Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Ander Conselvan de Oliveira | 5651 | 26.82% | 25 | 9.19% |
Imre Deak | 4078 | 19.35% | 37 | 13.60% |
Ville Syrjälä | 2780 | 13.19% | 54 | 19.85% |
Paulo Zanoni | 2322 | 11.02% | 9 | 3.31% |
Lucas De Marchi | 1748 | 8.29% | 23 | 8.46% |
Jani Nikula | 894 | 4.24% | 21 | 7.72% |
Vandita Kulkarni | 370 | 1.76% | 3 | 1.10% |
José Roberto de Souza | 315 | 1.49% | 6 | 2.21% |
Aditya Swarup | 289 | 1.37% | 2 | 0.74% |
Maarten Lankhorst | 234 | 1.11% | 8 | 2.94% |
Matt Roper | 233 | 1.11% | 8 | 2.94% |
Rodrigo Vivi | 231 | 1.10% | 6 | 2.21% |
Daniel Vetter | 212 | 1.01% | 6 | 2.21% |
Chris Wilson | 192 | 0.91% | 11 | 4.04% |
Vivek Kasireddy | 177 | 0.84% | 2 | 0.74% |
Anusha Srivatsa | 165 | 0.78% | 3 | 1.10% |
Wambui Karuga | 160 | 0.76% | 1 | 0.37% |
Mika Kahola | 140 | 0.66% | 1 | 0.37% |
Damien Lespiau | 133 | 0.63% | 6 | 2.21% |
Andrzej Hajda | 95 | 0.45% | 1 | 0.37% |
Satheeshakrishna M | 94 | 0.45% | 5 | 1.84% |
Pankaj Bharadiya | 83 | 0.39% | 2 | 0.74% |
Manasi D Navare | 78 | 0.37% | 4 | 1.47% |
Madhav Chauhan | 73 | 0.35% | 1 | 0.37% |
Durgadoss R | 69 | 0.33% | 1 | 0.37% |
Dnyaneshwar Bhadane | 62 | 0.29% | 3 | 1.10% |
Zhenyu Wang | 59 | 0.28% | 2 | 0.74% |
Jim Bride | 33 | 0.16% | 1 | 0.37% |
Jesse Barnes | 27 | 0.13% | 2 | 0.74% |
Dave Airlie | 22 | 0.10% | 3 | 1.10% |
Tvrtko A. Ursulin | 9 | 0.04% | 2 | 0.74% |
Vandana Kannan | 9 | 0.04% | 2 | 0.74% |
Gustavo A. R. Silva | 8 | 0.04% | 1 | 0.37% |
Radhakrishna Sripada | 6 | 0.03% | 1 | 0.37% |
Keith Packard | 5 | 0.02% | 1 | 0.37% |
Daniele Ceraolo Spurio | 5 | 0.02% | 1 | 0.37% |
Tejas Upadhyay | 4 | 0.02% | 1 | 0.37% |
Andy Shevchenko | 3 | 0.01% | 1 | 0.37% |
Eugeni Dodonov | 2 | 0.01% | 1 | 0.37% |
Sonika Jindal | 1 | 0.00% | 1 | 0.37% |
Dan Carpenter | 1 | 0.00% | 1 | 0.37% |
Clint Taylor | 1 | 0.00% | 1 | 0.37% |
Dongwon Kim | 1 | 0.00% | 1 | 0.37% |
Total | 21074 | 272 |
/* * Copyright © 2006-2016 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ #include <linux/math.h> #include <linux/string_helpers.h> #include "i915_reg.h" #include "intel_de.h" #include "intel_display_types.h" #include "intel_dkl_phy.h" #include "intel_dkl_phy_regs.h" #include "intel_dpio_phy.h" #include "intel_dpll.h" #include "intel_dpll_mgr.h" #include "intel_hti.h" #include "intel_mg_phy_regs.h" #include "intel_pch_refclk.h" #include "intel_tc.h" /** * DOC: Display PLLs * * Display PLLs used for driving outputs vary by platform. While some have * per-pipe or per-encoder dedicated PLLs, others allow the use of any PLL * from a pool. In the latter scenario, it is possible that multiple pipes * share a PLL if their configurations match. * * This file provides an abstraction over display PLLs. The function * intel_shared_dpll_init() initializes the PLLs for the given platform. The * users of a PLL are tracked and that tracking is integrated with the atomic * modset interface. During an atomic operation, required PLLs can be reserved * for a given CRTC and encoder configuration by calling * intel_reserve_shared_dplls() and previously reserved PLLs can be released * with intel_release_shared_dplls(). * Changes to the users are first staged in the atomic state, and then made * effective by calling intel_shared_dpll_swap_state() during the atomic * commit phase. */ /* platform specific hooks for managing DPLLs */ struct intel_shared_dpll_funcs { /* * Hook for enabling the pll, called from intel_enable_shared_dpll() if * the pll is not already enabled. */ void (*enable)(struct drm_i915_private *i915, struct intel_shared_dpll *pll); /* * Hook for disabling the pll, called from intel_disable_shared_dpll() * only when it is safe to disable the pll, i.e., there are no more * tracked users for it. */ void (*disable)(struct drm_i915_private *i915, struct intel_shared_dpll *pll); /* * Hook for reading the values currently programmed to the DPLL * registers. This is used for initial hw state readout and state * verification after a mode set. */ bool (*get_hw_state)(struct drm_i915_private *i915, struct intel_shared_dpll *pll, struct intel_dpll_hw_state *hw_state); /* * Hook for calculating the pll's output frequency based on its passed * in state. */ int (*get_freq)(struct drm_i915_private *i915, const struct intel_shared_dpll *pll, const struct intel_dpll_hw_state *pll_state); }; struct intel_dpll_mgr { const struct dpll_info *dpll_info; int (*compute_dplls)(struct intel_atomic_state *state, struct intel_crtc *crtc, struct intel_encoder *encoder); int (*get_dplls)(struct intel_atomic_state *state, struct intel_crtc *crtc, struct intel_encoder *encoder); void (*put_dplls)(struct intel_atomic_state *state, struct intel_crtc *crtc); void (*update_active_dpll)(struct intel_atomic_state *state, struct intel_crtc *crtc, struct intel_encoder *encoder); void (*update_ref_clks)(struct drm_i915_private *i915); void (*dump_hw_state)(struct drm_i915_private *i915, const struct intel_dpll_hw_state *hw_state); }; static void intel_atomic_duplicate_dpll_state(struct drm_i915_private *i915, struct intel_shared_dpll_state *shared_dpll) { struct intel_shared_dpll *pll; int i; /* Copy shared dpll state */ for_each_shared_dpll(i915, pll, i) shared_dpll[pll->index] = pll->state; } static struct intel_shared_dpll_state * intel_atomic_get_shared_dpll_state(struct drm_atomic_state *s) { struct intel_atomic_state *state = to_intel_atomic_state(s); drm_WARN_ON(s->dev, !drm_modeset_is_locked(&s->dev->mode_config.connection_mutex)); if (!state->dpll_set) { state->dpll_set = true; intel_atomic_duplicate_dpll_state(to_i915(s->dev), state->shared_dpll); } return state->shared_dpll; } /** * intel_get_shared_dpll_by_id - get a DPLL given its id * @i915: i915 device instance * @id: pll id * * Returns: * A pointer to the DPLL with @id */ struct intel_shared_dpll * intel_get_shared_dpll_by_id(struct drm_i915_private *i915, enum intel_dpll_id id) { struct intel_shared_dpll *pll; int i; for_each_shared_dpll(i915, pll, i) { if (pll->info->id == id) return pll; } MISSING_CASE(id); return NULL; } /* For ILK+ */ void assert_shared_dpll(struct drm_i915_private *i915, struct intel_shared_dpll *pll, bool state) { bool cur_state; struct intel_dpll_hw_state hw_state; if (drm_WARN(&i915->drm, !pll, "asserting DPLL %s with no DPLL\n", str_on_off(state))) return; cur_state = intel_dpll_get_hw_state(i915, pll, &hw_state); I915_STATE_WARN(i915, cur_state != state, "%s assertion failure (expected %s, current %s)\n", pll->info->name, str_on_off(state), str_on_off(cur_state)); } static enum tc_port icl_pll_id_to_tc_port(enum intel_dpll_id id) { return TC_PORT_1 + id - DPLL_ID_ICL_MGPLL1; } enum intel_dpll_id icl_tc_port_to_pll_id(enum tc_port tc_port) { return tc_port - TC_PORT_1 + DPLL_ID_ICL_MGPLL1; } static i915_reg_t intel_combo_pll_enable_reg(struct drm_i915_private *i915, struct intel_shared_dpll *pll) { if (IS_DG1(i915)) return DG1_DPLL_ENABLE(pll->info->id); else if ((IS_JASPERLAKE(i915) || IS_ELKHARTLAKE(i915)) && (pll->info->id == DPLL_ID_EHL_DPLL4)) return MG_PLL_ENABLE(0); return ICL_DPLL_ENABLE(pll->info->id); } static i915_reg_t intel_tc_pll_enable_reg(struct drm_i915_private *i915, struct intel_shared_dpll *pll) { const enum intel_dpll_id id = pll->info->id; enum tc_port tc_port = icl_pll_id_to_tc_port(id); if (IS_ALDERLAKE_P(i915)) return ADLP_PORTTC_PLL_ENABLE(tc_port); return MG_PLL_ENABLE(tc_port); } /** * intel_enable_shared_dpll - enable a CRTC's shared DPLL * @crtc_state: CRTC, and its state, which has a shared DPLL * * Enable the shared DPLL used by @crtc. */ void intel_enable_shared_dpll(const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct drm_i915_private *i915 = to_i915(crtc->base.dev); struct intel_shared_dpll *pll = crtc_state->shared_dpll; unsigned int pipe_mask = BIT(crtc->pipe); unsigned int old_mask; if (drm_WARN_ON(&i915->drm, pll == NULL)) return; mutex_lock(&i915->display.dpll.lock); old_mask = pll->active_mask; if (drm_WARN_ON(&i915->drm, !(pll->state.pipe_mask & pipe_mask)) || drm_WARN_ON(&i915->drm, pll->active_mask & pipe_mask)) goto out; pll->active_mask |= pipe_mask; drm_dbg_kms(&i915->drm, "enable %s (active 0x%x, on? %d) for [CRTC:%d:%s]\n", pll->info->name, pll->active_mask, pll->on, crtc->base.base.id, crtc->base.name); if (old_mask) { drm_WARN_ON(&i915->drm, !pll->on); assert_shared_dpll_enabled(i915, pll); goto out; } drm_WARN_ON(&i915->drm, pll->on); drm_dbg_kms(&i915->drm, "enabling %s\n", pll->info->name); pll->info->funcs->enable(i915, pll); pll->on = true; out: mutex_unlock(&i915->display.dpll.lock); } /** * intel_disable_shared_dpll - disable a CRTC's shared DPLL * @crtc_state: CRTC, and its state, which has a shared DPLL * * Disable the shared DPLL used by @crtc. */ void intel_disable_shared_dpll(const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct drm_i915_private *i915 = to_i915(crtc->base.dev); struct intel_shared_dpll *pll = crtc_state->shared_dpll; unsigned int pipe_mask = BIT(crtc->pipe); /* PCH only available on ILK+ */ if (DISPLAY_VER(i915) < 5) return; if (pll == NULL) return; mutex_lock(&i915->display.dpll.lock); if (drm_WARN(&i915->drm, !(pll->active_mask & pipe_mask), "%s not used by [CRTC:%d:%s]\n", pll->info->name, crtc->base.base.id, crtc->base.name)) goto out; drm_dbg_kms(&i915->drm, "disable %s (active 0x%x, on? %d) for [CRTC:%d:%s]\n", pll->info->name, pll->active_mask, pll->on, crtc->base.base.id, crtc->base.name); assert_shared_dpll_enabled(i915, pll); drm_WARN_ON(&i915->drm, !pll->on); pll->active_mask &= ~pipe_mask; if (pll->active_mask) goto out; drm_dbg_kms(&i915->drm, "disabling %s\n", pll->info->name); pll->info->funcs->disable(i915, pll); pll->on = false; out: mutex_unlock(&i915->display.dpll.lock); } static unsigned long intel_dpll_mask_all(struct drm_i915_private *i915) { struct intel_shared_dpll *pll; unsigned long dpll_mask = 0; int i; for_each_shared_dpll(i915, pll, i) { drm_WARN_ON(&i915->drm, dpll_mask & BIT(pll->info->id)); dpll_mask |= BIT(pll->info->id); } return dpll_mask; } static struct intel_shared_dpll * intel_find_shared_dpll(struct intel_atomic_state *state, const struct intel_crtc *crtc, const struct intel_dpll_hw_state *pll_state, unsigned long dpll_mask) { struct drm_i915_private *i915 = to_i915(crtc->base.dev); unsigned long dpll_mask_all = intel_dpll_mask_all(i915); struct intel_shared_dpll_state *shared_dpll; struct intel_shared_dpll *unused_pll = NULL; enum intel_dpll_id id; shared_dpll = intel_atomic_get_shared_dpll_state(&state->base); drm_WARN_ON(&i915->drm, dpll_mask & ~dpll_mask_all); for_each_set_bit(id, &dpll_mask, fls(dpll_mask_all)) { struct intel_shared_dpll *pll; pll = intel_get_shared_dpll_by_id(i915, id); if (!pll) continue; /* Only want to check enabled timings first */ if (shared_dpll[pll->index].pipe_mask == 0) { if (!unused_pll) unused_pll = pll; continue; } if (memcmp(pll_state, &shared_dpll[pll->index].hw_state, sizeof(*pll_state)) == 0) { drm_dbg_kms(&i915->drm, "[CRTC:%d:%s] sharing existing %s (pipe mask 0x%x, active 0x%x)\n", crtc->base.base.id, crtc->base.name, pll->info->name, shared_dpll[pll->index].pipe_mask, pll->active_mask); return pll; } } /* Ok no matching timings, maybe there's a free one? */ if (unused_pll) { drm_dbg_kms(&i915->drm, "[CRTC:%d:%s] allocated %s\n", crtc->base.base.id, crtc->base.name, unused_pll->info->name); return unused_pll; } return NULL; } /** * intel_reference_shared_dpll_crtc - Get a DPLL reference for a CRTC * @crtc: CRTC on which behalf the reference is taken * @pll: DPLL for which the reference is taken * @shared_dpll_state: the DPLL atomic state in which the reference is tracked * * Take a reference for @pll tracking the use of it by @crtc. */ static void intel_reference_shared_dpll_crtc(const struct intel_crtc *crtc, const struct intel_shared_dpll *pll, struct intel_shared_dpll_state *shared_dpll_state) { struct drm_i915_private *i915 = to_i915(crtc->base.dev); drm_WARN_ON(&i915->drm, (shared_dpll_state->pipe_mask & BIT(crtc->pipe)) != 0); shared_dpll_state->pipe_mask |= BIT(crtc->pipe); drm_dbg_kms(&i915->drm, "[CRTC:%d:%s] reserving %s\n", crtc->base.base.id, crtc->base.name, pll->info->name); } static void intel_reference_shared_dpll(struct intel_atomic_state *state, const struct intel_crtc *crtc, const struct intel_shared_dpll *pll, const struct intel_dpll_hw_state *pll_state) { struct intel_shared_dpll_state *shared_dpll; shared_dpll = intel_atomic_get_shared_dpll_state(&state->base); if (shared_dpll[pll->index].pipe_mask == 0) shared_dpll[pll->index].hw_state = *pll_state; intel_reference_shared_dpll_crtc(crtc, pll, &shared_dpll[pll->index]); } /** * intel_unreference_shared_dpll_crtc - Drop a DPLL reference for a CRTC * @crtc: CRTC on which behalf the reference is dropped * @pll: DPLL for which the reference is dropped * @shared_dpll_state: the DPLL atomic state in which the reference is tracked * * Drop a reference for @pll tracking the end of use of it by @crtc. */ void intel_unreference_shared_dpll_crtc(const struct intel_crtc *crtc, const struct intel_shared_dpll *pll, struct intel_shared_dpll_state *shared_dpll_state) { struct drm_i915_private *i915 = to_i915(crtc->base.dev); drm_WARN_ON(&i915->drm, (shared_dpll_state->pipe_mask & BIT(crtc->pipe)) == 0); shared_dpll_state->pipe_mask &= ~BIT(crtc->pipe); drm_dbg_kms(&i915->drm, "[CRTC:%d:%s] releasing %s\n", crtc->base.base.id, crtc->base.name, pll->info->name); } static void intel_unreference_shared_dpll(struct intel_atomic_state *state, const struct intel_crtc *crtc, const struct intel_shared_dpll *pll) { struct intel_shared_dpll_state *shared_dpll; shared_dpll = intel_atomic_get_shared_dpll_state(&state->base); intel_unreference_shared_dpll_crtc(crtc, pll, &shared_dpll[pll->index]); } static void intel_put_dpll(struct intel_atomic_state *state, struct intel_crtc *crtc) { const struct intel_crtc_state *old_crtc_state = intel_atomic_get_old_crtc_state(state, crtc); struct intel_crtc_state *new_crtc_state = intel_atomic_get_new_crtc_state(state, crtc); new_crtc_state->shared_dpll = NULL; if (!old_crtc_state->shared_dpll) return; intel_unreference_shared_dpll(state, crtc, old_crtc_state->shared_dpll); } /** * intel_shared_dpll_swap_state - make atomic DPLL configuration effective * @state: atomic state * * This is the dpll version of drm_atomic_helper_swap_state() since the * helper does not handle driver-specific global state. * * For consistency with atomic helpers this function does a complete swap, * i.e. it also puts the current state into @state, even though there is no * need for that at this moment. */ void intel_shared_dpll_swap_state(struct intel_atomic_state *state) { struct drm_i915_private *i915 = to_i915(state->base.dev); struct intel_shared_dpll_state *shared_dpll = state->shared_dpll; struct intel_shared_dpll *pll; int i; if (!state->dpll_set) return; for_each_shared_dpll(i915, pll, i) swap(pll->state, shared_dpll[pll->index]); } static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *i915, struct intel_shared_dpll *pll, struct intel_dpll_hw_state *hw_state) { const enum intel_dpll_id id = pll->info->id; intel_wakeref_t wakeref; u32 val; wakeref = intel_display_power_get_if_enabled(i915, POWER_DOMAIN_DISPLAY_CORE); if (!wakeref) return false; val = intel_de_read(i915, PCH_DPLL(id)); hw_state->dpll = val; hw_state->fp0 = intel_de_read(i915, PCH_FP0(id)); hw_state->fp1 = intel_de_read(i915, PCH_FP1(id)); intel_display_power_put(i915, POWER_DOMAIN_DISPLAY_CORE, wakeref); return val & DPLL_VCO_ENABLE; } static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *i915) { u32 val; bool enabled; val = intel_de_read(i915, PCH_DREF_CONTROL); enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK | DREF_SUPERSPREAD_SOURCE_MASK)); I915_STATE_WARN(i915, !enabled, "PCH refclk assertion failure, should be active but is disabled\n"); } static void ibx_pch_dpll_enable(struct drm_i915_private *i915, struct intel_shared_dpll *pll) { const enum intel_dpll_id id = pll->info->id; /* PCH refclock must be enabled first */ ibx_assert_pch_refclk_enabled(i915); intel_de_write(i915, PCH_FP0(id), pll->state.hw_state.fp0); intel_de_write(i915, PCH_FP1(id), pll->state.hw_state.fp1); intel_de_write(i915, PCH_DPLL(id), pll->state.hw_state.dpll); /* Wait for the clocks to stabilize. */ intel_de_posting_read(i915, PCH_DPLL(id)); udelay(150); /* The pixel multiplier can only be updated once the * DPLL is enabled and the clocks are stable. * * So write it again. */ intel_de_write(i915, PCH_DPLL(id), pll->state.hw_state.dpll); intel_de_posting_read(i915, PCH_DPLL(id)); udelay(200); } static void ibx_pch_dpll_disable(struct drm_i915_private *i915, struct intel_shared_dpll *pll) { const enum intel_dpll_id id = pll->info->id; intel_de_write(i915, PCH_DPLL(id), 0); intel_de_posting_read(i915, PCH_DPLL(id)); udelay(200); } static int ibx_compute_dpll(struct intel_atomic_state *state, struct intel_crtc *crtc, struct intel_encoder *encoder) { return 0; } static int ibx_get_dpll(struct intel_atomic_state *state, struct intel_crtc *crtc, struct intel_encoder *encoder) { struct intel_crtc_state *crtc_state = intel_atomic_get_new_crtc_state(state, crtc); struct drm_i915_private *i915 = to_i915(crtc->base.dev); struct intel_shared_dpll *pll; enum intel_dpll_id id; if (HAS_PCH_IBX(i915)) { /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */ id = (enum intel_dpll_id) crtc->pipe; pll = intel_get_shared_dpll_by_id(i915, id); drm_dbg_kms(&i915->drm, "[CRTC:%d:%s] using pre-allocated %s\n", crtc->base.base.id, crtc->base.name, pll->info->name); } else { pll = intel_find_shared_dpll(state, crtc, &crtc_state->dpll_hw_state, BIT(DPLL_ID_PCH_PLL_B) | BIT(DPLL_ID_PCH_PLL_A)); } if (!pll) return -EINVAL; /* reference the pll */ intel_reference_shared_dpll(state, crtc, pll, &crtc_state->dpll_hw_state); crtc_state->shared_dpll = pll; return 0; } static void ibx_dump_hw_state(struct drm_i915_private *i915, const struct intel_dpll_hw_state *hw_state) { drm_dbg_kms(&i915->drm, "dpll_hw_state: dpll: 0x%x, dpll_md: 0x%x, " "fp0: 0x%x, fp1: 0x%x\n", hw_state->dpll, hw_state->dpll_md, hw_state->fp0, hw_state->fp1); } static const struct intel_shared_dpll_funcs ibx_pch_dpll_funcs = { .enable = ibx_pch_dpll_enable, .disable = ibx_pch_dpll_disable, .get_hw_state = ibx_pch_dpll_get_hw_state, }; static const struct dpll_info pch_plls[] = { { "PCH DPLL A", &ibx_pch_dpll_funcs, DPLL_ID_PCH_PLL_A, 0 }, { "PCH DPLL B", &ibx_pch_dpll_funcs, DPLL_ID_PCH_PLL_B, 0 }, { }, }; static const struct intel_dpll_mgr pch_pll_mgr = { .dpll_info = pch_plls, .compute_dplls = ibx_compute_dpll, .get_dplls = ibx_get_dpll, .put_dplls = intel_put_dpll, .dump_hw_state = ibx_dump_hw_state, }; static void hsw_ddi_wrpll_enable(struct drm_i915_private *i915, struct intel_shared_dpll *pll) { const enum intel_dpll_id id = pll->info->id; intel_de_write(i915, WRPLL_CTL(id), pll->state.hw_state.wrpll); intel_de_posting_read(i915, WRPLL_CTL(id)); udelay(20); } static void hsw_ddi_spll_enable(struct drm_i915_private *i915, struct intel_shared_dpll *pll) { intel_de_write(i915, SPLL_CTL, pll->state.hw_state.spll); intel_de_posting_read(i915, SPLL_CTL); udelay(20); } static void hsw_ddi_wrpll_disable(struct drm_i915_private *i915, struct intel_shared_dpll *pll) { const enum intel_dpll_id id = pll->info->id; intel_de_rmw(i915, WRPLL_CTL(id), WRPLL_PLL_ENABLE, 0); intel_de_posting_read(i915, WRPLL_CTL(id)); /* * Try to set up the PCH reference clock once all DPLLs * that depend on it have been shut down. */ if (i915->display.dpll.pch_ssc_use & BIT(id)) intel_init_pch_refclk(i915); } static void hsw_ddi_spll_disable(struct drm_i915_private *i915, struct intel_shared_dpll *pll) { enum intel_dpll_id id = pll->info->id; intel_de_rmw(i915, SPLL_CTL, SPLL_PLL_ENABLE, 0); intel_de_posting_read(i915, SPLL_CTL); /* * Try to set up the PCH reference clock once all DPLLs * that depend on it have been shut down. */ if (i915->display.dpll.pch_ssc_use & BIT(id)) intel_init_pch_refclk(i915); } static bool hsw_ddi_wrpll_get_hw_state(struct drm_i915_private *i915, struct intel_shared_dpll *pll, struct intel_dpll_hw_state *hw_state) { const enum intel_dpll_id id = pll->info->id; intel_wakeref_t wakeref; u32 val; wakeref = intel_display_power_get_if_enabled(i915, POWER_DOMAIN_DISPLAY_CORE); if (!wakeref) return false; val = intel_de_read(i915, WRPLL_CTL(id)); hw_state->wrpll = val; intel_display_power_put(i915, POWER_DOMAIN_DISPLAY_CORE, wakeref); return val & WRPLL_PLL_ENABLE; } static bool hsw_ddi_spll_get_hw_state(struct drm_i915_private *i915, struct intel_shared_dpll *pll, struct intel_dpll_hw_state *hw_state) { intel_wakeref_t wakeref; u32 val; wakeref = intel_display_power_get_if_enabled(i915, POWER_DOMAIN_DISPLAY_CORE); if (!wakeref) return false; val = intel_de_read(i915, SPLL_CTL); hw_state->spll = val; intel_display_power_put(i915, POWER_DOMAIN_DISPLAY_CORE, wakeref); return val & SPLL_PLL_ENABLE; } #define LC_FREQ 2700 #define LC_FREQ_2K U64_C(LC_FREQ * 2000) #define P_MIN 2 #define P_MAX 64 #define P_INC 2 /* Constraints for PLL good behavior */ #define REF_MIN 48 #define REF_MAX 400 #define VCO_MIN 2400 #define VCO_MAX 4800 struct hsw_wrpll_rnp { unsigned p, n2, r2; }; static unsigned hsw_wrpll_get_budget_for_freq(int clock) { switch (clock) { case 25175000: case 25200000: case 27000000: case 27027000: case 37762500: case 37800000: case 40500000: case 40541000: case 54000000: case 54054000: case 59341000: case 59400000: case 72000000: case 74176000: case 74250000: case 81000000: case 81081000: case 89012000: case 89100000: case 108000000: case 108108000: case 111264000: case 111375000: case 148352000: case 148500000: case 162000000: case 162162000: case 222525000: case 222750000: case 296703000: case 297000000: return 0; case 233500000: case 245250000: case 247750000: case 253250000: case 298000000: return 1500; case 169128000: case 169500000: case 179500000: case 202000000: return 2000; case 256250000: case 262500000: case 270000000: case 272500000: case 273750000: case 280750000: case 281250000: case 286000000: case 291750000: return 4000; case 267250000: case 268500000: return 5000; default: return 1000; } } static void hsw_wrpll_update_rnp(u64 freq2k, unsigned int budget, unsigned int r2, unsigned int n2, unsigned int p, struct hsw_wrpll_rnp *best) { u64 a, b, c, d, diff, diff_best; /* No best (r,n,p) yet */ if (best->p == 0) { best->p = p; best->n2 = n2; best->r2 = r2; return; } /* * Output clock is (LC_FREQ_2K / 2000) * N / (P * R), which compares to * freq2k. * * delta = 1e6 * * abs(freq2k - (LC_FREQ_2K * n2/(p * r2))) / * freq2k; * * and we would like delta <= budget. * * If the discrepancy is above the PPM-based budget, always prefer to * improve upon the previous solution. However, if you're within the * budget, try to maximize Ref * VCO, that is N / (P * R^2). */ a = freq2k * budget * p * r2; b = freq2k * budget * best->p * best->r2; diff = abs_diff(freq2k * p * r2, LC_FREQ_2K * n2); diff_best = abs_diff(freq2k * best->p * best->r2, LC_FREQ_2K * best->n2); c = 1000000 * diff; d = 1000000 * diff_best; if (a < c && b < d) { /* If both are above the budget, pick the closer */ if (best->p * best->r2 * diff < p * r2 * diff_best) { best->p = p; best->n2 = n2; best->r2 = r2; } } else if (a >= c && b < d) { /* If A is below the threshold but B is above it? Update. */ best->p = p; best->n2 = n2; best->r2 = r2; } else if (a >= c && b >= d) { /* Both are below the limit, so pick the higher n2/(r2*r2) */ if (n2 * best->r2 * best->r2 > best->n2 * r2 * r2) { best->p = p; best->n2 = n2; best->r2 = r2; } } /* Otherwise a < c && b >= d, do nothing */ } static void hsw_ddi_calculate_wrpll(int clock /* in Hz */, unsigned *r2_out, unsigned *n2_out, unsigned *p_out) { u64 freq2k; unsigned p, n2, r2; struct hsw_wrpll_rnp best = {}; unsigned budget; freq2k = clock / 100; budget = hsw_wrpll_get_budget_for_freq(clock); /* Special case handling for 540 pixel clock: bypass WR PLL entirely * and directly pass the LC PLL to it. */ if (freq2k == 5400000) { *n2_out = 2; *p_out = 1; *r2_out = 2; return; } /* * Ref = LC_FREQ / R, where Ref is the actual reference input seen by * the WR PLL. * * We want R so that REF_MIN <= Ref <= REF_MAX. * Injecting R2 = 2 * R gives: * REF_MAX * r2 > LC_FREQ * 2 and * REF_MIN * r2 < LC_FREQ * 2 * * Which means the desired boundaries for r2 are: * LC_FREQ * 2 / REF_MAX < r2 < LC_FREQ * 2 / REF_MIN * */ for (r2 = LC_FREQ * 2 / REF_MAX + 1; r2 <= LC_FREQ * 2 / REF_MIN; r2++) { /* * VCO = N * Ref, that is: VCO = N * LC_FREQ / R * * Once again we want VCO_MIN <= VCO <= VCO_MAX. * Injecting R2 = 2 * R and N2 = 2 * N, we get: * VCO_MAX * r2 > n2 * LC_FREQ and * VCO_MIN * r2 < n2 * LC_FREQ) * * Which means the desired boundaries for n2 are: * VCO_MIN * r2 / LC_FREQ < n2 < VCO_MAX * r2 / LC_FREQ */ for (n2 = VCO_MIN * r2 / LC_FREQ + 1; n2 <= VCO_MAX * r2 / LC_FREQ; n2++) { for (p = P_MIN; p <= P_MAX; p += P_INC) hsw_wrpll_update_rnp(freq2k, budget, r2, n2, p, &best); } } *n2_out = best.n2; *p_out = best.p; *r2_out = best.r2; } static int hsw_ddi_wrpll_get_freq(struct drm_i915_private *i915, const struct intel_shared_dpll *pll, const struct intel_dpll_hw_state *pll_state) { int refclk; int n, p, r; u32 wrpll = pll_state->wrpll; switch (wrpll & WRPLL_REF_MASK) { case WRPLL_REF_SPECIAL_HSW: /* Muxed-SSC for BDW, non-SSC for non-ULT HSW. */ if (IS_HASWELL(i915) && !IS_HASWELL_ULT(i915)) { refclk = i915->display.dpll.ref_clks.nssc; break; } fallthrough; case WRPLL_REF_PCH_SSC: /* * We could calculate spread here, but our checking * code only cares about 5% accuracy, and spread is a max of * 0.5% downspread. */ refclk = i915->display.dpll.ref_clks.ssc; break; case WRPLL_REF_LCPLL: refclk = 2700000; break; default: MISSING_CASE(wrpll); return 0; } r = wrpll & WRPLL_DIVIDER_REF_MASK; p = (wrpll & WRPLL_DIVIDER_POST_MASK) >> WRPLL_DIVIDER_POST_SHIFT; n = (wrpll & WRPLL_DIVIDER_FB_MASK) >> WRPLL_DIVIDER_FB_SHIFT; /* Convert to KHz, p & r have a fixed point portion */ return (refclk * n / 10) / (p * r) * 2; } static int hsw_ddi_wrpll_compute_dpll(struct intel_atomic_state *state, struct intel_crtc *crtc) { struct drm_i915_private *i915 = to_i915(state->base.dev); struct intel_crtc_state *crtc_state = intel_atomic_get_new_crtc_state(state, crtc); unsigned int p, n2, r2; hsw_ddi_calculate_wrpll(crtc_state->port_clock * 1000, &r2, &n2, &p); crtc_state->dpll_hw_state.wrpll = WRPLL_PLL_ENABLE | WRPLL_REF_LCPLL | WRPLL_DIVIDER_REFERENCE(r2) | WRPLL_DIVIDER_FEEDBACK(n2) | WRPLL_DIVIDER_POST(p); crtc_state->port_clock = hsw_ddi_wrpll_get_freq(i915, NULL, &crtc_state->dpll_hw_state); return 0; } static struct intel_shared_dpll * hsw_ddi_wrpll_get_dpll(struct intel_atomic_state *state, struct intel_crtc *crtc) { struct intel_crtc_state *crtc_state = intel_atomic_get_new_crtc_state(state, crtc); return intel_find_shared_dpll(state, crtc, &crtc_state->dpll_hw_state, BIT(DPLL_ID_WRPLL2) | BIT(DPLL_ID_WRPLL1)); } static int hsw_ddi_lcpll_compute_dpll(struct intel_crtc_state *crtc_state) { struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev); int clock = crtc_state->port_clock; switch (clock / 2) { case 81000: case 135000: case 270000: return 0; default: drm_dbg_kms(&i915->drm, "Invalid clock for DP: %d\n", clock); return -EINVAL; } } static struct intel_shared_dpll * hsw_ddi_lcpll_get_dpll(struct intel_crtc_state *crtc_state) { struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev); struct intel_shared_dpll *pll; enum intel_dpll_id pll_id; int clock = crtc_state->port_clock; switch (clock / 2) { case 81000: pll_id = DPLL_ID_LCPLL_810; break; case 135000: pll_id = DPLL_ID_LCPLL_1350; break; case 270000: pll_id = DPLL_ID_LCPLL_2700; break; default: MISSING_CASE(clock / 2); return NULL; } pll = intel_get_shared_dpll_by_id(i915, pll_id); if (!pll) return NULL; return pll; } static int hsw_ddi_lcpll_get_freq(struct drm_i915_private *i915, const struct intel_shared_dpll *pll, const struct intel_dpll_hw_state *pll_state) { int link_clock = 0; switch (pll->info->id) { case DPLL_ID_LCPLL_810: link_clock = 81000; break; case DPLL_ID_LCPLL_1350: link_clock = 135000; break; case DPLL_ID_LCPLL_2700: link_clock = 270000; break; default: drm_WARN(&i915->drm, 1, "bad port clock sel\n"); break; } return link_clock * 2; } static int hsw_ddi_spll_compute_dpll(struct intel_atomic_state *state, struct intel_crtc *crtc) { struct intel_crtc_state *crtc_state = intel_atomic_get_new_crtc_state(state, crtc); if (drm_WARN_ON(crtc->base.dev, crtc_state->port_clock / 2 != 135000)) return -EINVAL; crtc_state->dpll_hw_state.spll = SPLL_PLL_ENABLE | SPLL_FREQ_1350MHz | SPLL_REF_MUXED_SSC; return 0; } static struct intel_shared_dpll * hsw_ddi_spll_get_dpll(struct intel_atomic_state *state, struct intel_crtc *crtc) { struct intel_crtc_state *crtc_state = intel_atomic_get_new_crtc_state(state, crtc); return intel_find_shared_dpll(state, crtc, &crtc_state->dpll_hw_state, BIT(DPLL_ID_SPLL)); } static int hsw_ddi_spll_get_freq(struct drm_i915_private *i915, const struct intel_shared_dpll *pll, const struct intel_dpll_hw_state *pll_state) { int link_clock = 0; switch (pll_state->spll & SPLL_FREQ_MASK) { case SPLL_FREQ_810MHz: link_clock = 81000; break; case SPLL_FREQ_1350MHz: link_clock = 135000; break; case SPLL_FREQ_2700MHz: link_clock = 270000; break; default: drm_WARN(&i915->drm, 1, "bad spll freq\n"); break; } return link_clock * 2; } static int hsw_compute_dpll(struct intel_atomic_state *state, struct intel_crtc *crtc, struct intel_encoder *encoder) { struct intel_crtc_state *crtc_state = intel_atomic_get_new_crtc_state(state, crtc); if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) return hsw_ddi_wrpll_compute_dpll(state, crtc); else if (intel_crtc_has_dp_encoder(crtc_state)) return hsw_ddi_lcpll_compute_dpll(crtc_state); else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) return hsw_ddi_spll_compute_dpll(state, crtc); else return -EINVAL; } static int hsw_get_dpll(struct intel_atomic_state *state, struct intel_crtc *crtc, struct intel_encoder *encoder) { struct intel_crtc_state *crtc_state = intel_atomic_get_new_crtc_state(state, crtc); struct intel_shared_dpll *pll = NULL; if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) pll = hsw_ddi_wrpll_get_dpll(state, crtc); else if (intel_crtc_has_dp_encoder(crtc_state)) pll = hsw_ddi_lcpll_get_dpll(crtc_state); else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) pll = hsw_ddi_spll_get_dpll(state, crtc); if (!pll) return -EINVAL; intel_reference_shared_dpll(state, crtc, pll, &crtc_state->dpll_hw_state); crtc_state->shared_dpll = pll; return 0; } static void hsw_update_dpll_ref_clks(struct drm_i915_private *i915) { i915->display.dpll.ref_clks.ssc = 135000; /* Non-SSC is only used on non-ULT HSW. */ if (intel_de_read(i915, FUSE_STRAP3) & HSW_REF_CLK_SELECT) i915->display.dpll.ref_clks.nssc = 24000; else i915->display.dpll.ref_clks.nssc = 135000; } static void hsw_dump_hw_state(struct drm_i915_private *i915, const struct intel_dpll_hw_state *hw_state) { drm_dbg_kms(&i915->drm, "dpll_hw_state: wrpll: 0x%x spll: 0x%x\n", hw_state->wrpll, hw_state->spll); } static const struct intel_shared_dpll_funcs hsw_ddi_wrpll_funcs = { .enable = hsw_ddi_wrpll_enable, .disable = hsw_ddi_wrpll_disable, .get_hw_state = hsw_ddi_wrpll_get_hw_state, .get_freq = hsw_ddi_wrpll_get_freq, }; static const struct intel_shared_dpll_funcs hsw_ddi_spll_funcs = { .enable = hsw_ddi_spll_enable, .disable = hsw_ddi_spll_disable, .get_hw_state = hsw_ddi_spll_get_hw_state, .get_freq = hsw_ddi_spll_get_freq, }; static void hsw_ddi_lcpll_enable(struct drm_i915_private *i915, struct intel_shared_dpll *pll) { } static void hsw_ddi_lcpll_disable(struct drm_i915_private *i915, struct intel_shared_dpll *pll) { } static bool hsw_ddi_lcpll_get_hw_state(struct drm_i915_private *i915, struct intel_shared_dpll *pll, struct intel_dpll_hw_state *hw_state) { return true; } static const struct intel_shared_dpll_funcs hsw_ddi_lcpll_funcs = { .enable = hsw_ddi_lcpll_enable, .disable = hsw_ddi_lcpll_disable, .get_hw_state = hsw_ddi_lcpll_get_hw_state, .get_freq = hsw_ddi_lcpll_get_freq, }; static const struct dpll_info hsw_plls[] = { { "WRPLL 1", &hsw_ddi_wrpll_funcs, DPLL_ID_WRPLL1, 0 }, { "WRPLL 2", &hsw_ddi_wrpll_funcs, DPLL_ID_WRPLL2, 0 }, { "SPLL", &hsw_ddi_spll_funcs, DPLL_ID_SPLL, 0 }, { "LCPLL 810", &hsw_ddi_lcpll_funcs, DPLL_ID_LCPLL_810, INTEL_DPLL_ALWAYS_ON }, { "LCPLL 1350", &hsw_ddi_lcpll_funcs, DPLL_ID_LCPLL_1350, INTEL_DPLL_ALWAYS_ON }, { "LCPLL 2700", &hsw_ddi_lcpll_funcs, DPLL_ID_LCPLL_2700, INTEL_DPLL_ALWAYS_ON }, { }, }; static const struct intel_dpll_mgr hsw_pll_mgr = { .dpll_info = hsw_plls, .compute_dplls = hsw_compute_dpll, .get_dplls = hsw_get_dpll, .put_dplls = intel_put_dpll, .update_ref_clks = hsw_update_dpll_ref_clks, .dump_hw_state = hsw_dump_hw_state, }; struct skl_dpll_regs { i915_reg_t ctl, cfgcr1, cfgcr2; }; /* this array is indexed by the *shared* pll id */ static const struct skl_dpll_regs skl_dpll_regs[4] = { { /* DPLL 0 */ .ctl = LCPLL1_CTL, /* DPLL 0 doesn't support HDMI mode */ }, { /* DPLL 1 */ .ctl = LCPLL2_CTL, .cfgcr1 = DPLL_CFGCR1(SKL_DPLL1), .cfgcr2 = DPLL_CFGCR2(SKL_DPLL1), }, { /* DPLL 2 */ .ctl = WRPLL_CTL(0), .cfgcr1 = DPLL_CFGCR1(SKL_DPLL2), .cfgcr2 = DPLL_CFGCR2(SKL_DPLL2), }, { /* DPLL 3 */ .ctl = WRPLL_CTL(1), .cfgcr1 = DPLL_CFGCR1(SKL_DPLL3), .cfgcr2 = DPLL_CFGCR2(SKL_DPLL3), }, }; static void skl_ddi_pll_write_ctrl1(struct drm_i915_private *i915, struct intel_shared_dpll *pll) { const enum intel_dpll_id id = pll->info->id; intel_de_rmw(i915, DPLL_CTRL1, DPLL_CTRL1_HDMI_MODE(id) | DPLL_CTRL1_SSC(id) | DPLL_CTRL1_LINK_RATE_MASK(id), pll->state.hw_state.ctrl1 << (id * 6)); intel_de_posting_read(i915, DPLL_CTRL1); } static void skl_ddi_pll_enable(struct drm_i915_private *i915, struct intel_shared_dpll *pll) { const struct skl_dpll_regs *regs = skl_dpll_regs; const enum intel_dpll_id id = pll->info->id; skl_ddi_pll_write_ctrl1(i915, pll); intel_de_write(i915, regs[id].cfgcr1, pll->state.hw_state.cfgcr1); intel_de_write(i915, regs[id].cfgcr2, pll->state.hw_state.cfgcr2); intel_de_posting_read(i915, regs[id].cfgcr1); intel_de_posting_read(i915, regs[id].cfgcr2); /* the enable bit is always bit 31 */ intel_de_rmw(i915, regs[id].ctl, 0, LCPLL_PLL_ENABLE); if (intel_de_wait_for_set(i915, DPLL_STATUS, DPLL_LOCK(id), 5)) drm_err(&i915->drm, "DPLL %d not locked\n", id); } static void skl_ddi_dpll0_enable(struct drm_i915_private *i915, struct intel_shared_dpll *pll) { skl_ddi_pll_write_ctrl1(i915, pll); } static void skl_ddi_pll_disable(struct drm_i915_private *i915, struct intel_shared_dpll *pll) { const struct skl_dpll_regs *regs = skl_dpll_regs; const enum intel_dpll_id id = pll->info->id; /* the enable bit is always bit 31 */ intel_de_rmw(i915, regs[id].ctl, LCPLL_PLL_ENABLE, 0); intel_de_posting_read(i915, regs[id].ctl); } static void skl_ddi_dpll0_disable(struct drm_i915_private *i915, struct intel_shared_dpll *pll) { } static bool skl_ddi_pll_get_hw_state(struct drm_i915_private *i915, struct intel_shared_dpll *pll, struct intel_dpll_hw_state *hw_state) { u32 val; const struct skl_dpll_regs *regs = skl_dpll_regs; const enum intel_dpll_id id = pll->info->id; intel_wakeref_t wakeref; bool ret; wakeref = intel_display_power_get_if_enabled(i915, POWER_DOMAIN_DISPLAY_CORE); if (!wakeref) return false; ret = false; val = intel_de_read(i915, regs[id].ctl); if (!(val & LCPLL_PLL_ENABLE)) goto out; val = intel_de_read(i915, DPLL_CTRL1); hw_state->ctrl1 = (val >> (id * 6)) & 0x3f; /* avoid reading back stale values if HDMI mode is not enabled */ if (val & DPLL_CTRL1_HDMI_MODE(id)) { hw_state->cfgcr1 = intel_de_read(i915, regs[id].cfgcr1); hw_state->cfgcr2 = intel_de_read(i915, regs[id].cfgcr2); } ret = true; out: intel_display_power_put(i915, POWER_DOMAIN_DISPLAY_CORE, wakeref); return ret; } static bool skl_ddi_dpll0_get_hw_state(struct drm_i915_private *i915, struct intel_shared_dpll *pll, struct intel_dpll_hw_state *hw_state) { const struct skl_dpll_regs *regs = skl_dpll_regs; const enum intel_dpll_id id = pll->info->id; intel_wakeref_t wakeref; u32 val; bool ret; wakeref = intel_display_power_get_if_enabled(i915, POWER_DOMAIN_DISPLAY_CORE); if (!wakeref) return false; ret = false; /* DPLL0 is always enabled since it drives CDCLK */ val = intel_de_read(i915, regs[id].ctl); if (drm_WARN_ON(&i915->drm, !(val & LCPLL_PLL_ENABLE))) goto out; val = intel_de_read(i915, DPLL_CTRL1); hw_state->ctrl1 = (val >> (id * 6)) & 0x3f; ret = true; out: intel_display_power_put(i915, POWER_DOMAIN_DISPLAY_CORE, wakeref); return ret; } struct skl_wrpll_context { u64 min_deviation; /* current minimal deviation */ u64 central_freq; /* chosen central freq */ u64 dco_freq; /* chosen dco freq */ unsigned int p; /* chosen divider */ }; /* DCO freq must be within +1%/-6% of the DCO central freq */ #define SKL_DCO_MAX_PDEVIATION 100 #define SKL_DCO_MAX_NDEVIATION 600 static void skl_wrpll_try_divider(struct skl_wrpll_context *ctx, u64 central_freq, u64 dco_freq, unsigned int divider) { u64 deviation; deviation = div64_u64(10000 * abs_diff(dco_freq, central_freq), central_freq); /* positive deviation */ if (dco_freq >= central_freq) { if (deviation < SKL_DCO_MAX_PDEVIATION && deviation < ctx->min_deviation) { ctx->min_deviation = deviation; ctx->central_freq = central_freq; ctx->dco_freq = dco_freq; ctx->p = divider; } /* negative deviation */ } else if (deviation < SKL_DCO_MAX_NDEVIATION && deviation < ctx->min_deviation) { ctx->min_deviation = deviation; ctx->central_freq = central_freq; ctx->dco_freq = dco_freq; ctx->p = divider; } } static void skl_wrpll_get_multipliers(unsigned int p, unsigned int *p0 /* out */, unsigned int *p1 /* out */, unsigned int *p2 /* out */) { /* even dividers */ if (p % 2 == 0) { unsigned int half = p / 2; if (half == 1 || half == 2 || half == 3 || half == 5) { *p0 = 2; *p1 = 1; *p2 = half; } else if (half % 2 == 0) { *p0 = 2; *p1 = half / 2; *p2 = 2; } else if (half % 3 == 0) { *p0 = 3; *p1 = half / 3; *p2 = 2; } else if (half % 7 == 0) { *p0 = 7; *p1 = half / 7; *p2 = 2; } } else if (p == 3 || p == 9) { /* 3, 5, 7, 9, 15, 21, 35 */ *p0 = 3; *p1 = 1; *p2 = p / 3; } else if (p == 5 || p == 7) { *p0 = p; *p1 = 1; *p2 = 1; } else if (p == 15) { *p0 = 3; *p1 = 1; *p2 = 5; } else if (p == 21) { *p0 = 7; *p1 = 1; *p2 = 3; } else if (p == 35) { *p0 = 7; *p1 = 1; *p2 = 5; } } struct skl_wrpll_params { u32 dco_fraction; u32 dco_integer; u32 qdiv_ratio; u32 qdiv_mode; u32 kdiv; u32 pdiv; u32 central_freq; }; static void skl_wrpll_params_populate(struct skl_wrpll_params *params, u64 afe_clock, int ref_clock, u64 central_freq, u32 p0, u32 p1, u32 p2) { u64 dco_freq; switch (central_freq) { case 9600000000ULL: params->central_freq = 0; break; case 9000000000ULL: params->central_freq = 1; break; case 8400000000ULL: params->central_freq = 3; } switch (p0) { case 1: params->pdiv = 0; break; case 2: params->pdiv = 1; break; case 3: params->pdiv = 2; break; case 7: params->pdiv = 4; break; default: WARN(1, "Incorrect PDiv\n"); } switch (p2) { case 5: params->kdiv = 0; break; case 2: params->kdiv = 1; break; case 3: params->kdiv = 2; break; case 1: params->kdiv = 3; break; default: WARN(1, "Incorrect KDiv\n"); } params->qdiv_ratio = p1; params->qdiv_mode = (params->qdiv_ratio == 1) ? 0 : 1; dco_freq = p0 * p1 * p2 * afe_clock; /* * Intermediate values are in Hz. * Divide by MHz to match bsepc */ params->dco_integer = div_u64(dco_freq, ref_clock * KHz(1)); params->dco_fraction = div_u64((div_u64(dco_freq, ref_clock / KHz(1)) - params->dco_integer * MHz(1)) * 0x8000, MHz(1)); } static int skl_ddi_calculate_wrpll(int clock /* in Hz */, int ref_clock, struct skl_wrpll_params *wrpll_params) { static const u64 dco_central_freq[3] = { 8400000000ULL, 9000000000ULL, 9600000000ULL }; static const u8 even_dividers[] = { 4, 6, 8, 10, 12, 14, 16, 18, 20, 24, 28, 30, 32, 36, 40, 42, 44, 48, 52, 54, 56, 60, 64, 66, 68, 70, 72, 76, 78, 80, 84, 88, 90, 92, 96, 98 }; static const u8 odd_dividers[] = { 3, 5, 7, 9, 15, 21, 35 }; static const struct { const u8 *list; int n_dividers; } dividers[] = { { even_dividers, ARRAY_SIZE(even_dividers) }, { odd_dividers, ARRAY_SIZE(odd_dividers) }, }; struct skl_wrpll_context ctx = { .min_deviation = U64_MAX, }; unsigned int dco, d, i; unsigned int p0, p1, p2; u64 afe_clock = clock * 5; /* AFE Clock is 5x Pixel clock */ for (d = 0; d < ARRAY_SIZE(dividers); d++) { for (dco = 0; dco < ARRAY_SIZE(dco_central_freq); dco++) { for (i = 0; i < dividers[d].n_dividers; i++) { unsigned int p = dividers[d].list[i]; u64 dco_freq = p * afe_clock; skl_wrpll_try_divider(&ctx, dco_central_freq[dco], dco_freq, p); /* * Skip the remaining dividers if we're sure to * have found the definitive divider, we can't * improve a 0 deviation. */ if (ctx.min_deviation == 0) goto skip_remaining_dividers; } } skip_remaining_dividers: /* * If a solution is found with an even divider, prefer * this one. */ if (d == 0 && ctx.p) break; } if (!ctx.p) return -EINVAL; /* * gcc incorrectly analyses that these can be used without being * initialized. To be fair, it's hard to guess. */ p0 = p1 = p2 = 0; skl_wrpll_get_multipliers(ctx.p, &p0, &p1, &p2); skl_wrpll_params_populate(wrpll_params, afe_clock, ref_clock, ctx.central_freq, p0, p1, p2); return 0; } static int skl_ddi_wrpll_get_freq(struct drm_i915_private *i915, const struct intel_shared_dpll *pll, const struct intel_dpll_hw_state *pll_state) { int ref_clock = i915->display.dpll.ref_clks.nssc; u32 p0, p1, p2, dco_freq; p0 = pll_state->cfgcr2 & DPLL_CFGCR2_PDIV_MASK; p2 = pll_state->cfgcr2 & DPLL_CFGCR2_KDIV_MASK; if (pll_state->cfgcr2 & DPLL_CFGCR2_QDIV_MODE(1)) p1 = (pll_state->cfgcr2 & DPLL_CFGCR2_QDIV_RATIO_MASK) >> 8; else p1 = 1; switch (p0) { case DPLL_CFGCR2_PDIV_1: p0 = 1; break; case DPLL_CFGCR2_PDIV_2: p0 = 2; break; case DPLL_CFGCR2_PDIV_3: p0 = 3; break; case DPLL_CFGCR2_PDIV_7_INVALID: /* * Incorrect ASUS-Z170M BIOS setting, the HW seems to ignore bit#0, * handling it the same way as PDIV_7. */ drm_dbg_kms(&i915->drm, "Invalid WRPLL PDIV divider value, fixing it.\n"); fallthrough; case DPLL_CFGCR2_PDIV_7: p0 = 7; break; default: MISSING_CASE(p0); return 0; } switch (p2) { case DPLL_CFGCR2_KDIV_5: p2 = 5; break; case DPLL_CFGCR2_KDIV_2: p2 = 2; break; case DPLL_CFGCR2_KDIV_3: p2 = 3; break; case DPLL_CFGCR2_KDIV_1: p2 = 1; break; default: MISSING_CASE(p2); return 0; } dco_freq = (pll_state->cfgcr1 & DPLL_CFGCR1_DCO_INTEGER_MASK) * ref_clock; dco_freq += ((pll_state->cfgcr1 & DPLL_CFGCR1_DCO_FRACTION_MASK) >> 9) * ref_clock / 0x8000; if (drm_WARN_ON(&i915->drm, p0 == 0 || p1 == 0 || p2 == 0)) return 0; return dco_freq / (p0 * p1 * p2 * 5); } static int skl_ddi_hdmi_pll_dividers(struct intel_crtc_state *crtc_state) { struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev); struct skl_wrpll_params wrpll_params = {}; u32 ctrl1, cfgcr1, cfgcr2; int ret; /* * See comment in intel_dpll_hw_state to understand why we always use 0 * as the DPLL id in this function. */ ctrl1 = DPLL_CTRL1_OVERRIDE(0); ctrl1 |= DPLL_CTRL1_HDMI_MODE(0); ret = skl_ddi_calculate_wrpll(crtc_state->port_clock * 1000, i915->display.dpll.ref_clks.nssc, &wrpll_params); if (ret) return ret; cfgcr1 = DPLL_CFGCR1_FREQ_ENABLE | DPLL_CFGCR1_DCO_FRACTION(wrpll_params.dco_fraction) | wrpll_params.dco_integer; cfgcr2 = DPLL_CFGCR2_QDIV_RATIO(wrpll_params.qdiv_ratio) | DPLL_CFGCR2_QDIV_MODE(wrpll_params.qdiv_mode) | DPLL_CFGCR2_KDIV(wrpll_params.kdiv) | DPLL_CFGCR2_PDIV(wrpll_params.pdiv) | wrpll_params.central_freq; crtc_state->dpll_hw_state.ctrl1 = ctrl1; crtc_state->dpll_hw_state.cfgcr1 = cfgcr1; crtc_state->dpll_hw_state.cfgcr2 = cfgcr2; crtc_state->port_clock = skl_ddi_wrpll_get_freq(i915, NULL, &crtc_state->dpll_hw_state); return 0; } static int skl_ddi_dp_set_dpll_hw_state(struct intel_crtc_state *crtc_state) { u32 ctrl1; /* * See comment in intel_dpll_hw_state to understand why we always use 0 * as the DPLL id in this function. */ ctrl1 = DPLL_CTRL1_OVERRIDE(0); switch (crtc_state->port_clock / 2) { case 81000: ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810, 0); break; case 135000: ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1350, 0); break; case 270000: ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2700, 0); break; /* eDP 1.4 rates */ case 162000: ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1620, 0); break; case 108000: ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080, 0); break; case 216000: ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2160, 0); break; } crtc_state->dpll_hw_state.ctrl1 = ctrl1; return 0; } static int skl_ddi_lcpll_get_freq(struct drm_i915_private *i915, const struct intel_shared_dpll *pll, const struct intel_dpll_hw_state *pll_state) { int link_clock = 0; switch ((pll_state->ctrl1 & DPLL_CTRL1_LINK_RATE_MASK(0)) >> DPLL_CTRL1_LINK_RATE_SHIFT(0)) { case DPLL_CTRL1_LINK_RATE_810: link_clock = 81000; break; case DPLL_CTRL1_LINK_RATE_1080: link_clock = 108000; break; case DPLL_CTRL1_LINK_RATE_1350: link_clock = 135000; break; case DPLL_CTRL1_LINK_RATE_1620: link_clock = 162000; break; case DPLL_CTRL1_LINK_RATE_2160: link_clock = 216000; break; case DPLL_CTRL1_LINK_RATE_2700: link_clock = 270000; break; default: drm_WARN(&i915->drm, 1, "Unsupported link rate\n"); break; } return link_clock * 2; } static int skl_compute_dpll(struct intel_atomic_state *state, struct intel_crtc *crtc, struct intel_encoder *encoder) { struct intel_crtc_state *crtc_state = intel_atomic_get_new_crtc_state(state, crtc); if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) return