm_gpuva_remap() - helper to remap a &drm_gpuva according to a * &drm_gpuva_op_remap * @prev: the &drm_gpuva to remap when keeping the start of a mapping * @next: the &drm_gpuva to remap when keeping the end of a mapping * @op: the &drm_gpuva_op_remap to initialize @prev and @next with * * Removes the currently mapped &drm_gpuva and remaps it using @prev and/or * @next. */ void drm_gpuva_remap(struct drm_gpuva *prev, struct drm_gpuva *next, struct drm_gpuva_op_remap *op) { struct drm_gpuva *curr = op->unmap->va; struct drm_gpuvm *gpuvm = curr->vm; drm_gpuva_remove(curr); if (op->prev) { drm_gpuva_init_from_op(prev, op->prev); drm_gpuva_insert(gpuvm, prev); } if (op->next) { drm_gpuva_init_from_op(next, op->next); drm_gpuva_insert(gpuvm, next); } } EXPORT_SYMBOL_GPL(drm_gpuva_remap); /** * drm_gpuva_unmap() - helper to remove a &drm_gpuva according to a * &drm_gpuva_op_unmap * @op: the &drm_gpuva_op_unmap specifying the &drm_gpuva to remove * * Removes the &drm_gpuva associated with the &drm_gpuva_op_unmap. */ void drm_gpuva_unmap(struct drm_gpuva_op_unmap *op) { drm_gpuva_remove(op->va); } EXPORT_SYMBOL_GPL(drm_gpuva_unmap); static int op_map_cb(const struct drm_gpuvm_ops *fn, void *priv, u64 addr, u64 range, struct drm_gem_object *obj, u64 offset) { struct drm_gpuva_op op = {}; op.op = DRM_GPUVA_OP_MAP; op.map.va.addr = addr; op.map.va.range = range; op.map.gem.obj = obj; op.map.gem.offset = offset; return fn->sm_step_map(&op, priv); } static int op_remap_cb(const struct drm_gpuvm_ops *fn, void *priv, struct drm_gpuva_op_map *prev, struct drm_gpuva_op_map *next, struct drm_gpuva_op_unmap *unmap) { struct drm_gpuva_op op = {}; struct drm_gpuva_op_remap *r; op.op = DRM_GPUVA_OP_REMAP; r = &op.remap; r->prev = prev; r->next = next; r->unmap = unmap; return fn->sm_step_remap(&op, priv); } static int op_unmap_cb(const struct drm_gpuvm_ops *fn, void *priv, struct drm_gpuva *va, bool merge) { struct drm_gpuva_op op = {}; op.op = DRM_GPUVA_OP_UNMAP; op.unmap.va = va; op.unmap.keep = merge; return fn->sm_step_unmap(&op, priv); } static int __drm_gpuvm_sm_map(struct drm_gpuvm *gpuvm, const struct drm_gpuvm_ops *ops, void *priv, u64 req_addr, u64 req_range, struct drm_gem_object *req_obj, u64 req_offset) { struct drm_gpuva *va, *next; u64 req_end = req_addr + req_range; int ret; if (unlikely(!drm_gpuvm_range_valid(gpuvm, req_addr, req_range))) return -EINVAL; drm_gpuvm_for_each_va_range_safe(va, next, gpuvm, req_addr, req_end) { struct drm_gem_object *obj = va->gem.obj; u64 offset = va->gem.offset; u64 addr = va->va.addr; u64 range = va->va.range; u64 end = addr + range; bool merge = !!va->gem.obj; if (addr == req_addr) { merge &= obj == req_obj && offset == req_offset; if (end == req_end) { ret = op_unmap_cb(ops, priv, va, merge); if (ret) return ret; break; } if (end < req_end) { ret = op_unmap_cb(ops, priv, va, merge); if (ret) return ret; continue; } if (end > req_end) { struct drm_gpuva_op_map n = { .va.addr = req_end, .va.range = range - req_range, .gem.obj = obj, .gem.offset = offset + req_range, }; struct drm_gpuva_op_unmap u = { .va = va, .keep = merge, }; ret = op_remap_cb(ops, priv, NULL, &n, &u); if (ret) return ret; break; } } else if (addr < req_addr) { u64 ls_range = req_addr - addr; struct drm_gpuva_op_map p = { .va.addr = addr, .va.range = ls_range, .gem.obj = obj, .gem.offset = offset, }; struct drm_gpuva_op_unmap u = { .va = va }; merge &= obj == req_obj && offset + ls_range == req_offset; u.keep = merge; if (end == req_end) { ret = op_remap_cb(ops, priv, &p, NULL, &u); if (ret) return ret; break; } if (end < req_end) { ret = op_remap_cb(ops, priv, &p, NULL, &u); if (ret) return ret; continue; } if (end > req_end) { struct drm_gpuva_op_map n = { .va.addr = req_end, .va.range = end - req_end, .gem.obj = obj, .gem.offset = offset + ls_range + req_range, }; ret = op_remap_cb(ops, priv, &p, &n, &u); if (ret) return ret; break; } } else if (addr > req_addr) { merge &= obj == req_obj && offset == req_offset + (addr - req_addr); if (end == req_end) { ret = op_unmap_cb(ops, priv, va, merge); if (ret) return ret; break; } if (end < req_end) { ret = op_unmap_cb(ops, priv, va, merge); if (ret) return ret; continue; } if (end > req_end) { struct drm_gpuva_op_map n = { .va.addr = req_end, .va.range = end - req_end, .gem.obj = obj, .gem.offset = offset + req_end - addr, }; struct drm_gpuva_op_unmap u = { .va = va, .keep = merge, }; ret = op_remap_cb(ops, priv, NULL, &n, &u); if (ret) return ret; break; } } } return op_map_cb(ops, priv, req_addr, req_range, req_obj, req_offset); } static int __drm_gpuvm_sm_unmap(struct drm_gpuvm *gpuvm, const struct drm_gpuvm_ops *ops, void *priv, u64 req_addr, u64 req_range) { struct drm_gpuva *va, *next; u64 req_end = req_addr + req_range; int ret; if (unlikely(!drm_gpuvm_range_valid(gpuvm, req_addr, req_range))) return -EINVAL; drm_gpuvm_for_each_va_range_safe(va, next, gpuvm, req_addr, req_end) { struct drm_gpuva_op_map prev = {}, next = {}; bool prev_split = false, next_split = false; struct drm_gem_object *obj = va->gem.obj; u64 offset = va->gem.offset; u64 addr = va->va.addr; u64 range = va->va.range; u64 end = addr + range; if (addr < req_addr) { prev.va.addr = addr; prev.va.range = req_addr - addr; prev.gem.obj = obj; prev.gem.offset = offset; prev_split = true; } if (end > req_end) { next.va.addr = req_end; next.va.range = end - req_end; next.gem.obj = obj; next.gem.offset = offset + (req_end - addr); next_split = true; } if (prev_split || next_split) { struct drm_gpuva_op_unmap unmap = { .va = va }; ret = op_remap_cb(ops, priv, prev_split ? &prev : NULL, next_split ? &next : NULL, &unmap); if (ret) return ret; } else { ret = op_unmap_cb(ops, priv, va, false); if (ret) return ret; } } return 0; } /** * drm_gpuvm_sm_map() - creates the &drm_gpuva_op split/merge steps * @gpuvm: the &drm_gpuvm representing the GPU VA space * @req_addr: the start address of the new mapping * @req_range: the range of the new mapping * @req_obj: the &drm_gem_object to map * @req_offset: the offset within the &drm_gem_object * @priv: pointer to a driver private data structure * * This function iterates the given range of the GPU VA space. It utilizes the * &drm_gpuvm_ops to call back into the driver providing the split and merge * steps. * * Drivers may use these callbacks to update the GPU VA space right away within * the callback. In case the driver decides to copy and store the operations for * later processing neither this function nor &drm_gpuvm_sm_unmap is allowed to * be called before the &drm_gpuvm's view of the GPU VA space was * updated with the previous set of operations. To update the * &drm_gpuvm's view of the GPU VA space drm_gpuva_insert(), * drm_gpuva_destroy_locked() and/or drm_gpuva_destroy_unlocked() should be * used. * * A sequence of callbacks can contain map, unmap and remap operations, but * the sequence of callbacks might also be empty if no operation is required, * e.g. if the requested mapping already exists in the exact same way. * * There can be an arbitrary amount of unmap operations, a maximum of two remap * operations and a single map operation. The latter one represents the original * map operation requested by the caller. * * Returns: 0 on success or a negative error code */ int drm_gpuvm_sm_map(struct drm_gpuvm *gpuvm, void *priv, u64 req_addr, u64 req_range, struct drm_gem_object *req_obj, u64 req_offset) { const struct drm_gpuvm_ops *ops = gpuvm->ops; if (unlikely(!