Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Imre Deak | 5392 | 67.67% | 70 | 43.75% |
Mika Kahola | 722 | 9.06% | 1 | 0.62% |
José Roberto de Souza | 307 | 3.85% | 11 | 6.88% |
Pankaj Bharadiya | 230 | 2.89% | 3 | 1.88% |
Jani Nikula | 195 | 2.45% | 14 | 8.75% |
Manasi D Navare | 181 | 2.27% | 3 | 1.88% |
Luciano Coelho | 163 | 2.05% | 5 | 3.12% |
Lucas De Marchi | 129 | 1.62% | 3 | 1.88% |
Paulo Zanoni | 120 | 1.51% | 6 | 3.75% |
Anusha Srivatsa | 104 | 1.31% | 2 | 1.25% |
Shashank Sharma | 100 | 1.26% | 1 | 0.62% |
Dave Airlie | 68 | 0.85% | 3 | 1.88% |
Ville Syrjälä | 45 | 0.56% | 11 | 6.88% |
Clint Taylor | 44 | 0.55% | 1 | 0.62% |
Nirmoy Das | 26 | 0.33% | 1 | 0.62% |
Animesh Manna | 24 | 0.30% | 1 | 0.62% |
Rodrigo Vivi | 23 | 0.29% | 2 | 1.25% |
Chris Wilson | 22 | 0.28% | 6 | 3.75% |
Wambui Karuga | 21 | 0.26% | 1 | 0.62% |
Matt Roper | 16 | 0.20% | 2 | 1.25% |
Daniel Vetter | 6 | 0.08% | 1 | 0.62% |
Eugeni Dodonov | 5 | 0.06% | 1 | 0.62% |
Andrzej Hajda | 5 | 0.06% | 1 | 0.62% |
Daniele Ceraolo Spurio | 4 | 0.05% | 1 | 0.62% |
Maarten Lankhorst | 3 | 0.04% | 2 | 1.25% |
Jesse Barnes | 3 | 0.04% | 2 | 1.25% |
Michal Wajdeczko | 3 | 0.04% | 1 | 0.62% |
Gwan-gyeong Mun | 2 | 0.03% | 1 | 0.62% |
Vivek Kasireddy | 2 | 0.03% | 1 | 0.62% |
Gustavo A. R. Silva | 2 | 0.03% | 1 | 0.62% |
Kumar, Mahesh | 1 | 0.01% | 1 | 0.62% |
Total | 7968 | 160 |
// SPDX-License-Identifier: MIT /* * Copyright © 2019 Intel Corporation */ #include "i915_drv.h" #include "i915_reg.h" #include "intel_atomic.h" #include "intel_cx0_phy_regs.h" #include "intel_ddi.h" #include "intel_de.h" #include "intel_display.h" #include "intel_display_driver.h" #include "intel_display_power_map.h" #include "intel_display_types.h" #include "intel_dkl_phy_regs.h" #include "intel_dp.h" #include "intel_dp_mst.h" #include "intel_mg_phy_regs.h" #include "intel_modeset_lock.h" #include "intel_tc.h" #define DP_PIN_ASSIGNMENT_C 0x3 #define DP_PIN_ASSIGNMENT_D 0x4 #define DP_PIN_ASSIGNMENT_E 0x5 enum tc_port_mode { TC_PORT_DISCONNECTED, TC_PORT_TBT_ALT, TC_PORT_DP_ALT, TC_PORT_LEGACY, }; struct intel_tc_port; struct intel_tc_phy_ops { enum intel_display_power_domain (*cold_off_domain)(struct intel_tc_port *tc); u32 (*hpd_live_status)(struct intel_tc_port *tc); bool (*is_ready)(struct intel_tc_port *tc); bool (*is_owned)(struct intel_tc_port *tc); void (*get_hw_state)(struct intel_tc_port *tc); bool (*connect)(struct intel_tc_port *tc, int required_lanes); void (*disconnect)(struct intel_tc_port *tc); void (*init)(struct intel_tc_port *tc); }; struct intel_tc_port { struct intel_digital_port *dig_port; const struct intel_tc_phy_ops *phy_ops; struct mutex lock; /* protects the TypeC port mode */ intel_wakeref_t lock_wakeref; #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM) enum intel_display_power_domain lock_power_domain; #endif struct delayed_work disconnect_phy_work; struct delayed_work link_reset_work; int link_refcount; bool legacy_port:1; const char *port_name; enum tc_port_mode mode; enum tc_port_mode init_mode; enum phy_fia phy_fia; u8 phy_fia_idx; }; static enum