skl_ddi_hdmi_pll_dividers(crtc_state); else if (intel_crtc_has_dp_encoder(crtc_state)) return skl_ddi_dp_set_dpll_hw_state(crtc_state); else return -EINVAL; } static int skl_get_dpll(struct intel_atomic_state *state, struct intel_crtc *crtc, struct intel_encoder *encoder) { struct intel_crtc_state *crtc_state = intel_atomic_get_new_crtc_state(state, crtc); struct intel_shared_dpll *pll; if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_EDP)) pll = intel_find_shared_dpll(state, crtc, &crtc_state->dpll_hw_state, BIT(DPLL_ID_SKL_DPLL0)); else pll = intel_find_shared_dpll(state, crtc, &crtc_state->dpll_hw_state, BIT(DPLL_ID_SKL_DPLL3) | BIT(DPLL_ID_SKL_DPLL2) | BIT(DPLL_ID_SKL_DPLL1)); if (!pll) return -EINVAL; intel_reference_shared_dpll(state, crtc, pll, &crtc_state->dpll_hw_state); crtc_state->shared_dpll = pll; return 0; } static int skl_ddi_pll_get_freq(struct drm_i915_private *i915, const struct intel_shared_dpll *pll, const struct intel_dpll_hw_state *pll_state) { /* * ctrl1 register is already shifted for each pll, just use 0 to get * the internal shift for each field */ if (pll_state->ctrl1 & DPLL_CTRL1_HDMI_MODE(0)) return skl_ddi_wrpll_get_freq(i915, pll, pll_state); else return skl_ddi_lcpll_get_freq(i915, pll, pll_state); } static void skl_update_dpll_ref_clks(struct drm_i915_private *i915) { /* No SSC ref */ i915->display.dpll.ref_clks.nssc = i915->display.cdclk.hw.ref; } static void skl_dump_hw_state(struct drm_i915_private *i915, const struct intel_dpll_hw_state *hw_state) { drm_dbg_kms(&i915->drm, "dpll_hw_state: " "ctrl1: 0x%x, cfgcr1: 0x%x, cfgcr2: 0x%x\n", hw_state->ctrl1, hw_state->cfgcr1, hw_state->cfgcr2); } static const struct intel_shared_dpll_funcs skl_ddi_pll_funcs = { .enable = skl_ddi_pll_enable, .disable = skl_ddi_pll_disable, .get_hw_state = skl_ddi_pll_get_hw_state, .get_freq = skl_ddi_pll_get_freq, }; static const struct intel_shared_dpll_funcs skl_ddi_dpll0_funcs = { .enable = skl_ddi_dpll0_enable, .disable = skl_ddi_dpll0_disable, .get_hw_state = skl_ddi_dpll0_get_hw_state, .get_freq = skl_ddi_pll_get_freq, }; static const struct dpll_info skl_plls[] = { { "DPLL 0", &skl_ddi_dpll0_funcs, DPLL_ID_SKL_DPLL0, INTEL_DPLL_ALWAYS_ON }, { "DPLL 1", &skl_ddi_pll_funcs, DPLL_ID_SKL_DPLL1, 0 }, { "DPLL 2", &skl_ddi_pll_funcs, DPLL_ID_SKL_DPLL2, 0 }, { "DPLL 3", &skl_ddi_pll_funcs, DPLL_ID_SKL_DPLL3, 0 }, { }, }; static const struct intel_dpll_mgr skl_pll_mgr = { .dpll_info = skl_plls, .compute_dplls = skl_compute_dpll, .get_dplls = skl_get_dpll, .put_dplls = intel_put_dpll, .update_ref_clks = skl_update_dpll_ref_clks, .dump_hw_state = skl_dump_hw_state, }; static void bxt_ddi_pll_enable(struct drm_i915_private *i915, struct intel_shared_dpll *pll) { u32 temp; enum port port = (enum port)pll->info->id; /* 1:1 port->PLL mapping */ enum dpio_phy phy; enum dpio_channel ch; bxt_port_to_phy_channel(i915, port, &phy, &ch); /* Non-SSC reference */ intel_de_rmw(i915, BXT_PORT_PLL_ENABLE(port), 0, PORT_PLL_REF_SEL); if (IS_GEMINILAKE(i915)) { intel_de_rmw(i915, BXT_PORT_PLL_ENABLE(port), 0, PORT_PLL_POWER_ENABLE); if (wait_for_us((intel_de_read(i915, BXT_PORT_PLL_ENABLE(port)) & PORT_PLL_POWER_STATE), 200)) drm_err(&i915->drm, "Power state not set for PLL:%d\n", port); } /* Disable 10 bit clock */ intel_de_rmw(i915, BXT_PORT_PLL_EBB_4(phy, ch), PORT_PLL_10BIT_CLK_ENABLE, 0); /* Write P1 & P2 */ intel_de_rmw(i915, BXT_PORT_PLL_EBB_0(phy, ch), PORT_PLL_P1_MASK | PORT_PLL_P2_MASK, pll->state.hw_state.ebb0); /* Write M2 integer */ intel_de_rmw(i915, BXT_PORT_PLL(phy, ch, 0), PORT_PLL_M2_INT_MASK, pll->state.hw_state.pll0); /* Write N */ intel_de_rmw(i915, BXT_PORT_PLL(phy, ch, 1), PORT_PLL_N_MASK, pll->state.hw_state.pll1); /* Write M2 fraction */ intel_de_rmw(i915, BXT_PORT_PLL(phy, ch, 2), PORT_PLL_M2_FRAC_MASK, pll->state.hw_state.pll2); /* Write M2 fraction enable */ intel_de_rmw(i915, BXT_PORT_PLL(phy, ch, 3), PORT_PLL_M2_FRAC_ENABLE, pll->state.hw_state.pll3); /* Write coeff */ temp = intel_de_read(i915, BXT_PORT_PLL(phy, ch, 6)); temp &= ~PORT_PLL_PROP_COEFF_MASK; temp &= ~PORT_PLL_INT_COEFF_MASK; temp &= ~PORT_PLL_GAIN_CTL_MASK; temp |= pll->state.hw_state.pll6; intel_de_write(i915, BXT_PORT_PLL(phy, ch, 6), temp); /* Write calibration val */ intel_de_rmw(i915, BXT_PORT_PLL(phy, ch, 8), PORT_PLL_TARGET_CNT_MASK, pll->state.hw_state.pll8); intel_de_rmw(i915, BXT_PORT_PLL(phy, ch, 9), PORT_PLL_LOCK_THRESHOLD_MASK, pll->state.hw_state.pll9); temp = intel_de_read(i915, BXT_PORT_PLL(phy, ch, 10)); temp &= ~PORT_PLL_DCO_AMP_OVR_EN_H; temp &= ~PORT_PLL_DCO_AMP_MASK; temp |= pll->state.hw_state.pll10; intel_de_write(i915, BXT_PORT_PLL(phy, ch, 10), temp); /* Recalibrate with new settings */ temp = intel_de_read(i915, BXT_PORT_PLL_EBB_4(phy, ch)); temp |= PORT_PLL_RECALIBRATE; intel_de_write(i915, BXT_PORT_PLL_EBB_4(phy, ch), temp); temp &= ~PORT_PLL_10BIT_CLK_ENABLE; temp |= pll->state.hw_state.ebb4; intel_de_write(i915, BXT_PORT_PLL_EBB_4(phy, ch), temp); /* Enable PLL */ intel_de_rmw(i915, BXT_PORT_PLL_ENABLE(port), 0, PORT_PLL_ENABLE); intel_de_posting_read(i915, BXT_PORT_PLL_ENABLE(port)); if (wait_for_us((intel_de_read(i915, BXT_PORT_PLL_ENABLE(port)) & PORT_PLL_LOCK), 200)) drm_err(&i915->drm, "PLL %d not locked\n", port); if (IS_GEMINILAKE(i915)) { temp = intel_de_read(i915, BXT_PORT_TX_DW5_LN0(phy, ch)); temp |= DCC_DELAY_RANGE_2; intel_de_write(i915, BXT_PORT_TX_DW5_GRP(phy, ch), temp); } /* * While we write to the group register to program all lanes at once we * can read only lane registers and we pick lanes 0/1 for that. */ temp = intel_de_read(i915, BXT_PORT_PCS_DW12_LN01(phy, ch)); temp &= ~LANE_STAGGER_MASK; temp &= ~LANESTAGGER_STRAP_OVRD; temp |= pll->state.hw_state.pcsdw12; intel_de_write(i915, BXT_PORT_PCS_DW12_GRP(phy, ch), temp); } static void bxt_ddi_pll_disable(struct drm_i915_private *i915, struct intel_shared_dpll *pll) { enum port port = (enum port)pll->info->id; /* 1:1 port->PLL mapping */ intel_de_rmw(i915, BXT_PORT_PLL_ENABLE(port), PORT_PLL_ENABLE, 0); intel_de_posting_read(i915, BXT_PORT_PLL_ENABLE(port)); if (IS_GEMINILAKE(i915)) { intel_de_rmw(i915, BXT_PORT_PLL_ENABLE(port), PORT_PLL_POWER_ENABLE, 0); if (wait_for_us(!(intel_de_read(i915, BXT_PORT_PLL_ENABLE(port)) & PORT_PLL_POWER_STATE), 200)) drm_err(&i915->drm, "Power state not reset for PLL:%d\n", port); } } static bool bxt_ddi_pll_get_hw_state(struct drm_i915_private *i915, struct intel_shared_dpll *pll, struct intel_dpll_hw_state *hw_state) { enum port port = (enum port)pll->info->id; /* 1:1 port->PLL mapping */ intel_wakeref_t wakeref; enum dpio_phy phy; enum dpio_channel ch; u32 val; bool ret; bxt_port_to_phy_channel(i915, port, &phy, &ch); wakeref = intel_display_power_get_if_enabled(i915, POWER_DOMAIN_DISPLAY_CORE); if (!wakeref) return false; ret = false; val = intel_de_read(i915, BXT_PORT_PLL_ENABLE(port)); if (!(val & PORT_PLL_ENABLE)) goto out; hw_state->ebb0 = intel_de_read(i915, BXT_PORT_PLL_EBB_0(phy, ch)); hw_state->ebb0 &= PORT_PLL_P1_MASK | PORT_PLL_P2_MASK; hw_state->ebb4 = intel_de_read(i915, BXT_PORT_PLL_EBB_4(phy, ch)); hw_state->ebb4 &= PORT_PLL_10BIT_CLK_ENABLE; hw_state->pll0 = intel_de_read(i915, BXT_PORT_PLL(phy, ch, 0)); hw_state->pll0 &= PORT_PLL_M2_INT_MASK; hw_state->pll1 = intel_de_read(i915, BXT_PORT_PLL(phy, ch, 1)); hw_state->pll1 &= PORT_PLL_N_MASK; hw_state->pll2 = intel_de_read(i915, BXT_PORT_PLL(phy, ch, 2)); hw_state->pll2 &= PORT_PLL_M2_FRAC_MASK; hw_state->pll3 = intel_de_read(i915, BXT_PORT_PLL(phy, ch, 3)); hw_state->pll3 &= PORT_PLL_M2_FRAC_ENABLE; hw_state->pll6 = intel_de_read(i915, BXT_PORT_PLL(phy, ch, 6)); hw_state->pll6 &= PORT_PLL_PROP_COEFF_MASK | PORT_PLL_INT_COEFF_MASK | PORT_PLL_GAIN_CTL_MASK; hw_state->pll8 = intel_de_read(i915, BXT_PORT_PLL(phy, ch, 8)); hw_state->pll8 &= PORT_PLL_TARGET_CNT_MASK; hw_state->pll9 = intel_de_read(i915, BXT_PORT_PLL(phy, ch, 9)); hw_state->pll9 &= PORT_PLL_LOCK_THRESHOLD_MASK; hw_state->pll10 = intel_de_read(i915, BXT_PORT_PLL(phy, ch, 10)); hw_state->pll10 &= PORT_PLL_DCO_AMP_OVR_EN_H | PORT_PLL_DCO_AMP_MASK; /* * While we write to the group register to program all lanes at once we * can read only lane registers. We configure all lanes the same way, so * here just read out lanes 0/1 and output a note if lanes 2/3 differ. */ hw_state->pcsdw12 = intel_de_read(i915, BXT_PORT_PCS_DW12_LN01(phy, ch)); if (intel_de_read(i915, BXT_PORT_PCS_DW12_LN23(phy, ch)) != hw_state->pcsdw12) drm_dbg(&i915->drm, "lane stagger config different for lane 01 (%08x) and 23 (%08x)\n", hw_state->pcsdw12, intel_de_read(i915, BXT_PORT_PCS_DW12_LN23(phy, ch))); hw_state->pcsdw12 &= LANE_STAGGER_MASK | LANESTAGGER_STRAP_OVRD; ret = true; out: intel_display_power_put(i915, POWER_DOMAIN_DISPLAY_CORE, wakeref); return ret; } /* pre-calculated values for DP linkrates */ static const struct dpll bxt_dp_clk_val[] = { /* m2 is .22 binary fixed point */ { .dot = 162000, .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a /* 32.4 */ }, { .dot = 270000, .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 /* 27.0 */ }, { .dot = 540000, .p1 = 2, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 /* 27.0 */ }, { .dot = 216000, .p1 = 3, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a /* 32.4 */ }, { .dot = 243000, .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6133333 /* 24.3 */ }, { .dot = 324000, .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x819999a /* 32.4 */ }, { .dot = 432000, .p1 = 3, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x819999a /* 32.4 */ }, }; static int bxt_ddi_hdmi_pll_dividers(struct intel_crtc_state *crtc_state, struct dpll *clk_div) { struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev); /* Calculate HDMI div */ /* * FIXME: tie the following calculation into * i9xx_crtc_compute_clock */ if (!bxt_find_best_dpll(crtc_state, clk_div)) return -EINVAL; drm_WARN_ON(&i915->drm, clk_div->m1 != 2); return 0; } static void bxt_ddi_dp_pll_dividers(struct intel_crtc_state *crtc_state, struct dpll *clk_div) { struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev); int i; *clk_div = bxt_dp_clk_val[0]; for (i = 0; i < ARRAY_SIZE(bxt_dp_clk_val); ++i) { if (crtc_state->port_clock == bxt_dp_clk_val[i].dot) { *clk_div = bxt_dp_clk_val[i]; break; } } chv_calc_dpll_params(i915->display.dpll.ref_clks.nssc, clk_div); drm_WARN_ON(&i915->drm, clk_div->vco == 0 || clk_div->dot != crtc_state->port_clock); } static int bxt_ddi_set_dpll_hw_state(struct intel_crtc_state *crtc_state, const struct dpll *clk_div) { struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev); struct intel_dpll_hw_state *dpll_hw_state = &crtc_state->dpll_hw_state; int clock = crtc_state->port_clock; int vco = clk_div->vco; u32 prop_coef, int_coef, gain_ctl, targ_cnt; u32 lanestagger; if (vco >= 6200000 && vco <= 6700000) { prop_coef = 4; int_coef = 9; gain_ctl = 3; targ_cnt = 8; } else if ((vco > 5400000 && vco < 6200000) || (vco >= 4800000 && vco < 5400000)) { prop_coef = 5; int_coef = 11; gain_ctl = 3; targ_cnt = 9; } else if (vco == 5400000) { prop_coef = 3; int_coef = 8; gain_ctl = 1; targ_cnt = 9; } else { drm_err(&i915->drm, "Invalid VCO\n"); return -EINVAL; } if (clock > 270000) lanestagger = 0x18; else if (clock > 135000) lanestagger = 0x0d; else if (clock > 67000) lanestagger = 0x07; else if (clock > 33000) lanestagger = 0x04; else lanestagger = 0x02; dpll_hw_state->ebb0 = PORT_PLL_P1(clk_div->p1) | PORT_PLL_P2(clk_div->p2); dpll_hw_state->pll0 = PORT_PLL_M2_INT(clk_div->m2 >> 22); dpll_hw_state->pll1 = PORT_PLL_N(clk_div->n); dpll_hw_state->pll2 = PORT_PLL_M2_FRAC(clk_div->m2 & 0x3fffff); if (clk_div->m2 & 0x3fffff) dpll_hw_state->pll3 = PORT_PLL_M2_FRAC_ENABLE; dpll_hw_state->pll6 = PORT_PLL_PROP_COEFF(prop_coef) | PORT_PLL_INT_COEFF(int_coef) | PORT_PLL_GAIN_CTL(gain_ctl); dpll_hw_state->pll8 = PORT_PLL_TARGET_CNT(targ_cnt); dpll_hw_state->pll9 = PORT_PLL_LOCK_THRESHOLD(5); dpll_hw_state->pll10 = PORT_PLL_DCO_AMP(15) | PORT_PLL_DCO_AMP_OVR_EN_H; dpll_hw_state->ebb4 = PORT_PLL_10BIT_CLK_ENABLE; dpll_hw_state->pcsdw12 = LANESTAGGER_STRAP_OVRD | lanestagger; return 0; } static int bxt_ddi_pll_get_freq(struct drm_i915_private *i915, const struct intel_shared_dpll *pll, const struct intel_dpll_hw_state *pll_state) { struct dpll clock; clock.m1 = 2; clock.m2 = REG_FIELD_GET(PORT_PLL_M2_INT_MASK, pll_state->pll0) << 22; if (pll_state->pll3 & PORT_PLL_M2_FRAC_ENABLE) clock.m2 |= REG_FIELD_GET(PORT_PLL_M2_FRAC_MASK, pll_state->pll2); clock.n = REG_FIELD_GET(PORT_PLL_N_MASK, pll_state->pll1); clock.p1 = REG_FIELD_GET(PORT_PLL_P1_MASK, pll_state->ebb0); clock.p2 = REG_FIELD_GET(PORT_PLL_P2_MASK, pll_state->ebb0); return chv_calc_dpll_params(i915->display.dpll.ref_clks.nssc, &clock); } static int bxt_ddi_dp_set_dpll_hw_state(struct intel_crtc_state *crtc_state) { struct dpll clk_div = {}; bxt_ddi_dp_pll_dividers(crtc_state, &clk_div); return bxt_ddi_set_dpll_hw_state(crtc_state, &clk_div); } static int bxt_ddi_hdmi_set_dpll_hw_state(struct intel_crtc_state *crtc_state) { struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev); struct dpll clk_div = {}; int ret; bxt_ddi_hdmi_pll_dividers(crtc_state, &clk_div); ret = bxt_ddi_set_dpll_hw_state(crtc_state, &clk_div); if (ret) return ret; crtc_state->port_clock = bxt_ddi_pll_get_freq(i915, NULL, &crtc_state->dpll_hw_state); return 0; } static int bxt_compute_dpll(struct intel_atomic_state *state, struct intel_crtc *crtc, struct intel_encoder *encoder) { struct intel_crtc_state *crtc_state = intel_atomic_get_new_crtc_state(state, crtc); if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) return bxt_ddi_hdmi_set_dpll_hw_state(crtc_state); else if (intel_crtc_has_dp_encoder(crtc_state)) return bxt_ddi_dp_set_dpll_hw_state(crtc_state); else return -EINVAL; } static int bxt_get_dpll(struct intel_atomic_state *state, struct intel_crtc *crtc, struct intel_encoder *encoder) { struct intel_crtc_state *crtc_state = intel_atomic_get_new_crtc_state(state, crtc); struct drm_i915_private *i915 = to_i915(crtc->base.dev); struct intel_shared_dpll *pll; enum intel_dpll_id id; /* 1:1 mapping between ports and PLLs */ id = (enum intel_dpll_id) encoder->port; pll = intel_get_shared_dpll_by_id(i915, id); drm_dbg_kms(&i915->drm, "[CRTC:%d:%s] using pre-allocated %s\n", crtc->base.base.id, crtc->base.name, pll->info->name); intel_reference_shared_dpll(state, crtc, pll, &crtc_state->dpll_hw_state); crtc_state->shared_dpll = pll; return 0; } static void bxt_update_dpll_ref_clks(struct drm_i915_private *i915) { i915->display.dpll.ref_clks.ssc = 100000; i915->display.dpll.ref_clks.nssc = 100000; /* DSI non-SSC ref 19.2MHz */ } static void bxt_dump_hw_state(struct drm_i915_private *i915, const struct intel_dpll_hw_state *hw_state) { drm_dbg_kms(&i915->drm, "dpll_hw_state: ebb0: 0x%x, ebb4: 0x%x," "pll0: 0x%x, pll1: 0x%x, pll2: 0x%x, pll3: 0x%x, " "pll6: 0x%x, pll8: 0x%x, pll9: 0x%x, pll10: 0x%x, pcsdw12: 0x%x\n", hw_state->ebb0, hw_state->ebb4, hw_state->pll0, hw_state->pll1, hw_state->pll2, hw_state->pll3, hw_state->pll6, hw_state->pll8, hw_state->pll9, hw_state->pll10, hw_state->pcsdw12); } static const struct intel_shared_dpll_funcs bxt_ddi_pll_funcs = { .enable = bxt_ddi_pll_enable, .disable = bxt_ddi_pll_disable, .get_hw_state = bxt_ddi_pll_get_hw_state, .get_freq = bxt_ddi_pll_get_freq, }; static const struct dpll_info bxt_plls[] = { { "PORT PLL A", &bxt_ddi_pll_funcs, DPLL_ID_SKL_DPLL0, 0 }, { "PORT PLL B", &bxt_ddi_pll_funcs, DPLL_ID_SKL_DPLL1, 0 }, { "PORT PLL C", &bxt_ddi_pll_funcs, DPLL_ID_SKL_DPLL2, 0 }, { }, }; static const struct intel_dpll_mgr bxt_pll_mgr = { .dpll_info = bxt_plls, .compute_dplls = bxt_compute_dpll, .get_dplls = bxt_get_dpll, .put_dplls = intel_put_dpll, .update_ref_clks = bxt_update_dpll_ref_clks, .dump_hw_state = bxt_dump_hw_state, }; static void icl_wrpll_get_multipliers(int bestdiv, int *pdiv, int *qdiv, int *kdiv) { /* even dividers */ if (bestdiv % 2 == 0) { if (bestdiv == 2) { *pdiv = 2; *qdiv = 1; *kdiv = 1; } else if (bestdiv % 4 == 0) { *pdiv = 2; *qdiv = bestdiv / 4; *kdiv = 2; } else if (bestdiv % 6 == 0) { *pdiv = 3; *qdiv = bestdiv / 6; *kdiv = 2; } else if (bestdiv % 5 == 0) { *pdiv = 5; *qdiv = bestdiv / 10; *kdiv = 2; } else if (bestdiv % 14 == 0) { *pdiv = 7; *qdiv = bestdiv / 14; *kdiv = 2; } } else { if (bestdiv == 3 || bestdiv == 5 || bestdiv == 7) { *pdiv = bestdiv; *qdiv = 1; *kdiv = 1; } else { /* 9, 15, 21 */ *pdiv = bestdiv / 3; *qdiv = 1; *kdiv = 3; } } } static void icl_wrpll_params_populate(struct skl_wrpll_params *params, u32 dco_freq, u32 ref_freq, int pdiv, int qdiv, int kdiv) { u32 dco; switch (kdiv) { case 1: params->kdiv = 1; break; case 2: params->kdiv = 2; break; case 3: params->kdiv = 4; break; default: WARN(1, "Incorrect KDiv\n"); } switch (pdiv) { case 2: params->pdiv = 1; break; case 3: params->pdiv = 2; break; case 5: params->pdiv = 4; break; case 7: params->pdiv = 8; break; default: WARN(1, "Incorrect PDiv\n"); } WARN_ON(kdiv != 2 && qdiv != 1); params->qdiv_ratio = qdiv; params->qdiv_mode = (qdiv == 1) ? 