(ops && ops->sm_step_map && ops->sm_step_remap && ops->sm_step_unmap))) return -EINVAL; return __drm_gpuvm_sm_map(gpuvm, ops, priv, req_addr, req_range, req_obj, req_offset); } EXPORT_SYMBOL_GPL(drm_gpuvm_sm_map); /** * drm_gpuvm_sm_unmap() - creates the &drm_gpuva_ops to split on unmap * @gpuvm: the &drm_gpuvm representing the GPU VA space * @priv: pointer to a driver private data structure * @req_addr: the start address of the range to unmap * @req_range: the range of the mappings to unmap * * This function iterates the given range of the GPU VA space. It utilizes the * &drm_gpuvm_ops to call back into the driver providing the operations to * unmap and, if required, split existent mappings. * * Drivers may use these callbacks to update the GPU VA space right away within * the callback. In case the driver decides to copy and store the operations for * later processing neither this function nor &drm_gpuvm_sm_map is allowed to be * called before the &drm_gpuvm's view of the GPU VA space was updated * with the previous set of operations. To update the &drm_gpuvm's view * of the GPU VA space drm_gpuva_insert(), drm_gpuva_destroy_locked() and/or * drm_gpuva_destroy_unlocked() should be used. * * A sequence of callbacks can contain unmap and remap operations, depending on * whether there are actual overlapping mappings to split. * * There can be an arbitrary amount of unmap operations and a maximum of two * remap operations. * * Returns: 0 on success or a negative error code */ int drm_gpuvm_sm_unmap(struct drm_gpuvm *gpuvm, void *priv, u64 req_addr, u64 req_range) { const struct drm_gpuvm_ops *ops = gpuvm->ops; if (unlikely(!(ops && ops->sm_step_remap && ops->sm_step_unmap))) return -EINVAL; return __drm_gpuvm_sm_unmap(gpuvm, ops, priv, req_addr, req_range); } EXPORT_SYMBOL_GPL(drm_gpuvm_sm_unmap); static struct drm_gpuva_op * gpuva_op_alloc(struct drm_gpuvm *gpuvm) { const struct drm_gpuvm_ops *fn = gpuvm->ops; struct drm_gpuva_op *op; if (fn && fn->op_alloc) op = fn->op_alloc(); else op = kzalloc(sizeof(*op), GFP_KERNEL); if (unlikely(!op)) return NULL; return op; } static void gpuva_op_free(struct drm_gpuvm *gpuvm, struct drm_gpuva_op *op) { const struct drm_gpuvm_ops *fn = gpuvm->ops; if (fn && fn->op_free) fn->op_free(op); else kfree(op); } static int drm_gpuva_sm_step(struct drm_gpuva_op *__op, void *priv) { struct { struct drm_gpuvm *vm; struct drm_gpuva_ops *ops; } *args = priv; struct drm_gpuvm *gpuvm = args->vm; struct drm_gpuva_ops *ops = args->ops; struct drm_gpuva_op *op; op = gpuva_op_alloc(gpuvm); if (unlikely(!op)) goto err; memcpy(op, __op, sizeof(*op)); if (op->op == DRM_GPUVA_OP_REMAP) { struct drm_gpuva_op_remap *__r = &__op->remap; struct drm_gpuva_op_remap *r = &op->remap; r->unmap = kmemdup(__r->unmap, sizeof(*r->unmap), GFP_KERNEL); if (unlikely(!r->unmap)) goto err_free_op; if (__r->prev) { r->prev = kmemdup(__r->prev, sizeof(*r->prev), GFP_KERNEL); if (unlikely(!r->prev)) goto err_free_unmap; } if (__r->next) { r->next = kmemdup(__r->next, sizeof(*r->next), GFP_KERNEL); if (unlikely(!r->next)) goto err_free_prev; } } list_add_tail(&op->entry, &ops->list); return 0; err_free_unmap: kfree(op->remap.unmap); err_free_prev: kfree(op->remap.prev); err_free_op: gpuva_op_free(gpuvm, op); err: return -ENOMEM; } static const struct drm_gpuvm_ops gpuvm_list_ops = { .sm_step_map = drm_gpuva_sm_step, .sm_step_remap = drm_gpuva_sm_step, .sm_step_unmap = drm_gpuva_sm_step, }; /** * drm_gpuvm_sm_map_ops_create() - creates the &drm_gpuva_ops to split and merge * @gpuvm: the &drm_gpuvm representing the GPU VA