intel_display_power_domain tc_phy_cold_off_domain(struct intel_tc_port *); static u32 tc_phy_hpd_live_status(struct intel_tc_port *tc); static bool tc_phy_is_ready(struct intel_tc_port *tc); static bool tc_phy_wait_for_ready(struct intel_tc_port *tc); static enum tc_port_mode tc_phy_get_current_mode(struct intel_tc_port *tc); static const char *tc_port_mode_name(enum tc_port_mode mode) { static const char * const names[] = { [TC_PORT_DISCONNECTED] = "disconnected", [TC_PORT_TBT_ALT] = "tbt-alt", [TC_PORT_DP_ALT] = "dp-alt", [TC_PORT_LEGACY] = "legacy", }; if (WARN_ON(mode >= ARRAY_SIZE(names))) mode = TC_PORT_DISCONNECTED; return names[mode]; } static struct intel_tc_port *to_tc_port(struct intel_digital_port *dig_port) { return dig_port->tc; } static struct drm_i915_private *tc_to_i915(struct intel_tc_port *tc) { return to_i915(tc->dig_port->base.base.dev); } static bool intel_tc_port_in_mode(struct intel_digital_port *dig_port, enum tc_port_mode mode) { struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev); enum phy phy = intel_port_to_phy(i915, dig_port->base.port); struct intel_tc_port *tc = to_tc_port(dig_port); return intel_phy_is_tc(i915, phy) && tc->mode == mode; } bool intel_tc_port_in_tbt_alt_mode(struct intel_digital_port *dig_port) { return intel_tc_port_in_mode(dig_port, TC_PORT_TBT_ALT); } bool intel_tc_port_in_dp_alt_mode(struct intel_digital_port *dig_port) { return intel_tc_port_in_mode(dig_port, TC_PORT_DP_ALT); } bool intel_tc_port_in_legacy_mode(struct intel_digital_port *dig_port) { return intel_tc_port_in_mode(dig_port, TC_PORT_LEGACY); } /* * The display power domains used for TC ports depending on the * platform and TC mode (legacy, DP-alt, TBT): * * POWER_DOMAIN_DISPLAY_CORE: * -------------------------- * ADLP/all modes: * - TCSS/IOM access for PHY ready state. * ADLP+/all modes: * - DE/north-,south-HPD ISR access for HPD live state. * * POWER_DOMAIN_PORT_DDI_LANES_<port>: * ----------------------------------- * ICL+/all modes: * - DE/DDI_BUF access for port enabled state. * ADLP/all modes: * - DE/DDI_BUF access for PHY owned state. * * POWER_DOMAIN_AUX_USBC<TC port index>: * ------------------------------------- * ICL/legacy mode: * - TCSS/IOM,FIA access for PHY ready, owned and HPD live state * - TCSS/PHY: block TC-cold power state for using the PHY AUX and * main lanes. * ADLP/legacy, DP-alt modes: * - TCSS/PHY: block TC-cold power state for using the PHY AUX and * main lanes. * * POWER_DOMAIN_TC_COLD_OFF: * ------------------------- * ICL/DP-alt, TBT mode: * - TCSS/TBT: block TC-cold power state for using the (direct or * TBT DP-IN) AUX and main lanes. * * TGL/all modes: * - TCSS/IOM,FIA access for PHY ready, owned and HPD live state * - TCSS/PHY: block TC-cold power state for using the (direct or * TBT DP-IN) AUX and main lanes. * * ADLP/TBT mode: * - TCSS/TBT: block TC-cold power state for using the (TBT DP-IN) * AUX and main lanes. * * XELPDP+/all modes: * - TCSS/IOM,FIA access for PHY ready, owned state * - TCSS/PHY: block TC-cold power state for using the (direct or * TBT DP-IN) AUX and main lanes. */ bool