0 : 1; dco = div_u64((u64)dco_freq << 15, ref_freq); params->dco_integer = dco >> 15; params->dco_fraction = dco & 0x7fff; } /* * Display WA #22010492432: ehl, tgl, adl-s, adl-p * Program half of the nominal DCO divider fraction value. */ static bool ehl_combo_pll_div_frac_wa_needed(struct drm_i915_private *i915) { return (((IS_ELKHARTLAKE(i915) || IS_JASPERLAKE(i915)) && IS_DISPLAY_STEP(i915, STEP_B0, STEP_FOREVER)) || IS_TIGERLAKE(i915) || IS_ALDERLAKE_S(i915) || IS_ALDERLAKE_P(i915)) && i915->display.dpll.ref_clks.nssc == 38400; } struct icl_combo_pll_params { int clock; struct skl_wrpll_params wrpll; }; /* * These values alrea already adjusted: they're the bits we write to the * registers, not the logical values. */ static const struct icl_combo_pll_params icl_dp_combo_pll_24MHz_values[] = { { 540000, { .dco_integer = 0x151, .dco_fraction = 0x4000, /* [0]: 5.4 */ .pdiv = 0x2 /* 3 */, .kdiv = 1, .qdiv_mode = 0, .qdiv_ratio = 0, }, }, { 270000, { .dco_integer = 0x151, .dco_fraction = 0x4000, /* [1]: 2.7 */ .pdiv = 0x2 /* 3 */, .kdiv = 2, .qdiv_mode = 0, .qdiv_ratio = 0, }, }, { 162000, { .dco_integer = 0x151, .dco_fraction = 0x4000, /* [2]: 1.62 */ .pdiv = 0x4 /* 5 */, .kdiv = 2, .qdiv_mode = 0, .qdiv_ratio = 0, }, }, { 324000, { .dco_integer = 0x151, .dco_fraction = 0x4000, /* [3]: 3.24 */ .pdiv = 0x4 /* 5 */, .kdiv = 1, .qdiv_mode = 0, .qdiv_ratio = 0, }, }, { 216000, { .dco_integer = 0x168, .dco_fraction = 0x0000, /* [4]: 2.16 */ .pdiv = 0x1 /* 2 */, .kdiv = 2, .qdiv_mode = 1, .qdiv_ratio = 2, }, }, { 432000, { .dco_integer = 0x168, .dco_fraction = 0x0000, /* [5]: 4.32 */ .pdiv = 0x1 /* 2 */, .kdiv = 2, .qdiv_mode = 0, .qdiv_ratio = 0, }, }, { 648000, { .dco_integer = 0x195, .dco_fraction = 0x0000, /* [6]: 6.48 */ .pdiv = 0x2 /* 3 */, .kdiv = 1, .qdiv_mode = 0, .qdiv_ratio = 0, }, }, { 810000, { .dco_integer = 0x151, .dco_fraction = 0x4000, /* [7]: 8.1 */ .pdiv = 0x1 /* 2 */, .kdiv = 1, .qdiv_mode = 0, .qdiv_ratio = 0, }, }, }; /* Also used for 38.4 MHz values. */ static const struct icl_combo_pll_params icl_dp_combo_pll_19_2MHz_values[] = { { 540000, { .dco_integer = 0x1A5, .dco_fraction = 0x7000, /* [0]: 5.4 */ .pdiv = 0x2 /* 3 */, .kdiv = 1, .qdiv_mode = 0, .qdiv_ratio = 0, }, }, { 270000, { .dco_integer = 0x1A5, .dco_fraction = 0x7000, /* [1]: 2.7 */ .pdiv = 0x2 /* 3 */, .kdiv = 2, .qdiv_mode = 0, .qdiv_ratio = 0, }, }, { 162000, { .dco_integer = 0x1A5, .dco_fraction = 0x7000, /* [2]: 1.62 */ .pdiv = 0x4 /* 5 */, .kdiv = 2, .qdiv_mode = 0, .qdiv_ratio = 0, }, }, { 324000, { .dco_integer = 0x1A5, .dco_fraction = 0x7000, /* [3]: 3.24 */ .pdiv = 0x4 /* 5 */, .kdiv = 1, .qdiv_mode = 0, .qdiv_ratio = 0, }, }, { 216000, { .dco_integer = 0x1C2, .dco_fraction = 0x0000, /* [4]: 2.16 */ .pdiv = 0x1 /* 2 */, .kdiv = 2, .qdiv_mode = 1, .qdiv_ratio = 2, }, }, { 432000, { .dco_integer = 0x1C2, .dco_fraction = 0x0000, /* [5]: 4.32 */ .pdiv = 0x1 /* 2 */, .kdiv = 2, .qdiv_mode = 0, .qdiv_ratio = 0, }, }, { 648000, { .dco_integer = 0x1FA, .dco_fraction = 0x2000, /* [6]: 6.48 */ .pdiv = 0x2 /* 3 */, .kdiv = 1, .qdiv_mode = 0, .qdiv_ratio = 0, }, }, { 810000, { .dco_integer = 0x1A5, .dco_fraction = 0x7000, /* [7]: 8.1 */ .pdiv = 0x1 /* 2 */, .kdiv = 1, .qdiv_mode = 0, .qdiv_ratio = 0, }, }, }; static const struct skl_wrpll_params icl_tbt_pll_24MHz_values = { .dco_integer = 0x151, .dco_fraction = 0x4000, .pdiv = 0x4 /* 5 */, .kdiv = 1, .qdiv_mode = 0, .qdiv_ratio = 0, }; static const struct skl_wrpll_params icl_tbt_pll_19_2MHz_values = { .dco_integer = 0x1A5, .dco_fraction = 0x7000, .pdiv = 0x4 /* 5 */, .kdiv = 1, .qdiv_mode = 0, .qdiv_ratio = 0, }; static const struct skl_wrpll_params tgl_tbt_pll_19_2MHz_values = { .dco_integer = 0x54, .dco_fraction = 0x3000, /* the following params are unused */ .pdiv = 0, .kdiv = 0, .qdiv_mode = 0, .qdiv_ratio = 0, }; static const struct skl_wrpll_params tgl_tbt_pll_24MHz_values = { .dco_integer = 0x43, .dco_fraction = 0x4000, /* the following params are unused */ }; static int icl_calc_dp_combo_pll(struct intel_crtc_state *crtc_state, struct skl_wrpll_params *pll_params) { struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev); const struct icl_combo_pll_params *params = i915->display.dpll.ref_clks.nssc == 24000 ? icl_dp_combo_pll_24MHz_values : icl_dp_combo_pll_19_2MHz_values; int clock = crtc_state->port_clock; int i; for (i = 0; i < ARRAY_SIZE(icl_dp_combo_pll_24MHz_values); i++) { if (clock == params[i].clock) { *pll_params = params[i].wrpll; return 0; } } MISSING_CASE(clock); return -EINVAL; } static int icl_calc_tbt_pll(struct intel_crtc_state *crtc_state, struct skl_wrpll_params *pll_params) { struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev); if (DISPLAY_VER(i915) >= 12) { switch (i915->display.dpll.ref_clks.nssc) { default: MISSING_CASE(i915->display.dpll.ref_clks.nssc); fallthrough; case 19200: case 38400: *pll_params = tgl_tbt_pll_19_2MHz_values; break; case 24000: *pll_params = tgl_tbt_pll_24MHz_values; break; } } else { switch (i915->display.dpll.ref_clks.nssc) { default: MISSING_CASE(i915->display.dpll.ref_clks.nssc); fallthrough; case 19200: case 38400: *pll_params = icl_tbt_pll_19_2MHz_values; break; case 24000: *pll_params = icl_tbt_pll_24MHz_values; break; } } return 0; } static int icl_ddi_tbt_pll_get_freq(struct drm_i915_private *i915, const struct intel_shared_dpll *pll, const struct intel_dpll_hw_state *pll_state) { /* * The PLL outputs multiple frequencies at the same time, selection is * made at DDI clock mux level. */ drm_WARN_ON(&i915->drm, 1); return 0; } static int icl_wrpll_ref_clock(struct drm_i915_private *i915) { int ref_clock = i915->display.dpll.ref_clks.nssc; /* * For ICL+, the spec states: if reference frequency is 38.4, * use 19.2 because the DPLL automatically divides that by 2. */ if (ref_clock == 38400) ref_clock = 19200; return ref_clock; } static int icl_calc_wrpll(struct intel_crtc_state *crtc_state, struct skl_wrpll_params *wrpll_params) { struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev); int ref_clock = icl_wrpll_ref_clock(i915); u32 afe_clock = crtc_state->port_clock * 5; u32 dco_min = 7998000; u32 dco_max = 10000000; u32 dco_mid = (dco_min + dco_max) / 2; static const int dividers[] = { 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 24, 28, 30, 32, 36, 40, 42, 44, 48, 50, 52, 54, 56, 60, 64, 66, 68, 70, 72, 76, 78, 80, 84, 88, 90, 92, 96, 98, 100, 102, 3, 5, 7, 9, 15, 21 }; u32 dco, best_dco = 0, dco_centrality = 0; u32 best_dco_centrality = U32_MAX; /* Spec meaning of 999999 MHz */ int d, best_div = 0, pdiv = 0, qdiv = 0, kdiv = 0; for (d = 0; d < ARRAY_SIZE(dividers); d++) { dco = afe_clock * dividers[d]; if (dco <= dco_max && dco >= dco_min) { dco_centrality = abs(dco - dco_mid); if (dco_centrality < best_dco_centrality) { best_dco_centrality = dco_centrality; best_div = dividers[d]; best_dco = dco; } } } if (best_div == 0) return -EINVAL; icl_wrpll_get_multipliers(best_div, &pdiv, &qdiv, &kdiv); icl_wrpll_params_populate(wrpll_params, best_dco, ref_clock, pdiv, qdiv, kdiv); return 0; } static int icl_ddi_combo_pll_get_freq(struct drm_i915_private *i915, const struct intel_shared_dpll *pll, const struct intel_dpll_hw_state *pll_state) { int ref_clock = icl_wrpll_ref_clock(i915); u32 dco_fraction; u32 p0, p1, p2, dco_freq; p0 = pll_state->cfgcr1 & DPLL_CFGCR1_PDIV_MASK; p2 = pll_state->cfgcr1 & DPLL_CFGCR1_KDIV_MASK; if (pll_state->cfgcr1 & DPLL_CFGCR1_QDIV_MODE(1)) p1 = (pll_state->cfgcr1 & DPLL_CFGCR1_QDIV_RATIO_MASK) >> DPLL_CFGCR1_QDIV_RATIO_SHIFT; else p1 = 1; switch (p0) { case DPLL_CFGCR1_PDIV_2: p0 = 2; break; case DPLL_CFGCR1_PDIV_3: p0 = 3; break; case DPLL_CFGCR1_PDIV_5: p0 = 5; break; case DPLL_CFGCR1_PDIV_7: p0 = 7; break; } switch (p2) { case DPLL_CFGCR1_KDIV_1: p2 = 1; break; case DPLL_CFGCR1_KDIV_2: p2 = 2; break; case DPLL_CFGCR1_KDIV_3: p2 = 3; break; } dco_freq = (pll_state->cfgcr0 & DPLL_CFGCR0_DCO_INTEGER_MASK) * ref_clock; dco_fraction = (pll_state->cfgcr0 & DPLL_CFGCR0_DCO_FRACTION_MASK) >> DPLL_CFGCR0_DCO_FRACTION_SHIFT; if (ehl_combo_pll_div_frac_wa_needed(i915)) dco_fraction *= 2; dco_freq += (dco_fraction * ref_clock) / 0x8000; if (drm_WARN_ON(&i915->drm, p0 == 0 || p1 == 0 || p2 == 0)) return 0; return dco_freq / (p0 * p1 * p2 * 5); } static void icl_calc_dpll_state(struct drm_i915_private *i915, const struct skl_wrpll_params *pll_params, struct intel_dpll_hw_state *pll_state) { u32 dco_fraction = pll_params->dco_fraction; if (ehl_combo_pll_div_frac_wa_needed(i915)) dco_fraction = DIV_ROUND_CLOSEST(dco_fraction, 2); pll_state->cfgcr0 = DPLL_CFGCR0_DCO_FRACTION(dco_fraction) | pll_params->dco_integer; pll_state->cfgcr1 = DPLL_CFGCR1_QDIV_RATIO(pll_params->qdiv_ratio) | DPLL_CFGCR1_QDIV_MODE(pll_params->qdiv_mode) | DPLL_CFGCR1_KDIV(pll_params->kdiv) | DPLL_CFGCR1_PDIV(pll_params->pdiv); if (DISPLAY_VER(i915) >= 12) pll_state->cfgcr1 |= TGL_DPLL_CFGCR1_CFSELOVRD_NORMAL_XTAL; else pll_state->cfgcr1 |= DPLL_CFGCR1_CENTRAL_FREQ_8400; if (i915->display.vbt.override_afc_startup) pll_state->div0 = TGL_DPLL0_DIV0_AFC_STARTUP(i915->display.vbt.override_afc_startup_val); } static int icl_mg_pll_find_divisors(int clock_khz, bool is_dp, bool use_ssc, u32 *target_dco_khz, struct intel_dpll_hw_state *state, bool is_dkl) { static const u8 div1_vals[] = { 7, 5, 3, 2 }; u32 dco_min_freq, dco_max_freq; unsigned int i; int div2; dco_min_freq = is_dp ? 8100000 : use_ssc ? 8000000 : 7992000; dco_max_freq = is_dp ? 8100000 : 10000000; for (i = 0; i < ARRAY_SIZE(div1_vals); i++) { int div1 = div1_vals[i]; for (div2 = 10; div2 > 0; div2--) { int dco = div1 * div2 * clock_khz * 5; int a_divratio, tlinedrv, inputsel; u32 hsdiv; if (dco < dco_min_freq || dco > dco_max_freq) continue; if (div2 >= 2) { /* * Note: a_divratio not matching TGL BSpec * algorithm but matching hardcoded values and * working on HW for DP alt-mode at least */ a_divratio = is_dp ? 10 : 5; tlinedrv = is_dkl ? 1 : 2; } else { a_divratio = 5; tlinedrv = 0; } inputsel = is_dp ? 0 : 1; switch (div1) { default: MISSING_CASE(div1); fallthrough; case 2: hsdiv = MG_CLKTOP2_HSCLKCTL_HSDIV_RATIO_2; break; case 3: hsdiv = MG_CLKTOP2_HSCLKCTL_HSDIV_RATIO_3; break; case 5: hsdiv = MG_CLKTOP2_HSCLKCTL_HSDIV_RATIO_5; break; case 7: hsdiv = MG_CLKTOP2_HSCLKCTL_HSDIV_RATIO_7; break; } *target_dco_khz = dco; state->mg_refclkin_ctl = MG_REFCLKIN_CTL_OD_2_MUX(1); state->mg_clktop2_coreclkctl1 = MG_CLKTOP2_CORECLKCTL1_A_DIVRATIO(a_divratio); state->mg_clktop2_hsclkctl = MG_CLKTOP2_HSCLKCTL_TLINEDRV_CLKSEL(tlinedrv) | MG_CLKTOP2_HSCLKCTL_CORE_INPUTSEL(inputsel) | hsdiv | MG_CLKTOP2_HSCLKCTL_DSDIV_RATIO(div2); return 0; } } return -EINVAL; } /* * The specification for this function uses real numbers, so the math had to be * adapted to integer-only calculation, that's why it looks so different. */ static int icl_calc_mg_pll_state(struct intel_crtc_state *crtc_state, struct intel_dpll_hw_state *pll_state) { struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev); int refclk_khz = i915->display.dpll.ref_clks.nssc; int clock = crtc_state->port_clock; u32 dco_khz, m1div, m2div_int, m2div_rem, m2div_frac; u32 iref_ndiv, iref_trim, iref_pulse_w; u32 prop_coeff, int_coeff; u32 tdc_targetcnt, feedfwgain; u64 ssc_stepsize, ssc_steplen, ssc_steplog; u64 tmp; bool use_ssc = false; bool is_dp = !intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI); bool is_dkl = DISPLAY_VER(i915) >= 12; int ret; ret = icl_mg_pll_find_divisors(clock, is_dp, use_ssc, &dco_khz, pll_state, is_dkl); if (ret) return ret; m1div = 2; m2div_int = dco_khz / (refclk_khz * m1div); if (m2div_int > 255) { if (!is_dkl) { m1div = 4; m2div_int = dco_khz / (refclk_khz * m1div); } if (m2div_int > 255) return -EINVAL; } m2div_rem = dco_khz % (refclk_khz * m1div); tmp = (u64)m2div_rem * (1 << 22); do_div(tmp, refclk_khz * m1div); m2div_frac = tmp; switch (refclk_khz) { case 19200: iref_ndiv = 1; iref_trim = 28; iref_pulse_w = 1; break; case 24000: iref_ndiv = 1; iref_trim = 25; iref_pulse_w = 2; break; case 38400: iref_ndiv = 2; iref_trim = 28; iref_pulse_w = 1; break; default: MISSING_CASE(refclk_khz); return -EINVAL; } /* * tdc_res = 0.000003 * tdc_targetcnt = int(2 / (tdc_res * 8 * 50 * 1.1) / refclk_mhz + 0.5) * * The multiplication by 1000 is due to refclk MHz to KHz conversion. It * was supposed to be a division, but we rearranged the operations of * the formula to avoid early divisions so we don't multiply the * rounding errors. * * 0.000003 * 8 * 50 * 1.1 = 0.00132, also known as 132 / 100000, which * we also rearrange to work with integers. * * The 0.5 transformed to 5 results in a multiplication by 10 and the * last division by 10. */ tdc_targetcnt = (2 * 1000 * 100000 * 10 / (132 * refclk_khz) + 5) / 10; /* * Here we divide dco_khz by 10 in order to allow the dividend to fit in * 32 bits. That's not a problem since we round the division down * anyway. */ feedfwgain = (use_ssc || m2div_rem > 0) ? m1div * 1000000 * 100 / (dco_khz * 3 / 10) : 0; if (dco_khz >= 9000000) { prop_coeff = 5; int_coeff = 10; } else { prop_coeff = 4; int_coeff = 8; } if (use_ssc) { tmp = mul_u32_u32(dco_khz, 47 * 32); do_div(tmp, refclk_khz * m1div * 10000); ssc_stepsize = tmp; tmp = mul_u32_u32(dco_khz, 1000); ssc_steplen = DIV_ROUND_UP_ULL(tmp, 32 * 2 * 32); } else { ssc_stepsize = 0; ssc_steplen = 0; } ssc_steplog = 4; /* write pll_state calculations */ if (is_dkl) { pll_state->mg_pll_div0 = DKL_PLL_DIV0_INTEG_COEFF(int_coeff) | DKL_PLL_DIV0_PROP_COEFF(prop_coeff) | DKL_PLL_DIV0_FBPREDIV(m1div) | DKL_PLL_DIV0_FBDIV_INT(m2div_int); if (i915->display.vbt.override_afc_startup) { u8 val = i915->display.vbt.override_afc_startup_val; pll_state->mg_pll_div0 |= DKL_PLL_DIV0_AFC_STARTUP(val); } pll_state->mg_pll_div1 = DKL_PLL_DIV1_IREF_TRIM(iref_trim) | DKL_PLL_DIV1_TDC_TARGET_CNT(tdc_targetcnt); pll_state->mg_pll_ssc = DKL_PLL_SSC_IREF_NDIV_RATIO(iref_ndiv) | DKL_PLL_SSC_STEP_LEN(ssc_steplen) | DKL_PLL_SSC_STEP_NUM(ssc_steplog) | (use_ssc ? DKL_PLL_SSC_EN : 0); pll_state->mg_pll_bias = (m2div_frac ? DKL_PLL_BIAS_FRAC_EN_H : 0) | DKL_PLL_BIAS_FBDIV_FRAC(m2div_frac); pll_state->mg_pll_tdc_coldst_bias = DKL_PLL_TDC_SSC_STEP_SIZE(ssc_stepsize) | DKL_PLL_TDC_FEED_FWD_GAIN(feedfwgain); } else { pll_state->mg_pll_div0 = (m2div_rem > 0 ? MG_PLL_DIV0_FRACNEN_H : 0) | MG_PLL_DIV0_FBDIV_FRAC(m2div_frac) | MG_PLL_DIV0_FBDIV_INT(m2div_int); pll_state->mg_pll_div1 = MG_PLL_DIV1_IREF_NDIVRATIO(iref_ndiv) | MG_PLL_DIV1_DITHER_DIV_2 | MG_PLL_DIV1_NDIVRATIO(1) | MG_PLL_DIV1_FBPREDIV(m1div); pll_state->mg_pll_lf = MG_PLL_LF_TDCTARGETCNT(tdc_targetcnt) | MG_PLL_LF_AFCCNTSEL_512 | MG_PLL_LF_GAINCTRL(1) | MG_PLL_LF_INT_COEFF(int_coeff) | MG_PLL_LF_PROP_COEFF(prop_coeff); pll_state->mg_pll_frac_lock = MG_PLL_FRAC_LOCK_TRUELOCK_CRIT_32 | MG_PLL_FRAC_LOCK_EARLYLOCK_CRIT_32 | MG_PLL_FRAC_LOCK_LOCKTHRESH(10) | MG_PLL_FRAC_LOCK_DCODITHEREN | MG_PLL_FRAC_LOCK_FEEDFWRDGAIN(feedfwgain); if (use_ssc || m2div_rem > 0) pll_state->mg_pll_frac_lock |= MG_PLL_FRAC_LOCK_FEEDFWRDCAL_EN; pll_state->mg_pll_ssc = (use_ssc ? MG_PLL_SSC_EN : 0) | MG_PLL_SSC_TYPE(2) | MG_PLL_SSC_STEPLENGTH(ssc_steplen) | MG_PLL_SSC_STEPNUM(ssc_steplog) | MG_PLL_SSC_FLLEN | MG_PLL_SSC_STEPSIZE(ssc_stepsize); pll_state->mg_pll_tdc_coldst_bias = MG_PLL_TDC_COLDST_COLDSTART | MG_PLL_TDC_COLDST_IREFINT_EN | MG_PLL_TDC_COLDST_REFBIAS_START_PULSE_W(iref_pulse_w) | MG_PLL_TDC_TDCOVCCORR_EN | MG_PLL_TDC_TDCSEL(3); pll_state->mg_pll_bias = MG_PLL_BIAS_BIAS_GB_SEL(3) | MG_PLL_BIAS_INIT_DCOAMP(0x3F) | MG_PLL_BIAS_BIAS_BONUS(10) | MG_PLL_BIAS_BIASCAL_EN | MG_PLL_BIAS_CTRIM(12) | MG_PLL_BIAS_VREF_RDAC(4) | MG_PLL_BIAS_IREFTRIM(iref_trim); if (refclk_khz == 38400) { pll_state->mg_pll_tdc_coldst_bias_mask = MG_PLL_TDC_COLDST_COLDSTART; pll_state->mg_pll_bias_mask = 0; } else { pll_state->mg_pll_tdc_coldst_bias_mask = -1U; pll_state->mg_pll_bias_mask = -1U; } pll_state->mg_pll_tdc_coldst_bias &= pll_state->mg_pll_tdc_coldst_bias_mask; pll_state->mg_pll_bias &= pll_state->mg_pll_bias_mask; } return 0; } static int icl_ddi_mg_pll_get_freq(struct drm_i915_private *i915, const struct intel_shared_dpll *pll, const struct intel_dpll_hw_state *pll_state) { u32 m1, m2_int, m2_frac, div1, div2, ref_clock; u64 tmp; ref_clock = i915->display.dpll.ref_clks.nssc; if (DISPLAY_VER(i915) >= 12) { m1 = pll_state->mg_pll_div0 & DKL_PLL_DIV0_FBPREDIV_MASK; m1 = m1 >> DKL_PLL_DIV0_FBPREDIV_SHIFT; m2_int = pll_state->mg_pll_div0 & DKL_PLL_DIV0_FBDIV_INT_MASK; if (pll_state->mg_pll_bias & DKL_PLL_BIAS_FRAC_EN_H) { m2_frac = pll_state->mg_pll_bias & DKL_PLL_BIAS_FBDIV_FRAC_MASK; m2_frac = m2_frac >> DKL_PLL_BIAS_FBDIV_SHIFT; } else { m2_frac = 0; } } else { m1 = pll_state->mg_pll_div1 & MG_PLL_DIV1_FBPREDIV_MASK; m2_int = pll_state->mg_pll_div0 & MG_PLL_DIV0_FBDIV_INT_MASK; if (pll_state->mg_pll_div0 & MG_PLL_DIV0_FRACNEN_H) { m2_frac = pll_state->mg_pll_div0 & MG_PLL_DIV0_FBDIV_FRAC_MASK; m2_frac = m2_frac >> MG_PLL_DIV0_FBDIV_FRAC_SHIFT; } else { m2_frac = 0; } } switch (pll_state->mg_clktop2_hsclkctl & MG_CLKTOP2_HSCLKCTL_HSDIV_RATIO_MASK) { case MG_CLKTOP2_HSCLKCTL_HSDIV_RATIO_2: div1 = 2; break; case MG_CLKTOP2_HSCLKCTL_HSDIV_RATIO_3: div1 = 3; break; case MG_CLKTOP2_HSCLKCTL_HSDIV_RATIO_5: div1 = 5; break; case MG_CLKTOP2_HSCLKCTL_HSDIV_RATIO_7: div1 = 7; break; default: MISSING_CASE(pll_state->mg_clktop2_hsclkctl); return 0; } div2 = (pll_state->mg_clktop2_hsclkctl & MG_CLKTOP2_HSCLKCTL_DSDIV_RATIO_MASK) >> MG_CLKTOP2_HSCLKCTL_DSDIV_RATIO_SHIFT; /* div2 value of 0 is same as 1 means no div */ if (div2 == 0) div2 = 1; /* * Adjust the original formula to delay the division by 2^22 in order to * minimize possible rounding errors. */ tmp = (u64)m1 * m2_int * ref_clock + (((u64)m1 * m2_frac * ref_clock) >> 22); tmp = div_u64(tmp, 5 * div1 * div2); return tmp; } /** * icl_set_active_port_dpll - select the active port DPLL for a given CRTC * @crtc_state: state for the CRTC to select the DPLL for * @port_dpll_id: the active @port_dpll_id to select * * Select the given @port_dpll_id instance from the DPLLs reserved for the * CRTC. */ void icl_set_active_port_dpll(struct intel_crtc_state *crtc_state, enum icl_port_dpll_id port_dpll_id) { struct icl_port_dpll *port_dpll = &crtc_state->icl_port_dplls[port_dpll_id]; crtc_state->shared_dpll = port_dpll->pll; crtc_state->dpll_hw_state = port_dpll->hw_state; } static void icl_update_active_dpll(struct intel_atomic_state *state, struct intel_crtc *crtc, struct intel_encoder *encoder) { struct intel_crtc_state *crtc_state = intel_atomic_get_new_crtc_state(state, crtc); struct intel_digital_port *primary_port; enum icl_port_dpll_id port_dpll_id = ICL_PORT_DPLL_DEFAULT; primary_port = encoder->type == INTEL_OUTPUT_DP_MST ? enc_to_mst(encoder)->primary : enc_to_dig_port(encoder); if (primary_port && (intel_tc_port_in_dp_alt_mode(primary_port) || intel_tc_port_in_legacy_mode(primary_port))) port_dpll_id = ICL_PORT_DPLL_MG_PHY; icl_set_active_port_dpll(crtc_state, port_dpll_id); } static int icl_compute_combo_phy_dpll(struct intel_atomic_state *state, struct intel_crtc *crtc) { struct drm_i915_private *i915 = to_i915(crtc->base.dev); struct intel_crtc_state *crtc_state = intel_atomic_get_new_crtc_state(state, crtc); struct icl_port_dpll *port_dpll = &crtc_state->icl_port_dplls[ICL_PORT_DPLL_DEFAULT]; struct skl_wrpll_params pll_params = {}; int ret; if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI) || intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI)) ret = icl_calc_wrpll(crtc_state, &pll_params); else ret = icl_calc_dp_combo_pll(crtc_state, &pll_params); if (ret) return ret; icl_calc_dpll_state(i915, &pll_params, &port_dpll->hw_state); /* this is mainly for the fastset check */ icl_set_active_port_dpll(crtc_state, ICL_PORT_DPLL_DEFAULT); crtc_state->port_clock = icl_ddi_combo_pll_get_freq(i915, NULL, &port_dpll->hw_state); return 0; } static int icl_get_combo_phy_dpll(struct intel_atomic_state *state, struct intel_crtc *crtc, struct intel_encoder *encoder) { struct drm_i915_private *i915 = to_i915(crtc->base.dev); struct intel_crtc_state *crtc_state = intel_atomic_get_new_crtc_state(state, crtc); struct icl_port_dpll *port_dpll = &crtc_state->icl_port_dplls[ICL_PORT_DPLL_DEFAULT]; enum port port = encoder->port; unsigned long dpll_mask; if (IS_ALDERLAKE_S(i915)) { dpll_mask = BIT(DPLL_ID_DG1_DPLL3) | BIT(DPLL_ID_DG1_DPLL2) | BIT(DPLL_ID_ICL_DPLL1) | BIT(DPLL_ID_ICL_DPLL0); } else if (IS_DG1(i915)) { if (port == PORT_D || port == PORT_E) { dpll_mask = BIT(DPLL_ID_DG1_DPLL2) | BIT(DPLL_ID_DG1_DPLL3); } else { dpll_mask = BIT(DPLL_ID_DG1_DPLL0) | BIT(DPLL_ID_DG1_DPLL1); } } else if (IS_ROCKETLAKE(i915)) { dpll_mask = BIT(DPLL_ID_EHL_DPLL4) | BIT(DPLL_ID_ICL_DPLL1) | BIT(DPLL_ID_ICL_DPLL0); } else if ((IS_JASPERLAKE(i915) || IS_ELKHARTLAKE(i915)) && port != PORT_A) { dpll_mask = BIT(DPLL_ID_EHL_DPLL4) | BIT(DPLL_ID_ICL_DPLL1) | BIT(DPLL_ID_ICL_DPLL0); } else { dpll_mask = BIT(DPLL_ID_ICL_DPLL1) | BIT(DPLL_ID_ICL_DPLL0); } /* Eliminate DPLLs from consideration if reserved by HTI */ dpll_mask &= ~intel_hti_dpll_mask(i915); port_dpll->pll = intel_find_shared_dpll(state, crtc, &port_dpll->hw_state, dpll_mask); if (!port_dpll->pll) return -EINVAL; intel_reference_shared_dpll(state, crtc, port_dpll->pll, &port_dpll->hw_state); icl_update_active_dpll(state, crtc, encoder); return 0; } static int icl_compute_tc_phy_dplls(struct intel_atomic_state *state, struct intel_crtc *crtc) { struct drm_i915_private *i915 = to_i915(state->base.dev); struct intel_crtc_state *crtc_state = intel_atomic_get_new_crtc_state(state, crtc); struct icl_port_dpll *port_dpll = &crtc_state->icl_port_dplls[ICL_PORT_DPLL_DEFAULT]; struct skl_wrpll_params pll_params = {}; int ret; port_dpll = &crtc_state->icl_port_dplls[ICL_PORT_DPLL_DEFAULT]; ret = icl_calc_tbt_pll(crtc_state, &pll_params); if (ret) return ret; icl_calc_dpll_state(i915, &pll_params, &port_dpll->hw_state); port_dpll = &crtc_state->icl_port_dplls[ICL_PORT_DPLL_MG_PHY]; ret = icl_calc_mg_pll_state(crtc_state, &port_dpll->hw_state); if (ret) return ret; /* this is mainly for the fastset check */ icl_set_active_port_dpll(crtc_state, ICL_PORT_DPLL_MG_PHY); crtc_state->port_clock = icl_ddi_mg_pll_get_freq(i915, NULL, &port_dpll->hw_state); return 0; } static int icl_get_tc_phy_dplls(struct intel_atomic_state *state, struct intel_crtc *crtc, struct intel_encoder *encoder) { struct drm_i915_private *i915 = to_i915(state->base.dev); struct intel_crtc_state *crtc_state = intel_atomic_get_new_crtc_state(state, crtc); struct icl_port_dpll *port_dpll = &crtc_state->icl_port_dplls[ICL_PORT_DPLL_DEFAULT]; enum intel_dpll_id dpll_id; int ret; port_dpll = &crtc_state->icl_port_dplls[ICL_PORT_DPLL_DEFAULT]; port_dpll->pll = intel_find_shared_dpll(state, crtc, &port_dpll->hw_state, BIT(DPLL_ID_ICL_TBTPLL)); if (!port_dpll->pll) return -EINVAL; intel_reference_shared_dpll(state, crtc, port_dpll->pll, &port_dpll->hw_state); port_dpll = &crtc_state->icl_port_dplls[ICL_PORT_DPLL_MG_PHY]; dpll_id = icl_tc_port_to_pll_id(intel_port_to_tc(i915, encoder->port)); port_dpll->pll = intel_find_shared_dpll(state, crtc, &port_dpll->hw_state, BIT(dpll_id)); if (!port_dpll->pll) { ret = -EINVAL; goto err_unreference_tbt_pll; } intel_reference_shared_dpll(state, crtc, port_dpll->pll, &port_dpll->hw_state); icl_update_active_dpll(state, crtc, encoder); return 0; err_unreference_tbt_pll: port_dpll = &crtc_state->icl_port_dplls[ICL_PORT_DPLL_DEFAULT]; intel_unreference_shared_dpll(state, crtc, port_dpll->pll); return ret; } static int icl_compute_dplls(struct intel_atomic_state *state, struct intel_crtc *crtc, struct intel_encoder *encoder) { struct drm_i915_private *i915 = to_i915(state->base.dev); enum phy phy = intel_port_to_phy(i915, encoder->port); if (intel_phy_is_combo(i915, phy)) return icl_compute_combo_phy_dpll(state, crtc); else if (intel_phy_is_tc(i915, phy)) return icl_compute_tc_phy_dplls(state, crtc); MISSING_CASE(phy); return 0; } static int icl_get_dplls(struct intel_atomic_state *state, struct intel_crtc *crtc, struct intel_encoder *encoder) { struct drm_i915_private *i915 = to_i915(state->base.dev); enum phy phy = intel_port_to_phy(i915, encoder->port); if (intel_phy_is_combo(i915, phy)) return icl_get_combo_phy_dpll(state, crtc, encoder); else if (intel_phy_is_tc(i915, phy)) return icl_get_tc_phy_dplls(state, crtc, encoder); MISSING_CASE(phy); return -EINVAL; } static void icl_put_dplls(struct intel_atomic_state *state, struct intel_crtc *crtc) { const struct intel_crtc_state *old_crtc_state = intel_atomic_get_old_crtc_state(state, crtc); struct intel_crtc_state *new_crtc_state = intel_atomic_get_new_crtc_state(state, crtc); enum icl_port_dpll_id id; new_crtc_state->shared_dpll = NULL; for (id = ICL_PORT_DPLL_DEFAULT; id < ICL_PORT_DPLL_COUNT; id++) { const struct icl_port_dpll *old_port_dpll = &old_crtc_state->icl_port_dplls[id]; struct icl_port_dpll *new_port_dpll = &new_crtc_state->icl_port_dplls[id]; new_port_dpll->pll = NULL; if (!old_port_dpll->pll) continue; intel_unreference_shared_dpll(state, crtc, old_port_dpll->pll); } } static bool mg_pll_get_hw_state(struct drm_i915_private *i915, struct intel_shared_dpll *pll, struct intel_dpll_hw_state *hw_state) { const enum intel_dpll_id id = pll->info->id; enum tc_port tc_port = icl_pll_id_to_tc_port(id); intel_wakeref_t wakeref; bool ret = false; u32 val; i915_reg_t enable_reg = intel_tc_pll_enable_reg(i915, pll); wakeref = intel_display_power_get_if_enabled(i915, POWER_DOMAIN_DISPLAY_CORE); if (!wakeref) return false; val = intel_de_read(i915, enable_reg); if (!(val & PLL_ENABLE)) goto out; hw_state->mg_refclkin_ctl = intel_de_read(i915, MG_REFCLKIN_CTL(tc_port)); hw_state->mg_refclkin_ctl &= MG_REFCLKIN_CTL_OD_2_MUX_MASK; hw_state->mg_clktop2_coreclkctl1 = intel_de_read(i915, MG_CLKTOP2_CORECLKCTL1(tc_port)); hw_state->mg_clktop2_coreclkctl1 &= MG_CLKTOP2_CORECLKCTL1_A_DIVRATIO_MASK; hw_state->mg_clktop2_hsclkctl = intel_de_read(i915, MG_CLKTOP2_HSCLKCTL(tc_port)); hw_state->mg_clktop2_hsclkctl &= MG_CLKTOP2_HSCLKCTL_TLINEDRV_CLKSEL_MASK | MG_CLKTOP2_HSCLKCTL_CORE_INPUTSEL_MASK | MG_CLKTOP2_HSCLKCTL_HSDIV_RATIO_MASK | MG_CLKTOP2_HSCLKCTL_DSDIV_RATIO_MASK; hw_state->mg_pll_div0 = intel_de_read(i915, MG_PLL_DIV0(tc_port)); hw_state->mg_pll_div1 = intel_de_read(i915, MG_PLL_DIV1(tc_port)); hw_state->mg_pll_lf = intel_de_read(i915, MG_PLL_LF(tc_port)); hw_state->mg_pll_frac_lock = intel_de_read(i915, MG_PLL_FRAC_LOCK(tc_port)); hw_state->mg_pll_ssc = intel_de_read(i915, MG_PLL_SSC(tc_port)); hw_state->mg_pll_bias = intel_de_read(i915, MG_PLL_BIAS(tc_port)); hw_state->mg_pll_tdc_coldst_bias = intel_de_read(i915, MG_PLL_TDC_COLDST_BIAS(tc_port)); if (i915->display.dpll.ref_clks.nssc == 38400) { hw_state->mg_pll_tdc_coldst_bias_mask = MG_PLL_TDC_COLDST_COLDSTART; hw_state->mg_pll_bias_mask = 0; } else { hw_state->mg_pll_tdc_coldst_bias_mask = -1U; hw_state->mg_pll_bias_mask = -1U; } hw_state->mg_pll_tdc_coldst_bias &= hw_state->mg_pll_tdc_coldst_bias_mask; hw_state->mg_pll_bias &= hw_state->mg_pll_bias_mask; ret = true; out: intel_display_power_put(i915, POWER_DOMAIN_DISPLAY_CORE, wakeref); return ret; } static bool dkl_pll_get_hw_state(struct drm_i915_private *i915, struct intel_shared_dpll *pll, struct intel_dpll_hw_state *hw_state) { const enum intel_dpll_id id = pll->info->id; enum tc_port tc_port = icl_pll_id_to_tc_port(id); intel_wakeref_t wakeref; bool ret = false; u32 val; wakeref = intel_display_power_get_if_enabled(i915, POWER_DOMAIN_DISPLAY_CORE); if (!wakeref) return false; val = intel_de_read(i915, intel_tc_pll_enable_reg(i915, pll)); if (!