space * @req_addr: the start address of the new mapping * @req_range: the range of the new mapping * @req_obj: the &drm_gem_object to map * @req_offset: the offset within the &drm_gem_object * * This function creates a list of operations to perform splitting and merging * of existent mapping(s) with the newly requested one. * * The list can be iterated with &drm_gpuva_for_each_op and must be processed * in the given order. It can contain map, unmap and remap operations, but it * also can be empty if no operation is required, e.g. if the requested mapping * already exists is the exact same way. * * There can be an arbitrary amount of unmap operations, a maximum of two remap * operations and a single map operation. The latter one represents the original * map operation requested by the caller. * * Note that before calling this function again with another mapping request it * is necessary to update the &drm_gpuvm's view of the GPU VA space. The * previously obtained operations must be either processed or abandoned. To * update the &drm_gpuvm's view of the GPU VA space drm_gpuva_insert(), * drm_gpuva_destroy_locked() and/or drm_gpuva_destroy_unlocked() should be * used. * * After the caller finished processing the returned &drm_gpuva_ops, they must * be freed with &drm_gpuva_ops_free. * * Returns: a pointer to the &drm_gpuva_ops on success, an ERR_PTR on failure */ struct drm_gpuva_ops * drm_gpuvm_sm_map_ops_create(struct drm_gpuvm *gpuvm, u64 req_addr, u64 req_range, struct drm_gem_object *req_obj, u64 req_offset) { struct drm_gpuva_ops *ops; struct { struct drm_gpuvm *vm; struct drm_gpuva_ops *ops; } args; int ret; ops = kzalloc(sizeof(*ops), GFP_KERNEL); if (unlikely(!ops)) return ERR_PTR(-ENOMEM); INIT_LIST_HEAD(&ops->list); args.vm = gpuvm; args.ops = ops; ret = __drm_gpuvm_sm_map(gpuvm, &gpuvm_list_ops, &args, req_addr, req_range, req_obj, req_offset); if (ret) goto err_free_ops; return ops; err_free_ops: drm_gpuva_ops_free(gpuvm, ops); return ERR_PTR(ret); } EXPORT_SYMBOL_GPL(drm_gpuvm_sm_map_ops_create); /** * drm_gpuvm_sm_unmap_ops_create() - creates the &drm_gpuva_ops to split on * unmap * @gpuvm: the &drm_gpuvm representing the GPU VA space * @req_addr: the start address of the range to unmap * @req_range: the range of the mappings to unmap * * This function creates a list of operations to perform unmapping and, if * required, splitting of the mappings overlapping the unmap range. * * The list can be iterated with &drm_gpuva_for_each_op and must be processed * in the given order. It can contain unmap and remap operations, depending on * whether there are actual overlapping mappings to split. * * There can be an arbitrary amount of unmap operations and a maximum of two * remap operations. * * Note that before calling this function again with another range to unmap it * is necessary to update the &drm_gpuvm's view of the GPU VA space. The * previously obtained operations must be processed or abandoned. To update the * &drm_gpuvm's view of the GPU VA space drm_gpuva_insert(), * drm_gpuva_destroy_locked() and/or drm_gpuva_destroy_unlocked() should be * used. * * After the caller finished processing the returned &drm_gpuva_ops, they must * be freed with &drm_gpuva_ops_free. * * Returns: a pointer to the &drm_gpuva_ops on success, an ERR_PTR on failure */ struct drm_gpuva_ops * drm_gpuvm_sm_unmap_ops_create(struct drm_gpuvm *gpuvm, u64 req_addr, u64 req_range) { struct drm_gpuva_ops *ops; struct { struct drm_gpuvm *vm; struct drm_gpuva_ops *ops; } args; int ret; ops = kzalloc(sizeof(*ops), GFP_KERNEL); if (unlikely(!ops)) return ERR_PTR(-ENOMEM); INIT_LIST_HEAD(&ops->list); args.vm = gpuvm; args.ops = ops; ret = __drm_gpuvm_sm_unmap(gpuvm, &gpuvm_list_ops, &args, req_addr, req_range); if (ret) goto err_free_ops; return ops; err_free_ops: drm_gpuva_ops_free(gpuvm, ops); return ERR_PTR(ret); } EXPORT_SYMBOL_GPL(drm_gpuvm_sm_unmap_ops_create); /** * drm_gpuvm_prefetch_ops_create() - creates the &drm_gpuva_ops to prefetch * @gpuvm: the &drm_gpuvm representing the GPU VA space * @addr: the start address of the range to prefetch * @range: the range of the mappings to prefetch * * This function creates a list of operations to perform prefetching. * * The list can be iterated with &drm_gpuva_for_each_op and must be processed * in the given order. It can contain prefetch operations. * * There can be an arbitrary amount of prefetch operations. * * After the caller finished processing the returned &drm_gpuva_ops, they must * be freed with &drm_gpuva_ops_free. * * Returns: a pointer to the &drm_gpuva_ops on success, an ERR_PTR on failure */ struct drm_gpuva_ops * drm_gpuvm_prefetch_ops_create(struct drm_gpuvm *gpuvm, u64 addr, u64 range) { struct drm_gpuva_ops *ops; struct drm_gpuva_op *op; struct drm_gpuva *va; u64 end = addr + range; int ret; ops = kzalloc(sizeof(*ops), GFP_KERNEL); if (!ops) return ERR_PTR(-ENOMEM); INIT_LIST_HEAD(&ops->list); drm_gpuvm_for_each_va_range(va, gpuvm, addr, end) { op = gpuva_op_alloc(gpuvm); if (!op) { ret = -ENOMEM; goto err_free_ops; } op->op = DRM_GPUVA_OP_PREFETCH; op->prefetch.va = va; list_add_tail(&op->entry, &ops->list); } return ops; err_free_ops: drm_gpuva_ops_free(gpuvm, ops); return ERR_PTR(ret); } EXPORT_SYMBOL_GPL(drm_gpuvm_prefetch_ops_create); /** * drm_gpuvm_gem_unmap_ops_create() - creates the &drm_gpuva_ops to unmap a GEM * @gpuvm: the &drm_gpuvm representing the GPU VA space * @obj: the &drm_gem_object to unmap * * This function creates a list of operations to perform unmapping for every * GPUVA attached to a GEM. * * The list can be iterated with &drm_gpuva_for_each_op and consists out of an * arbitrary amount of unmap operations. * * After the caller finished processing the returned &drm_gpuva_ops, they must * be freed with &drm_gpuva_ops_free. * * It is the callers responsibility to protect the GEMs GPUVA list against * concurrent access using the GEMs dma_resv lock. * * Returns: a pointer to the &drm_gpuva_ops on success, an ERR_PTR on failure */ struct drm_gpuva_ops * drm_gpuvm_gem_unmap_ops_create(struct drm_gpuvm *gpuvm, struct drm_gem_object *obj) { struct drm_gpuva_ops *ops; struct drm_gpuva_op *op; struct drm_gpuva *va; int ret; drm_gem_gpuva_assert_lock_held(obj); ops = kzalloc(sizeof(*ops), GFP_KERNEL); if (!ops) return ERR_PTR(-ENOMEM); INIT_LIST_HEAD(&ops->list); drm_gem_for_each_gpuva(va, obj) { op = gpuva_op_alloc(gpuvm); if (!op) { ret = -ENOMEM; goto err_free_ops; } op->op = DRM_GPUVA_OP_UNMAP; op->unmap.va = va; list_add_tail(&op->entry, &ops->list); } return ops; err_free_ops: drm_gpuva_ops_free(gpuvm, ops); return ERR_PTR(ret); } EXPORT_SYMBOL_GPL(drm_gpuvm_gem_unmap_ops_create); /** * drm_gpuva_ops_free() - free the given &drm_gpuva_ops * @gpuvm: the &drm_gpuvm the ops were created for * @ops: the &drm_gpuva_ops to free * * Frees the given &drm_gpuva_ops structure including all the ops associated * with it. */ void drm_gpuva_ops_free(struct drm_gpuvm *gpuvm, struct drm_gpuva_ops *ops) { struct drm_gpuva_op *op, *next; drm_gpuva_for_each_op_safe(op, next, ops) { list_del(&op->entry); if (op->op == DRM_GPUVA_OP_REMAP) { kfree(op->remap.prev); kfree(op->remap.next); kfree(op->remap.unmap); } gpuva_op_free(gpuvm, op); } kfree(ops); } EXPORT_SYMBOL_GPL(drm_gpuva_ops_free); MODULE_DESCRIPTION("DRM GPUVM"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1