intel_tc_cold_requires_aux_pw(struct intel_digital_port *dig_port) { struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev); struct intel_tc_port *tc = to_tc_port(dig_port); return tc_phy_cold_off_domain(tc) == intel_display_power_legacy_aux_domain(i915, dig_port->aux_ch); } static intel_wakeref_t __tc_cold_block(struct intel_tc_port *tc, enum intel_display_power_domain *domain) { struct drm_i915_private *i915 = tc_to_i915(tc); *domain = tc_phy_cold_off_domain(tc); return intel_display_power_get(i915, *domain); } static intel_wakeref_t tc_cold_block(struct intel_tc_port *tc) { enum intel_display_power_domain domain; intel_wakeref_t wakeref; wakeref = __tc_cold_block(tc, &domain); #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM) tc->lock_power_domain = domain; #endif return wakeref; } static void __tc_cold_unblock(struct intel_tc_port *tc, enum intel_display_power_domain domain, intel_wakeref_t wakeref) { struct drm_i915_private *i915 = tc_to_i915(tc); intel_display_power_put(i915, domain, wakeref); } static void tc_cold_unblock(struct intel_tc_port *tc, intel_wakeref_t wakeref) { enum intel_display_power_domain domain = tc_phy_cold_off_domain(tc); #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM) drm_WARN_ON(&tc_to_i915(tc)->drm, tc->lock_power_domain != domain); #endif __tc_cold_unblock(tc, domain, wakeref); } static void assert_display_core_power_enabled(struct intel_tc_port *tc) { struct drm_i915_private *i915 = tc_to_i915(tc); drm_WARN_ON(&i915->drm, !intel_display_power_is_enabled(i915, POWER_DOMAIN_DISPLAY_CORE)); } static void assert_tc_cold_blocked(struct intel_tc_port *tc) { struct drm_i915_private *i915 = tc_to_i915(tc); bool enabled; enabled = intel_display_power_is_enabled(i915, tc_phy_cold_off_domain(tc)); drm_WARN_ON(&i915->drm, !enabled); } static enum intel_display_power_domain tc_port_power_domain(struct intel_tc_port *tc) { struct drm_i915_private *i915 = tc_to_i915(tc); enum tc_port tc_port = intel_port_to_tc(i915, tc->dig_port->base.port); return POWER_DOMAIN_PORT_DDI_LANES_TC1 + tc_port - TC_PORT_1; } static void assert_tc_port_power_enabled(struct intel_tc_port *tc) { struct drm_i915_private *i915 = tc_to_i915(tc); drm_WARN_ON(&i915->drm, !intel_display_power_is_enabled(i915, tc_port_power_domain(tc))); } static u32 intel_tc_port_get_lane_mask(struct intel_digital_port *dig_port) { struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev); struct intel_tc_port *tc = to_tc_port(dig_port); u32 lane_mask; lane_mask = intel_de_read(i915, PORT_TX_DFLEXDPSP(tc->phy_fia)); drm_WARN_ON(&i915->drm, lane_mask == 0xffffffff); assert_tc_cold_blocked(tc); lane_mask &= DP_LANE_ASSIGNMENT_MASK(tc->phy_fia_idx); return lane_mask >> DP_LANE_ASSIGNMENT_SHIFT(tc->phy_fia_idx); } u32 intel_tc_port_get_pin_assignment_mask(struct intel_digital_port *dig_port) { struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev); struct intel_tc_port *tc = to_tc_port(dig_port); u32 pin_mask; pin_mask = intel_de_read(i915, PORT_TX_DFLEXPA1(tc->phy_fia)); drm_WARN_ON(&i915->drm, pin_mask == 0xffffffff); assert_tc_cold_blocked(tc); return (pin_mask & DP_PIN_ASSIGNMENT_MASK(tc->phy_fia_idx)) >> DP_PIN_ASSIGNMENT_SHIFT(tc->phy_fia_idx); } static int lnl_tc_port_get_max_lane_count(struct intel_digital_port *dig_port) { struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev); enum tc_port tc_port = intel_port_to_tc(i915, dig_port->base.port); intel_wakeref_t wakeref; u32 val, pin_assignment; with_intel_display_power(i915, POWER_DOMAIN_DISPLAY_CORE, wakeref) val = intel_de_read(i915, TCSS_DDI_STATUS(tc_port)); pin_assignment = REG_FIELD_GET(TCSS_DDI_STATUS_PIN_ASSIGNMENT_MASK, val); switch (pin_assignment) { default: MISSING_CASE(pin_assignment); fallthrough; case DP_PIN_ASSIGNMENT_D: return 2; case DP_PIN_ASSIGNMENT_C: case DP_PIN_ASSIGNMENT_E: return 4; } } static int mtl_tc_port_get_max_lane_count(struct intel_digital_port *dig_port) { struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev); intel_wakeref_t wakeref; u32 pin_mask; with_intel_display_power(i915, POWER_DOMAIN_DISPLAY_CORE, wakeref) pin_mask = intel_tc_port_get_pin_assignment_mask(dig_port); switch (pin_mask) { default: MISSING_CASE(pin_mask); fallthrough; case DP_PIN_ASSIGNMENT_D: return 2; case DP_PIN_ASSIGNMENT_C: case DP_PIN_ASSIGNMENT_E: return 4; } } static int intel_tc_port_get_max_lane_count(struct intel_digital_port *dig_port) { struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev); intel_wakeref_t wakeref; u32 lane_mask = 0; with_intel_display_power(i915, POWER_DOMAIN_DISPLAY_CORE, wakeref) lane_mask = intel_tc_port_get_lane_mask(dig_port); switch (lane_mask) { default: MISSING_CASE(lane_mask); fallthrough; case 0x1: case 0x2: case 0x4: case 0x8: return 1; case 0x3: case 0xc: return 2; case 0xf: return 4; } } int intel_tc_port_max_lane_count(struct intel_digital_port *dig_port) { struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev); struct intel_tc_port *tc = to_tc_port(dig_port); enum phy phy = intel_port_to_phy(i915, dig_port->base.port); if (!intel_phy_is_tc(i915, phy) || tc->mode != TC_PORT_DP_ALT) return 4; assert_tc_cold_blocked(tc); if (DISPLAY_VER(i915) >= 20) return lnl_tc_port_get_max_lane_count(dig_port); if (DISPLAY_VER(i915) >= 14) return mtl_tc_port_get_max_lane_count(dig_port); return intel_tc_port_get_max_lane_count(dig_port); } void intel_tc_port_set_fia_lane_count(struct intel_digital_port *dig_port, int required_lanes) { struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev); struct intel_tc_port *tc = to_tc_port(dig_port); bool lane_reversal = dig_port->saved_port_bits & DDI_BUF_PORT_REVERSAL; u32 val; drm_WARN_ON(&i915->drm, lane_reversal && tc->mode != TC_PORT_LEGACY); assert_tc_cold_blocked(tc); val = intel_de_read(i915, PORT_TX_DFLEXDPMLE1(tc->phy_fia)); val &= ~DFLEXDPMLE1_DPMLETC_MASK(tc->phy_fia_idx); switch (required_lanes) { case 1: val |= lane_reversal ? DFLEXDPMLE1_DPMLETC_ML3(tc->phy_fia_idx) : DFLEXDPMLE1_DPMLETC_ML0(tc->phy_fia_idx); break; case 2: val |= lane_reversal ? DFLEXDPMLE1_DPMLETC_ML3_2(tc->phy_fia_idx) : DFLEXDPMLE1_DPMLETC_ML1_0(tc->phy_fia_idx); break; case 4: val |= DFLEXDPMLE1_DPMLETC_ML3_0(tc->phy_fia_idx); break; default: MISSING_CASE(required_lanes); } intel_de_write(i915, PORT_TX_DFLEXDPMLE1(tc->phy_fia), val); } static void tc_port_fixup_legacy_flag(struct intel_tc_port *tc, u32 live_status_mask) { struct drm_i915_private *i915 = tc_to_i915(tc); u32 valid_hpd_mask; drm_WARN_ON(&i915->drm, tc->mode != TC_PORT_DISCONNECTED); if (hweight32(live_status_mask) != 1) return; if (tc->legacy_port) valid_hpd_mask = BIT(TC_PORT_LEGACY); else valid_hpd_mask = BIT(TC_PORT_DP_ALT) | BIT(TC_PORT_TBT_ALT); if (!