(val & PLL_ENABLE)) goto out; /* * All registers read here have the same HIP_INDEX_REG even though * they are on different building blocks */ hw_state->mg_refclkin_ctl = intel_dkl_phy_read(i915, DKL_REFCLKIN_CTL(tc_port)); hw_state->mg_refclkin_ctl &= MG_REFCLKIN_CTL_OD_2_MUX_MASK; hw_state->mg_clktop2_hsclkctl = intel_dkl_phy_read(i915, DKL_CLKTOP2_HSCLKCTL(tc_port)); hw_state->mg_clktop2_hsclkctl &= MG_CLKTOP2_HSCLKCTL_TLINEDRV_CLKSEL_MASK | MG_CLKTOP2_HSCLKCTL_CORE_INPUTSEL_MASK | MG_CLKTOP2_HSCLKCTL_HSDIV_RATIO_MASK | MG_CLKTOP2_HSCLKCTL_DSDIV_RATIO_MASK; hw_state->mg_clktop2_coreclkctl1 = intel_dkl_phy_read(i915, DKL_CLKTOP2_CORECLKCTL1(tc_port)); hw_state->mg_clktop2_coreclkctl1 &= MG_CLKTOP2_CORECLKCTL1_A_DIVRATIO_MASK; hw_state->mg_pll_div0 = intel_dkl_phy_read(i915, DKL_PLL_DIV0(tc_port)); val = DKL_PLL_DIV0_MASK; if (i915->display.vbt.override_afc_startup) val |= DKL_PLL_DIV0_AFC_STARTUP_MASK; hw_state->mg_pll_div0 &= val; hw_state->mg_pll_div1 = intel_dkl_phy_read(i915, DKL_PLL_DIV1(tc_port)); hw_state->mg_pll_div1 &= (DKL_PLL_DIV1_IREF_TRIM_MASK | DKL_PLL_DIV1_TDC_TARGET_CNT_MASK); hw_state->mg_pll_ssc = intel_dkl_phy_read(i915, DKL_PLL_SSC(tc_port)); hw_state->mg_pll_ssc &= (DKL_PLL_SSC_IREF_NDIV_RATIO_MASK | DKL_PLL_SSC_STEP_LEN_MASK | DKL_PLL_SSC_STEP_NUM_MASK | DKL_PLL_SSC_EN); hw_state->mg_pll_bias = intel_dkl_phy_read(i915, DKL_PLL_BIAS(tc_port)); hw_state->mg_pll_bias &= (DKL_PLL_BIAS_FRAC_EN_H | DKL_PLL_BIAS_FBDIV_FRAC_MASK); hw_state->mg_pll_tdc_coldst_bias = intel_dkl_phy_read(i915, DKL_PLL_TDC_COLDST_BIAS(tc_port)); hw_state->mg_pll_tdc_coldst_bias &= (DKL_PLL_TDC_SSC_STEP_SIZE_MASK | DKL_PLL_TDC_FEED_FWD_GAIN_MASK); ret = true; out: intel_display_power_put(i915, POWER_DOMAIN_DISPLAY_CORE, wakeref); return ret; } static bool icl_pll_get_hw_state(struct drm_i915_private *i915, struct intel_shared_dpll *pll, struct intel_dpll_hw_state *hw_state, i915_reg_t enable_reg) { const enum intel_dpll_id id = pll->info->id; intel_wakeref_t wakeref; bool ret = false; u32 val; wakeref = intel_display_power_get_if_enabled(i915, POWER_DOMAIN_DISPLAY_CORE); if (!wakeref) return false; val = intel_de_read(i915, enable_reg); if (!(val & PLL_ENABLE)) goto out; if (IS_ALDERLAKE_S(i915)) { hw_state->cfgcr0 = intel_de_read(i915, ADLS_DPLL_CFGCR0(id)); hw_state->cfgcr1 = intel_de_read(i915, ADLS_DPLL_CFGCR1(id)); } else if (IS_DG1(i915)) { hw_state->cfgcr0 = intel_de_read(i915, DG1_DPLL_CFGCR0(id)); hw_state->cfgcr1 = intel_de_read(i915, DG1_DPLL_CFGCR1(id)); } else if (IS_ROCKETLAKE(i915)) { hw_state->cfgcr0 = intel_de_read(i915, RKL_DPLL_CFGCR0(id)); hw_state->cfgcr1 = intel_de_read(i915, RKL_DPLL_CFGCR1(id)); } else if (DISPLAY_VER(i915) >= 12) { hw_state->cfgcr0 = intel_de_read(i915, TGL_DPLL_CFGCR0(id)); hw_state->cfgcr1 = intel_de_read(i915, TGL_DPLL_CFGCR1(id)); if (i915->display.vbt.override_afc_startup) { hw_state->div0 = intel_de_read(i915, TGL_DPLL0_DIV0(id)); hw_state->div0 &= TGL_DPLL0_DIV0_AFC_STARTUP_MASK; } } else { if ((IS_JASPERLAKE(i915) || IS_ELKHARTLAKE(i915)) && id == DPLL_ID_EHL_DPLL4) { hw_state->cfgcr0 = intel_de_read(i915, ICL_DPLL_CFGCR0(4)); hw_state->cfgcr1 = intel_de_read(i915, ICL_DPLL_CFGCR1(4)); } else { hw_state->cfgcr0 = intel_de_read(i915, ICL_DPLL_CFGCR0(id)); hw_state->cfgcr1 = intel_de_read(i915, ICL_DPLL_CFGCR1(id)); } } ret = true; out: intel_display_power_put(i915, POWER_DOMAIN_DISPLAY_CORE, wakeref); return ret; } static bool combo_pll_get_hw_state(struct drm_i915_private *i915, struct intel_shared_dpll *pll, struct intel_dpll_hw_state *hw_state) { i915_reg_t enable_reg = intel_combo_pll_enable_reg(i915, pll); return icl_pll_get_hw_state(i915, pll, hw_state, enable_reg); } static bool tbt_pll_get_hw_state(struct drm_i915_private *i915, struct intel_shared_dpll *pll, struct intel_dpll_hw_state *hw_state) { return icl_pll_get_hw_state(i915, pll, hw_state, TBT_PLL_ENABLE); } static void icl_dpll_write(struct drm_i915_private *i915, struct intel_shared_dpll *pll) { struct intel_dpll_hw_state *hw_state = &pll->state.hw_state; const enum intel_dpll_id id = pll->info->id; i915_reg_t cfgcr0_reg, cfgcr1_reg, div0_reg = INVALID_MMIO_REG; if (IS_ALDERLAKE_S(i915)) { cfgcr0_reg = ADLS_DPLL_CFGCR0(id); cfgcr1_reg = ADLS_DPLL_CFGCR1(id); } else if (IS_DG1(i915)) { cfgcr0_reg = DG1_DPLL_CFGCR0(id); cfgcr1_reg = DG1_DPLL_CFGCR1(id); } else if (IS_ROCKETLAKE(i915)) { cfgcr0_reg = RKL_DPLL_CFGCR0(id); cfgcr1_reg = RKL_DPLL_CFGCR1(id); } else if (DISPLAY_VER(i915) >= 12) { cfgcr0_reg = TGL_DPLL_CFGCR0(id); cfgcr1_reg = TGL_DPLL_CFGCR1(id); div0_reg = TGL_DPLL0_DIV0(id); } else { if ((IS_JASPERLAKE(i915) || IS_ELKHARTLAKE(i915)) && id == DPLL_ID_EHL_DPLL4) { cfgcr0_reg = ICL_DPLL_CFGCR0(4); cfgcr1_reg = ICL_DPLL_CFGCR1(4); } else { cfgcr0_reg = ICL_DPLL_CFGCR0(id); cfgcr1_reg = ICL_DPLL_CFGCR1(id); } } intel_de_write(i915, cfgcr0_reg, hw_state->cfgcr0); intel_de_write(i915, cfgcr1_reg, hw_state->cfgcr1); drm_WARN_ON_ONCE(&i915->drm, i915->display.vbt.override_afc_startup && !i915_mmio_reg_valid(div0_reg)); if (i915->display.vbt.override_afc_startup && i915_mmio_reg_valid(div0_reg)) intel_de_rmw(i915, div0_reg, TGL_DPLL0_DIV0_AFC_STARTUP_MASK, hw_state->div0); intel_de_posting_read(i915, cfgcr1_reg); } static void icl_mg_pll_write(struct drm_i915_private *i915, struct intel_shared_dpll *pll) { struct intel_dpll_hw_state *hw_state = &pll->state.hw_state; enum tc_port tc_port = icl_pll_id_to_tc_port(pll->info->id); /* * Some of the following registers have reserved fields, so program * these with RMW based on a mask. The mask can be fixed or generated * during the calc/readout phase if the mask depends on some other HW * state like refclk, see icl_calc_mg_pll_state(). */ intel_de_rmw(i915, MG_REFCLKIN_CTL(tc_port), MG_REFCLKIN_CTL_OD_2_MUX_MASK, hw_state->mg_refclkin_ctl); intel_de_rmw(i915, MG_CLKTOP2_CORECLKCTL1(tc_port), MG_CLKTOP2_CORECLKCTL1_A_DIVRATIO_MASK, hw_state->mg_clktop2_coreclkctl1); intel_de_rmw(i915, MG_CLKTOP2_HSCLKCTL(tc_port), MG_CLKTOP2_HSCLKCTL_TLINEDRV_CLKSEL_MASK | MG_CLKTOP2_HSCLKCTL_CORE_INPUTSEL_MASK | MG_CLKTOP2_HSCLKCTL_HSDIV_RATIO_MASK | MG_CLKTOP2_HSCLKCTL_DSDIV_RATIO_MASK, hw_state->mg_clktop2_hsclkctl); intel_de_write(i915, MG_PLL_DIV0(tc_port), hw_state->mg_pll_div0); intel_de_write(i915, MG_PLL_DIV1(tc_port), hw_state->mg_pll_div1); intel_de_write(i915, MG_PLL_LF(tc_port), hw_state->mg_pll_lf); intel_de_write(i915, MG_PLL_FRAC_LOCK(tc_port), hw_state->mg_pll_frac_lock); intel_de_write(i915, MG_PLL_SSC(tc_port), hw_state->mg_pll_ssc); intel_de_rmw(i915, MG_PLL_BIAS(tc_port), hw_state->mg_pll_bias_mask, hw_state->mg_pll_bias); intel_de_rmw(i915, MG_PLL_TDC_COLDST_BIAS(tc_port), hw_state->mg_pll_tdc_coldst_bias_mask, hw_state->mg_pll_tdc_coldst_bias); intel_de_posting_read(i915, MG_PLL_TDC_COLDST_BIAS(tc_port)); } static void dkl_pll_write(struct drm_i915_private *i915, struct intel_shared_dpll *pll) { struct intel_dpll_hw_state *hw_state = &pll->state.hw_state; enum tc_port tc_port = icl_pll_id_to_tc_port(pll->info->id); u32 val; /* * All registers programmed here have the same HIP_INDEX_REG even * though on different building block */ /* All the registers are RMW */ val = intel_dkl_phy_read(i915, DKL_REFCLKIN_CTL(tc_port)); val &= ~MG_REFCLKIN_CTL_OD_2_MUX_MASK; val |= hw_state->mg_refclkin_ctl; intel_dkl_phy_write(i915, DKL_REFCLKIN_CTL(tc_port), val); val = intel_dkl_phy_read(i915, DKL_CLKTOP2_CORECLKCTL1(tc_port)); val &= ~MG_CLKTOP2_CORECLKCTL1_A_DIVRATIO_MASK; val |= hw_state->mg_clktop2_coreclkctl1; intel_dkl_phy_write(i915, DKL_CLKTOP2_CORECLKCTL1(tc_port), val); val = intel_dkl_phy_read(i915, DKL_CLKTOP2_HSCLKCTL(tc_port)); val &= ~(MG_CLKTOP2_HSCLKCTL_TLINEDRV_CLKSEL_MASK | MG_CLKTOP2_HSCLKCTL_CORE_INPUTSEL_MASK | MG_CLKTOP2_HSCLKCTL_HSDIV_RATIO_MASK | MG_CLKTOP2_HSCLKCTL_DSDIV_RATIO_MASK); val |= hw_state->mg_clktop2_hsclkctl; intel_dkl_phy_write(i915, DKL_CLKTOP2_HSCLKCTL(tc_port), val); val = DKL_PLL_DIV0_MASK; if (i915->display.vbt.override_afc_startup) val |= DKL_PLL_DIV0_AFC_STARTUP_MASK; intel_dkl_phy_rmw(i915, DKL_PLL_DIV0(tc_port), val, hw_state->mg_pll_div0); val = intel_dkl_phy_read(i915, DKL_PLL_DIV1(tc_port)); val &= ~(DKL_PLL_DIV1_IREF_TRIM_MASK | DKL_PLL_DIV1_TDC_TARGET_CNT_MASK); val |= hw_state->mg_pll_div1; intel_dkl_phy_write(i915, DKL_PLL_DIV1(tc_port), val); val = intel_dkl_phy_read(i915, DKL_PLL_SSC(tc_port)); val &= ~(DKL_PLL_SSC_IREF_NDIV_RATIO_MASK | DKL_PLL_SSC_STEP_LEN_MASK | DKL_PLL_SSC_STEP_NUM_MASK | DKL_PLL_SSC_EN); val |= hw_state->mg_pll_ssc; intel_dkl_phy_write(i915, DKL_PLL_SSC(tc_port), val); val = intel_dkl_phy_read(i915, DKL_PLL_BIAS(tc_port)); val &= ~(DKL_PLL_BIAS_FRAC_EN_H | DKL_PLL_BIAS_FBDIV_FRAC_MASK); val |= hw_state->mg_pll_bias; intel_dkl_phy_write(i915, DKL_PLL_BIAS(tc_port), val); val = intel_dkl_phy_read(i915, DKL_PLL_TDC_COLDST_BIAS(tc_port)); val &= ~(DKL_PLL_TDC_SSC_STEP_SIZE_MASK | DKL_PLL_TDC_FEED_FWD_GAIN_MASK); val |= hw_state->mg_pll_tdc_coldst_bias; intel_dkl_phy_write(i915, DKL_PLL_TDC_COLDST_BIAS(tc_port), val); intel_dkl_phy_posting_read(i915, DKL_PLL_TDC_COLDST_BIAS(tc_port)); } static void icl_pll_power_enable(struct drm_i915_private *i915, struct intel_shared_dpll *pll, i915_reg_t enable_reg) { intel_de_rmw(i915, enable_reg, 0, PLL_POWER_ENABLE); /* * The spec says we need to "wait" but it also says it should be * immediate. */ if (intel_de_wait_for_set(i915, enable_reg, PLL_POWER_STATE, 1)) drm_err(&i915->drm, "PLL %d Power not enabled\n", pll->info->id); } static void icl_pll_enable(struct drm_i915_private *i915, struct intel_shared_dpll *pll, i915_reg_t enable_reg) { intel_de_rmw(i915, enable_reg, 0, PLL_ENABLE); /* Timeout is actually 600us. */ if (intel_de_wait_for_set(i915, enable_reg, PLL_LOCK, 1)) drm_err(&i915->drm, "PLL %d not locked\n", pll->info->id); } static void adlp_cmtg_clock_gating_wa(struct drm_i915_private *i915, struct intel_shared_dpll *pll) { u32 val; if (!(IS_ALDERLAKE_P(i915) && IS_DISPLAY_STEP(i915, STEP_A0, STEP_B0)) || pll->info->id != DPLL_ID_ICL_DPLL0) return; /* * Wa_16011069516:adl-p[a0] * * All CMTG regs are unreliable until CMTG clock gating is disabled, * so we can only assume the default TRANS_CMTG_CHICKEN reg value and * sanity check this assumption with a double read, which presumably * returns the correct value even with clock gating on. * * Instead of the usual place for workarounds we apply this one here, * since TRANS_CMTG_CHICKEN is only accessible while DPLL0 is enabled. */ val = intel_de_read(i915, TRANS_CMTG_CHICKEN); val = intel_de_rmw(i915, TRANS_CMTG_CHICKEN, ~0, DISABLE_DPT_CLK_GATING); if (drm_WARN_ON(&i915->drm, val & ~DISABLE_DPT_CLK_GATING)) drm_dbg_kms(&i915->drm, "Unexpected flags in TRANS_CMTG_CHICKEN: %08x\n", val); } static void combo_pll_enable(struct drm_i915_private *i915, struct intel_shared_dpll *pll) { i915_reg_t enable_reg = intel_combo_pll_enable_reg(i915, pll); if ((IS_JASPERLAKE(i915) || IS_ELKHARTLAKE(i915)) && pll->info->id == DPLL_ID_EHL_DPLL4) { /* * We need to disable DC states when this DPLL is enabled. * This can be done by taking a reference on DPLL4 power * domain. */ pll->wakeref = intel_display_power_get(i915, POWER_DOMAIN_DC_OFF); } icl_pll_power_enable(i915, pll, enable_reg); icl_dpll_write(i915, pll); /* * DVFS pre sequence would be here, but in our driver the cdclk code * paths should already be setting the appropriate voltage, hence we do * nothing here. */ icl_pll_enable(i915, pll, enable_reg); adlp_cmtg_clock_gating_wa(i915, pll); /* DVFS post sequence would be here. See the comment above. */ } static void tbt_pll_enable(struct drm_i915_private *i915, struct intel_shared_dpll *pll) { icl_pll_power_enable(i915, pll, TBT_PLL_ENABLE); icl_dpll_write(i915, pll); /* * DVFS pre sequence would be here, but in our driver the cdclk code * paths should already be setting the appropriate voltage, hence we do * nothing here. */ icl_pll_enable(i915, pll, TBT_PLL_ENABLE); /* DVFS post sequence would be here. See the comment above. */ } static void mg_pll_enable(struct drm_i915_private *i915, struct intel_shared_dpll *pll) { i915_reg_t enable_reg = intel_tc_pll_enable_reg(i915, pll); icl_pll_power_enable(i915, pll, enable_reg); if (DISPLAY_VER(i915) >= 12) dkl_pll_write(i915, pll); else icl_mg_pll_write(i915, pll); /* * DVFS pre sequence would be here, but in our driver the cdclk code * paths should already be setting the appropriate voltage, hence we do * nothing here. */ icl_pll_enable(i915, pll, enable_reg); /* DVFS post sequence would be here. See the comment above. */ } static void icl_pll_disable(struct drm_i915_private *i915, struct intel_shared_dpll *pll, i915_reg_t enable_reg) { /* The first steps are done by intel_ddi_post_disable(). */ /* * DVFS pre sequence would be here, but in our driver the cdclk code * paths should already be setting the appropriate voltage, hence we do * nothing here. */ intel_de_rmw(i915, enable_reg, PLL_ENABLE, 0); /* Timeout is actually 1us. */ if (intel_de_wait_for_clear(i915, enable_reg, PLL_LOCK, 1)) drm_err(&i915->drm, "PLL %d locked\n", pll->info->id); /* DVFS post sequence would be here. See the comment above. */ intel_de_rmw(i915, enable_reg, PLL_POWER_ENABLE, 0); /* * The spec says we need to "wait" but it also says it should be * immediate. */ if (intel_de_wait_for_clear(i915, enable_reg, PLL_POWER_STATE, 1)) drm_err(&i915->drm, "PLL %d Power not disabled\n", pll->info->id); } static void combo_pll_disable(struct drm_i915_private *i915, struct intel_shared_dpll *pll) { i915_reg_t enable_reg = intel_combo_pll_enable_reg(i915, pll); icl_pll_disable(i915, pll, enable_reg); if ((IS_JASPERLAKE(i915) || IS_ELKHARTLAKE(i915)) && pll->info->id == DPLL_ID_EHL_DPLL4) intel_display_power_put(i915, POWER_DOMAIN_DC_OFF, pll->wakeref); } static void tbt_pll_disable(struct drm_i915_private *i915, struct intel_shared_dpll *pll) { icl_pll_disable(i915, pll, TBT_PLL_ENABLE); } static void mg_pll_disable(struct drm_i915_private *i915, struct intel_shared_dpll *pll) { i915_reg_t enable_reg = intel_tc_pll_enable_reg(i915, pll); icl_pll_disable(i915, pll, enable_reg); } static void icl_update_dpll_ref_clks(struct drm_i915_private *i915) { /* No SSC ref */ i915->display.dpll.ref_clks.nssc = i915->display.cdclk.hw.ref; } static void icl_dump_hw_state(struct drm_i915_private *i915, const struct intel_dpll_hw_state *hw_state) { drm_dbg_kms(&i915->drm, "dpll_hw_state: cfgcr0: 0x%x, cfgcr1: 0x%x, div0: 0x%x, " "mg_refclkin_ctl: 0x%x, hg_clktop2_coreclkctl1: 0x%x, " "mg_clktop2_hsclkctl: 0x%x, mg_pll_div0: 0x%x, " "mg_pll_div2: 0x%x, mg_pll_lf: 0x%x, " "mg_pll_frac_lock: 0x%x, mg_pll_ssc: 0x%x, " "mg_pll_bias: 0x%x, mg_pll_tdc_coldst_bias: 0x%x\n", hw_state->cfgcr0, hw_state->cfgcr1, hw_state->div0, hw_state->mg_refclkin_ctl, hw_state->mg_clktop2_coreclkctl1, hw_state->mg_clktop2_hsclkctl, hw_state->mg_pll_div0, hw_state->mg_pll_div1, hw_state->mg_pll_lf, hw_state->mg_pll_frac_lock, hw_state->mg_pll_ssc, hw_state->mg_pll_bias, hw_state->mg_pll_tdc_coldst_bias); } static const struct intel_shared_dpll_funcs combo_pll_funcs = { .enable = combo_pll_enable, .disable = combo_pll_disable, .get_hw_state = combo_pll_get_hw_state, .get_freq = icl_ddi_combo_pll_get_freq, }; static const struct intel_shared_dpll_funcs tbt_pll_funcs = { .enable = tbt_pll_enable, .disable = tbt_pll_disable, .get_hw_state = tbt_pll_get_hw_state, .get_freq = icl_ddi_tbt_pll_get_freq, }; static const struct intel_shared_dpll_funcs mg_pll_funcs = { .enable = mg_pll_enable, .disable = mg_pll_disable, .get_hw_state = mg_pll_get_hw_state, .get_freq = icl_ddi_mg_pll_get_freq, }; static const struct dpll_info icl_plls[] = { { "DPLL 0", &combo_pll_funcs, DPLL_ID_ICL_DPLL0, 0 }, { "DPLL 1", &combo_pll_funcs, DPLL_ID_ICL_DPLL1, 0 }, { "TBT PLL", &tbt_pll_funcs, DPLL_ID_ICL_TBTPLL, 0 }, { "MG PLL 1", &mg_pll_funcs, DPLL_ID_ICL_MGPLL1, 0 }, { "MG PLL 2", &mg_pll_funcs, DPLL_ID_ICL_MGPLL2, 0 }, { "MG PLL 3", &mg_pll_funcs, DPLL_ID_ICL_MGPLL3, 0 }, { "MG PLL 4", &mg_pll_funcs, DPLL_ID_ICL_MGPLL4, 0 }, { }, }; static const struct intel_dpll_mgr icl_pll_mgr = { .dpll_info = icl_plls, .compute_dplls = icl_compute_dplls, .get_dplls = icl_get_dplls, .put_dplls = icl_put_dplls, .update_active_dpll = icl_update_active_dpll, .update_ref_clks = icl_update_dpll_ref_clks, .dump_hw_state = icl_dump_hw_state, }; static const struct dpll_info ehl_plls[] = { { "DPLL 0", &combo_pll_funcs, DPLL_ID_ICL_DPLL0, 0 }, { "DPLL 1", &combo_pll_funcs, DPLL_ID_ICL_DPLL1, 0 }, { "DPLL 4", &combo_pll_funcs, DPLL_ID_EHL_DPLL4, 0 }, { }, }; static const struct intel_dpll_mgr ehl_pll_mgr = { .dpll_info = ehl_plls, .compute_dplls = icl_compute_dplls, .get_dplls = icl_get_dplls, .put_dplls = icl_put_dplls, .update_ref_clks = icl_update_dpll_ref_clks, .dump_hw_state = icl_dump_hw_state, }; static const struct intel_shared_dpll_funcs dkl_pll_funcs = { .enable = mg_pll_enable, .disable = mg_pll_disable, .get_hw_state = dkl_pll_get_hw_state, .get_freq = icl_ddi_mg_pll_get_freq, }; static const struct dpll_info tgl_plls[] = { { "DPLL 0", &combo_pll_funcs, DPLL_ID_ICL_DPLL0, 0 }, { "DPLL 1", &combo_pll_funcs, DPLL_ID_ICL_DPLL1, 0 }, { "TBT PLL", &tbt_pll_funcs, DPLL_ID_ICL_TBTPLL, 0 }, { "TC PLL 1", &dkl_pll_funcs, DPLL_ID_ICL_MGPLL1, 0 }, { "TC PLL 2", &dkl_pll_funcs, DPLL_ID_ICL_MGPLL2, 0 }, { "TC PLL 3", &dkl_pll_funcs, DPLL_ID_ICL_MGPLL3, 0 }, { "TC PLL 4", &dkl_pll_funcs, DPLL_ID_ICL_MGPLL4, 0 }, { "TC PLL 5", &dkl_pll_funcs, DPLL_ID_TGL_MGPLL5, 0 }, { "TC PLL 6", &dkl_pll_funcs, DPLL_ID_TGL_MGPLL6, 0 }, { }, }; static const struct intel_dpll_mgr tgl_pll_mgr = { .dpll_info = tgl_plls, .compute_dplls = icl_compute_dplls, .get_dplls = icl_get_dplls, .put_dplls = icl_put_dplls, .update_active_dpll = icl_update_active_dpll, .update_ref_clks = icl_update_dpll_ref_clks, .dump_hw_state = icl_dump_hw_state, }; static const struct dpll_info rkl_plls[] = { { "DPLL 0", &combo_pll_funcs, DPLL_ID_ICL_DPLL0, 0 }, { "DPLL 1", &combo_pll_funcs, DPLL_ID_ICL_DPLL1, 0 }, { "DPLL 4", &combo_pll_funcs, DPLL_ID_EHL_DPLL4, 0 }, { }, }; static const struct intel_dpll_mgr rkl_pll_mgr = { .dpll_info = rkl_plls, .compute_dplls = icl_compute_dplls, .get_dplls = icl_get_dplls, .put_dplls = icl_put_dplls, .update_ref_clks = icl_update_dpll_ref_clks, .dump_hw_state = icl_dump_hw_state, }; static const struct dpll_info dg1_plls[] = { { "DPLL 0", &combo_pll_funcs, DPLL_ID_DG1_DPLL0, 0 }, { "DPLL 1", &combo_pll_funcs, DPLL_ID_DG1_DPLL1, 0 }, { "DPLL 2", &combo_pll_funcs, DPLL_ID_DG1_DPLL2, 0 }, { "DPLL 3", &combo_pll_funcs, DPLL_ID_DG1_DPLL3, 0 }, { }, }; static const struct intel_dpll_mgr dg1_pll_mgr = { .dpll_info = dg1_plls, .compute_dplls = icl_compute_dplls, .get_dplls = icl_get_dplls, .put_dplls = icl_put_dplls, .update_ref_clks = icl_update_dpll_ref_clks, .dump_hw_state = icl_dump_hw_state, }; static const struct dpll_info adls_plls[] = { { "DPLL 0", &combo_pll_funcs, DPLL_ID_ICL_DPLL0, 0 }, { "DPLL 1", &combo_pll_funcs, DPLL_ID_ICL_DPLL1, 0 }, { "DPLL 2", &combo_pll_funcs, DPLL_ID_DG1_DPLL2, 0 }, { "DPLL 3", &combo_pll_funcs, DPLL_ID_DG1_DPLL3, 0 }, { }, }; static const struct intel_dpll_mgr adls_pll_mgr = { .dpll_info = adls_plls, .compute_dplls = icl_compute_dplls, .get_dplls = icl_get_dplls, .put_dplls = icl_put_dplls, .update_ref_clks = icl_update_dpll_ref_clks, .dump_hw_state = icl_dump_hw_state, }; static const struct dpll_info adlp_plls[] = { { "DPLL 0", &combo_pll_funcs, DPLL_ID_ICL_DPLL0, 0 }, { "DPLL 1", &combo_pll_funcs, DPLL_ID_ICL_DPLL1, 0 }, { "TBT PLL", &tbt_pll_funcs, DPLL_ID_ICL_TBTPLL, 0 }, { "TC PLL 1", &dkl_pll_funcs, DPLL_ID_ICL_MGPLL1, 0 }, { "TC PLL 2", &dkl_pll_funcs, DPLL_ID_ICL_MGPLL2, 0 }, { "TC PLL 3", &dkl_pll_funcs, DPLL_ID_ICL_MGPLL3, 0 }, { "TC PLL 4", &dkl_pll_funcs, DPLL_ID_ICL_MGPLL4, 0 }, { }, }; static const struct intel_dpll_mgr adlp_pll_mgr = { .dpll_info = adlp_plls, .compute_dplls = icl_compute_dplls, .get_dplls = icl_get_dplls, .put_dplls = icl_put_dplls, .update_active_dpll = icl_update_active_dpll, .update_ref_clks = icl_update_dpll_ref_clks, .dump_hw_state = icl_dump_hw_state, }; /** * intel_shared_dpll_init - Initialize shared DPLLs * @i915: i915 device * * Initialize shared DPLLs for @i915. */ void intel_shared_dpll_init(struct drm_i915_private *i915) { const struct intel_dpll_mgr *dpll_mgr = NULL; const struct dpll_info *dpll_info; int i; mutex_init(&i915->display.dpll.lock); if (DISPLAY_VER(i915) >= 14 || IS_DG2(i915)) /* No shared DPLLs on DG2; port PLLs are part of the PHY */ dpll_mgr = NULL; else if (IS_ALDERLAKE_P(i915)) dpll_mgr = &adlp_pll_mgr; else if (IS_ALDERLAKE_S(i915)) dpll_mgr = &adls_pll_mgr; else if (IS_DG1(i915)) dpll_mgr = &dg1_pll_mgr; else if (IS_ROCKETLAKE(i915)) dpll_mgr = &rkl_pll_mgr; else if (DISPLAY_VER(i915) >= 12) dpll_mgr = &tgl_pll_mgr; else if (IS_JASPERLAKE(i915) || IS_ELKHARTLAKE(i915)) dpll_mgr = &ehl_pll_mgr; else if (DISPLAY_VER(i915) >= 11) dpll_mgr = &icl_pll_mgr; else if (IS_GEMINILAKE(i915) || IS_BROXTON(i915)) dpll_mgr = &bxt_pll_mgr; else if (DISPLAY_VER(i915) == 9) dpll_mgr = &skl_pll_mgr; else if (HAS_DDI(i915)) dpll_mgr = &hsw_pll_mgr; else if (HAS_PCH_IBX(i915) || HAS_PCH_CPT(i915)) dpll_mgr = &pch_pll_mgr; if (!dpll_mgr) return; dpll_info = dpll_mgr->dpll_info; for (i = 0; dpll_info[i].name; i++) { if (drm_WARN_ON(&i915->drm, i >= ARRAY_SIZE(i915->display.dpll.shared_dplls))) break; /* must fit into unsigned long bitmask on 32bit */ if (drm_WARN_ON(&i915->drm, dpll_info[i].id >= 32)) break; i915->display.dpll.shared_dplls[i].info = &dpll_info[i]; i915->display.dpll.shared_dplls[i].index = i; } i915->display.dpll.mgr = dpll_mgr; i915->display.dpll.num_shared_dpll = i; } /** * intel_compute_shared_dplls - compute DPLL state CRTC and encoder combination * @state: atomic state * @crtc: CRTC to compute DPLLs for * @encoder: encoder * * This function computes the DPLL state for the given CRTC and encoder. * * The new configuration in the atomic commit @state is made effective by * calling intel_shared_dpll_swap_state(). * * Returns: * 0 on success, negative error code on falure. */ int intel_compute_shared_dplls(struct intel_atomic_state *state, struct intel_crtc *crtc, struct intel_encoder *encoder) { struct drm_i915_private *i915 = to_i915(state->base.dev); const struct intel_dpll_mgr *dpll_mgr = i915->display.dpll.mgr; if (drm_WARN_ON(&i915->drm, !dpll_mgr)) return -EINVAL; return dpll_mgr->compute_dplls(state, crtc, encoder); } /** * intel_reserve_shared_dplls - reserve DPLLs for CRTC and encoder combination * @state: atomic state * @crtc: CRTC to reserve DPLLs for * @encoder: encoder * * This function reserves all required DPLLs for the given CRTC and encoder * combination in the current atomic commit @state and the new @crtc atomic * state. * * The new configuration in the atomic commit @state is made effective by * calling intel_shared_dpll_swap_state(). * * The reserved DPLLs should be released by calling * intel_release_shared_dplls(). * * Returns: * 0 if all required DPLLs were successfully reserved, * negative error code otherwise. */ int intel_reserve_shared_dplls(struct intel_atomic_state *state, struct intel_crtc *crtc, struct intel_encoder *encoder) { struct drm_i915_private *i915 = to_i915(state->base.dev); const struct intel_dpll_mgr *dpll_mgr = i915->display.dpll.mgr; if (drm_WARN_ON(&i915->drm, !dpll_mgr)) return -EINVAL; return dpll_mgr->get_dplls(state, crtc, encoder); } /** * intel_release_shared_dplls - end use of DPLLs by CRTC in atomic state * @state: atomic state * @crtc: crtc from which the DPLLs are to be released * * This function releases all DPLLs reserved by intel_reserve_shared_dplls() * from the current atomic commit @state and the old @crtc atomic state. * * The new configuration in the atomic commit @state is made effective by * calling intel_shared_dpll_swap_state(). */ void intel_release_shared_dplls(struct intel_atomic_state *state, struct intel_crtc *crtc) { struct drm_i915_private *i915 = to_i915(state->base.dev); const struct intel_dpll_mgr *dpll_mgr = i915->display.dpll.mgr; /* * FIXME: this function is called for every platform having a * compute_clock hook, even though the platform doesn't yet support * the shared DPLL framework and intel_reserve_shared_dplls() is not * called on those. */ if (!dpll_mgr) return; dpll_mgr->put_dplls(state, crtc); } /** * intel_update_active_dpll - update the active DPLL for a CRTC/encoder * @state: atomic state * @crtc: the CRTC for which to update the active DPLL * @encoder: encoder determining the type of port DPLL * * Update the active DPLL for the given @crtc/@encoder in @crtc's atomic state, * from the port DPLLs reserved previously by intel_reserve_shared_dplls(). The * DPLL selected will be based on the current mode of the encoder's port. */ void intel_update_active_dpll(struct intel_atomic_state *state, struct intel_crtc *crtc, struct intel_encoder *encoder) { struct drm_i915_private *i915 = to_i915(encoder->base.dev); const struct intel_dpll_mgr *dpll_mgr = i915->display.dpll.mgr; if (drm_WARN_ON(&i915->drm, !dpll_mgr)) return; dpll_mgr->update_active_dpll(state, crtc, encoder); } /** * intel_dpll_get_freq - calculate the DPLL's output frequency * @i915: i915 device * @pll: DPLL for which to calculate the output frequency * @pll_state: DPLL state from which to calculate the output frequency * * Return the output frequency corresponding to @pll's passed in @pll_state. */ int intel_dpll_get_freq(struct drm_i915_private *i915, const struct intel_shared_dpll *pll, const struct intel_dpll_hw_state *pll_state) { if (drm_WARN_ON(&i915->drm, !pll->info->funcs->get_freq)) return 0; return pll->info->funcs->get_freq(i915, pll, pll_state); } /** * intel_dpll_get_hw_state - readout the DPLL's hardware state * @i915: i915 device * @pll: DPLL for which to calculate the output frequency * @hw_state: DPLL's hardware state * * Read out @pll's hardware state into @hw_state. */ bool intel_dpll_get_hw_state(struct drm_i915_private *i915, struct intel_shared_dpll *pll, struct intel_dpll_hw_state *hw_state) { return pll->info->funcs->get_hw_state(i915, pll, hw_state); } static void readout_dpll_hw_state(struct drm_i915_private *i915, struct intel_shared_dpll *pll) { struct intel_crtc *crtc; pll->on = intel_dpll_get_hw_state(i915, pll, &pll->state.hw_state); if ((IS_JASPERLAKE(i915) || IS_ELKHARTLAKE(i915)) && pll->on && pll->info->id == DPLL_ID_EHL_DPLL4) { pll->wakeref = intel_display_power_get(i915, POWER_DOMAIN_DC_OFF); } pll->state.pipe_mask = 0; for_each_intel_crtc(&i915->drm, crtc) { struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state); if (crtc_state->hw.active && crtc_state->shared_dpll == pll) intel_reference_shared_dpll_crtc(crtc, pll, &pll->state); } pll->active_mask = pll->state.pipe_mask; drm_dbg_kms(&i915->drm, "%s hw state readout: pipe_mask 0x%x, on %i\n", pll->info->name, pll->state.pipe_mask, pll->on); } void intel_dpll_update_ref_clks(struct drm_i915_private *i915) { if (i915->display.dpll.mgr && i915->display.dpll.mgr->update_ref_clks) i915->display.dpll.mgr->update_ref_clks(i915); } void intel_dpll_readout_hw_state(struct drm_i915_private *i915) { struct intel_shared_dpll *pll; int i; for_each_shared_dpll(i915, pll, i) readout_dpll_hw_state(i915, pll); } static void sanitize_dpll_state(struct drm_i915_private *i915, struct intel_shared_dpll *pll) { if (!pll->on) return; adlp_cmtg_clock_gating_wa(i915, pll); if (pll->active_mask) return; drm_dbg_kms(&i915->drm, "%s enabled but not in use, disabling\n", pll->info->name); pll->info->funcs->disable(i915, pll); pll->on = false; } void intel_dpll_sanitize_state(struct drm_i915_private *i915) { struct intel_shared_dpll *pll; int i; for_each_shared_dpll(i915, pll, i) sanitize_dpll_state(i915, pll); } /** * intel_dpll_dump_hw_state - write hw_state to dmesg * @i915: i915 drm device * @hw_state: hw state to be written to the log * * Write the relevant values in @hw_state to dmesg using drm_dbg_kms. */ void intel_dpll_dump_hw_state(struct drm_i915_private *i915, const struct intel_dpll_hw_state *hw_state) { if (i915->display.dpll.mgr) { i915->display.dpll.mgr->dump_hw_state(i915, hw_state); } else { /* fallback for platforms that don't use the shared dpll * infrastructure */ drm_dbg_kms(&i915->drm, "dpll_hw_state: dpll: 0x%x, dpll_md: 0x%x, " "fp0: 0x%x, fp1: 0x%x\n", hw_state->dpll, hw_state->dpll_md, hw_state->fp0, hw_state->fp1); } } static void verify_single_dpll_state(struct drm_i915_private *i915, struct intel_shared_dpll *pll, struct intel_crtc *crtc, const struct intel_crtc_state *new_crtc_state) { struct intel_dpll_hw_state dpll_hw_state; u8 pipe_mask; bool active; memset(&dpll_hw_state, 0, sizeof(dpll_hw_state)); drm_dbg_kms(&i915->drm, "%s\n", pll->info->name); active = intel_dpll_get_hw_state(i915, pll, &dpll_hw_state); if (!(pll->info->flags & INTEL_DPLL_ALWAYS_ON)) { I915_STATE_WARN(i915, !pll->on && pll->active_mask, "pll in active use but not on in sw tracking\n"); I915_STATE_WARN(i915, pll->on && !pll->active_mask, "pll is on but not used by any active pipe\n"); I915_STATE_WARN(i915, pll->on != active, "pll on state mismatch (expected %i, found %i)\n", pll->on, active); } if (!crtc) { I915_STATE_WARN(i915, pll->active_mask & ~pll->state.pipe_mask, "more active pll users than references: 0x%x vs 0x%x\n", pll->active_mask, pll->state.pipe_mask); return; } pipe_mask = BIT(crtc->pipe); if (new_crtc_state->hw.active) I915_STATE_WARN(i915, !(pll->active_mask & pipe_mask), "pll active mismatch (expected pipe %c in active mask 0x%x)\n", pipe_name(crtc->pipe), pll->active_mask); else I915_STATE_WARN(i915, pll->active_mask & pipe_mask, "pll active mismatch (didn't expect pipe %c in active mask 0x%x)\n", pipe_name(crtc->pipe), pll->active_mask); I915_STATE_WARN(i915, !(pll->state.pipe_mask & pipe_mask), "pll enabled crtcs mismatch (expected 0x%x in 0x%x)\n", pipe_mask, pll->state.pipe_mask); I915_STATE_WARN(i915, pll->on && memcmp(&pll->state.hw_state, &dpll_hw_state, sizeof(dpll_hw_state)), "pll hw state mismatch\n"); } void intel_shared_dpll_state_verify(struct intel_atomic_state *state, struct intel_crtc *crtc) { struct drm_i915_private *i915 = to_i915(state->base.dev); const struct intel_crtc_state *old_crtc_state = intel_atomic_get_old_crtc_state(state, crtc); const struct intel_crtc_state *new_crtc_state = intel_atomic_get_new_crtc_state(state, crtc); if (new_crtc_state->shared_dpll) verify_single_dpll_state(i915, new_crtc_state->shared_dpll, crtc, new_crtc_state); if (old_crtc_state->shared_dpll && old_crtc_state->shared_dpll != new_crtc_state->shared_dpll) { u8 pipe_mask = BIT(crtc->pipe); struct intel_shared_dpll *pll = old_crtc_state->shared_dpll; I915_STATE_WARN(i915, pll->active_mask & pipe_mask, "pll active mismatch (didn't expect pipe %c in active mask (0x%x))\n", pipe_name(crtc->pipe), pll->active_mask); I915_STATE_WARN(i915, pll->state.pipe_mask & pipe_mask, "pll enabled crtcs mismatch (found %x in enabled mask (0x%x))\n", pipe_name(crtc->pipe), pll->state.pipe_mask); } } void intel_shared_dpll_verify_disabled(struct intel_atomic_state *state) { struct drm_i915_private *i915 = to_i915(state->base.dev); struct intel_shared_dpll *pll; int i; for_each_shared_dpll(i915, pll, i) verify_single_dpll_state(i915, pll, NULL, NULL); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1