(live_status_mask & ~valid_hpd_mask)) return; /* If live status mismatches the VBT flag, trust the live status. */ drm_dbg_kms(&i915->drm, "Port %s: live status %08x mismatches the legacy port flag %08x, fixing flag\n", tc->port_name, live_status_mask, valid_hpd_mask); tc->legacy_port = !tc->legacy_port; } static void tc_phy_load_fia_params(struct intel_tc_port *tc, bool modular_fia) { struct drm_i915_private *i915 = tc_to_i915(tc); enum port port = tc->dig_port->base.port; enum tc_port tc_port = intel_port_to_tc(i915, port); /* * Each Modular FIA instance houses 2 TC ports. In SOC that has more * than two TC ports, there are multiple instances of Modular FIA. */ if (modular_fia) { tc->phy_fia = tc_port / 2; tc->phy_fia_idx = tc_port % 2; } else { tc->phy_fia = FIA1; tc->phy_fia_idx = tc_port; } } /* * ICL TC PHY handlers * ------------------- */ static enum intel_display_power_domain icl_tc_phy_cold_off_domain(struct intel_tc_port *tc) { struct drm_i915_private *i915 = tc_to_i915(tc); struct intel_digital_port *dig_port = tc->dig_port; if (tc->legacy_port) return intel_display_power_legacy_aux_domain(i915, dig_port->aux_ch); return POWER_DOMAIN_TC_COLD_OFF; } static u32 icl_tc_phy_hpd_live_status(struct intel_tc_port *tc) { struct drm_i915_private *i915 = tc_to_i915(tc); struct intel_digital_port *dig_port = tc->dig_port; u32 isr_bit = i915->display.hotplug.pch_hpd[dig_port->base.hpd_pin]; intel_wakeref_t wakeref; u32 fia_isr; u32 pch_isr; u32 mask = 0; with_intel_display_power(i915, tc_phy_cold_off_domain(tc), wakeref) { fia_isr = intel_de_read(i915, PORT_TX_DFLEXDPSP(tc->phy_fia)); pch_isr = intel_de_read(i915, SDEISR); } if (fia_isr == 0xffffffff) { drm_dbg_kms(&i915->drm, "Port %s: PHY in TCCOLD, nothing connected\n", tc->port_name); return mask; } if (fia_isr & TC_LIVE_STATE_TBT(tc->phy_fia_idx)) mask |= BIT(TC_PORT_TBT_ALT); if (fia_isr & TC_LIVE_STATE_TC(tc->phy_fia_idx)) mask |= BIT(TC_PORT_DP_ALT); if (pch_isr & isr_bit) mask |= BIT(TC_PORT_LEGACY); return mask; } /* * Return the PHY status complete flag indicating that display can acquire the * PHY ownership. The IOM firmware sets this flag when a DP-alt or legacy sink * is connected and it's ready to switch the ownership to display. The flag * will be left cleared when a TBT-alt sink is connected, where the PHY is * owned by the TBT subsystem and so switching the ownership to display is not * required. */ static bool icl_tc_phy_is_ready(struct intel_tc_port *tc) { struct drm_i915_private *i915 = tc_to_i915(tc); u32 val; assert_tc_cold_blocked(tc); val = intel_de_read(i915, PORT_TX_DFLEXDPPMS(tc->phy_fia)); if (val == 0xffffffff) { drm_dbg_kms(&i915->drm, "Port %s: PHY in TCCOLD, assuming not ready\n", tc->port_name); return false; } return val & DP_PHY_MODE_STATUS_COMPLETED(tc->phy_fia_idx); } static bool icl_tc_phy_take_ownership(struct intel_tc_port *tc, bool take) { struct drm_i915_private *i915 = tc_to_i915(tc); u32 val; assert_tc_cold_blocked(tc); val = intel_de_read(i915, PORT_TX_DFLEXDPCSSS(tc->phy_fia)); if (val == 0xffffffff) { drm_dbg_kms(&i915->drm, "Port %s: PHY in TCCOLD, can't %s ownership\n", tc->port_name, take ? "take" : "release"); return false; } val &= ~DP_PHY_MODE_STATUS_NOT_SAFE(tc->phy_fia_idx); if (take) val |= DP_PHY_MODE_STATUS_NOT_SAFE(tc->phy_fia_idx); intel_de_write(i915, PORT_TX_DFLEXDPCSSS(tc->phy_fia), val); return true; } static bool icl_tc_phy_is_owned(struct intel_tc_port *tc) { struct drm_i915_private *i915 = tc_to_i915(tc); u32 val; assert_tc_cold_blocked(tc); val = intel_de_read(i915, PORT_TX_DFLEXDPCSSS(tc->phy_fia)); if (val == 0xffffffff) { drm_dbg_kms(&i915->drm, "Port %s: PHY in TCCOLD, assume not owned\n", tc->port_name); return false; } return val & DP_PHY_MODE_STATUS_NOT_SAFE(tc->phy_fia_idx); } static void icl_tc_phy_get_hw_state(struct intel_tc_port *tc) { enum intel_display_power_domain domain; intel_wakeref_t tc_cold_wref; tc_cold_wref = __tc_cold_block(tc, &domain); tc->mode = tc_phy_get_current_mode(tc); if (tc->mode != TC_PORT_DISCONNECTED) tc->lock_wakeref = tc_cold_block(tc); __tc_cold_unblock(tc, domain, tc_cold_wref); } /* * This function implements the first part of the Connect Flow described by our * specification, Gen11 TypeC Programming chapter. The rest of the flow (reading * lanes, EDID, etc) is done as needed in the typical places. * * Unlike the other ports, type-C ports are not available to use as soon as we * get a hotplug. The type-C PHYs can be shared between multiple controllers: * display, USB, etc. As a result, handshaking through FIA is required around * connect and disconnect to cleanly transfer ownership with the controller and * set the type-C power state. */ static bool tc_phy_verify_legacy_or_dp_alt_mode(struct intel_tc_port *tc, int required_lanes) { struct drm_i915_private *i915 = tc_to_i915(tc); struct intel_digital_port *dig_port = tc->dig_port; int max_lanes; max_lanes = intel_tc_port_max_lane_count(dig_port); if (tc->mode == TC_PORT_LEGACY) { drm_WARN_ON(&i915->drm, max_lanes != 4); return true; } drm_WARN_ON(&i915->drm, tc->mode != TC_PORT_DP_ALT); /* * Now we have to re-check the live state, in case the port recently * became disconnected. Not necessary for legacy mode. */ if (!(tc_phy_hpd_live_status(tc) & BIT(TC_PORT_DP_ALT))) { drm_dbg_kms(&i915->drm, "Port %s: PHY sudden disconnect\n", tc->port_name); return false; } if (max_lanes < required_lanes) { drm_dbg_kms(&i915->drm, "Port %s: PHY max lanes %d < required lanes %d\n", tc->port_name, max_lanes, required_lanes); return false; } return true; } static bool icl_tc_phy_connect(struct intel_tc_port *tc, int required_lanes) { struct drm_i915_private *i915 = tc_to_i915(tc); tc->lock_wakeref = tc_cold_block(tc); if (tc->mode == TC_PORT_TBT_ALT) return true; if ((!tc_phy_is_ready(tc) || !icl_tc_phy_take_ownership(tc, true)) && !drm_WARN_ON(&i915->drm, tc->mode == TC_PORT_LEGACY)) { drm_dbg_kms(&i915->drm, "Port %s: can't take PHY ownership (ready %s)\n", tc->port_name, str_yes_no(tc_phy_is_ready(tc))); goto out_unblock_tc_cold; } if (!tc_phy_verify_legacy_or_dp_alt_mode(tc, required_lanes)) goto out_release_phy; return true; out_release_phy: icl_tc_phy_take_ownership(tc, false); out_unblock_tc_cold: tc_cold_unblock(tc, fetch_and_zero(&tc->lock_wakeref)); return false; } /* * See the comment at the connect function. This implements the Disconnect * Flow. */ static void icl_tc_phy_disconnect(struct intel_tc_port *tc) { switch (tc->mode) { case TC_PORT_LEGACY: case TC_PORT_DP_ALT: icl_tc_phy_take_ownership(tc, false); fallthrough; case TC_PORT_TBT_ALT: tc_cold_unblock(tc, fetch_and_zero(&tc->lock_wakeref)); break; default: MISSING_CASE(tc->mode); } } static void icl_tc_phy_init(struct intel_tc_port *tc) { tc_phy_load_fia_params(tc, false); } static const struct intel_tc_phy_ops icl_tc_phy_ops = { .cold_off_domain = icl_tc_phy_cold_off_domain, .hpd_live_status = icl_tc_phy_hpd_live_status, .is_ready = icl_tc_phy_is_ready, .is_owned = icl_tc_phy_is_owned, .get_hw_state = icl_tc_phy_get_hw_state, .connect = icl_tc_phy_connect, .disconnect = icl_tc_phy_disconnect, .init = icl_tc_phy_init, }; /* * TGL TC PHY handlers * ------------------- */ static enum intel_display_power_domain tgl_tc_phy_cold_off_domain(struct intel_tc_port *tc) { return POWER_DOMAIN_TC_COLD_OFF; } static void tgl_tc_phy_init(struct intel_tc_port *tc) { struct drm_i915_private *i915 = tc_to_i915(tc); intel_wakeref_t wakeref; u32 val; with_intel_display_power(i915, tc_phy_cold_off_domain(tc), wakeref) val = intel_de_read(i915, PORT_TX_DFLEXDPSP(FIA1)); drm_WARN_ON(&i915->drm, val == 0xffffffff); tc_phy_load_fia_params(tc, val & MODULAR_FIA_MASK); } static const struct intel_tc_phy_ops tgl_tc_phy_ops = { .cold_off_domain = tgl_tc_phy_cold_off_domain, .hpd_live_status = icl_tc_phy_hpd_live_status, .is_ready = icl_tc_phy_is_ready, .is_owned = icl_tc_phy_is_owned, .get_hw_state = icl_tc_phy_get_hw_state, .connect = icl_tc_phy_connect, .disconnect = icl_tc_phy_disconnect, .init = tgl_tc_phy_init, }; /* * ADLP TC PHY handlers * -------------------- */ static enum intel_display_power_domain adlp_tc_phy_cold_off_domain(struct intel_tc_port *tc) { struct drm_i915_private *i915 = tc_to_i915(tc); struct intel_digital_port *dig_port = tc->dig_port; if (tc->mode != TC_PORT_TBT_ALT) return intel_display_power_legacy_aux_domain(i915, dig_port->aux_ch); return POWER_DOMAIN_TC_COLD_OFF; } static u32 adlp_tc_phy_hpd_live_status(struct intel_tc_port *tc) { struct drm_i915_private *i915 = tc_to_i915(tc); struct intel_digital_port *dig_port = tc->dig_port; enum hpd_pin hpd_pin = dig_port->base.hpd_pin; u32 cpu_isr_bits = i915->display.hotplug.hpd[hpd_pin]; u32 pch_isr_bit = i915->display.hotplug.pch_hpd[hpd_pin]; intel_wakeref_t wakeref; u32 cpu_isr; u32 pch_isr; u32 mask = 0; with_intel_display_power(i915, POWER_DOMAIN_DISPLAY_CORE, wakeref) { cpu_isr = intel_de_read(i915, GEN11_DE_HPD_ISR); pch_isr = intel_de_read(i915, SDEISR); } if (cpu_isr & (cpu_isr_bits & GEN11_DE_TC_HOTPLUG_MASK)) mask |= BIT(TC_PORT_DP_ALT); if (cpu_isr & (cpu_isr_bits & GEN11_DE_TBT_HOTPLUG_MASK)) mask |= BIT(TC_PORT_TBT_ALT); if (pch_isr & pch_isr_bit) mask |= BIT(TC_PORT_LEGACY); return mask; } /* * Return the PHY status complete flag indicating that display can acquire the * PHY ownership. The IOM firmware sets this flag when it's ready to switch * the ownership to display, regardless of what sink is connected (TBT-alt, * DP-alt, legacy or nothing). For TBT-alt sinks the PHY is owned by the TBT * subsystem and so switching the ownership to display is not required. */ static bool adlp_tc_phy_is_ready(struct intel_tc_port *tc) { struct drm_i915_private *i915 = tc_to_i915(tc); enum tc_port tc_port = intel_port_to_tc(i915, tc->dig_port->base.port); u32 val; assert_display_core_power_enabled(tc); val = intel_de_read(i915, TCSS_DDI_STATUS(tc_port)); if (val == 0xffffffff) { drm_dbg_kms(&i915->drm, "Port %s: PHY in TCCOLD, assuming not ready\n", tc->port_name); return false; } return val & TCSS_DDI_STATUS_READY; } static bool adlp_tc_phy_take_ownership(struct intel_tc_port *tc, bool take) { struct drm_i915_private *i915 = tc_to_i915(tc); enum port port = tc->dig_port->base.port; assert_tc_port_power_enabled(tc); intel_de_rmw(i915, DDI_BUF_CTL(port), DDI_BUF_CTL_TC_PHY_OWNERSHIP, take ? DDI_BUF_CTL_TC_PHY_OWNERSHIP : 0); return true; } static bool adlp_tc_phy_is_owned(struct intel_tc_port *tc) { struct drm_i915_private *i915 = tc_to_i915(tc); enum port port = tc->dig_port->base.port; u32 val; assert_tc_port_power_enabled(tc); val = intel_de_read(i915, DDI_BUF_CTL(port)); return val & DDI_BUF_CTL_TC_PHY_OWNERSHIP; } static void adlp_tc_phy_get_hw_state(struct intel_tc_port *tc) { struct drm_i915_private *i915 = tc_to_i915(tc); enum intel_display_power_domain port_power_domain = tc_port_power_domain(tc); intel_wakeref_t port_wakeref; port_wakeref = intel_display_power_get(i915, port_power_domain); tc->mode = tc_phy_get_current_mode(tc); if (tc->mode != TC_PORT_DISCONNECTED) tc->lock_wakeref = tc_cold_block(tc); intel_display_power_put(i915, port_power_domain, port_wakeref); } static bool adlp_tc_phy_connect(struct intel_tc_port *tc, int required_lanes) { struct drm_i915_private *i915 = tc_to_i915(tc); enum intel_display_power_domain port_power_domain = tc_port_power_domain(tc); intel_wakeref_t port_wakeref; if (tc->mode == TC_PORT_TBT_ALT) { tc->lock_wakeref = tc_cold_block(tc); return true; } port_wakeref = intel_display_power_get(i915, port_power_domain); if (!adlp_tc_phy_take_ownership(tc, true) && !drm_WARN_ON(&i915->drm, tc->mode == TC_PORT_LEGACY)) { drm_dbg_kms(&i915->drm, "Port %s: can't take PHY ownership\n", tc->port_name); goto out_put_port_power; } if (!tc_phy_is_ready(tc) && !drm_WARN_ON(&i915->drm, tc->mode == TC_PORT_LEGACY)) { drm_dbg_kms(&i915->drm, "Port %s: PHY not ready\n", tc->port_name); goto out_release_phy; } tc->lock_wakeref = tc_cold_block(tc); if (!tc_phy_verify_legacy_or_dp_alt_mode(tc, required_lanes)) goto out_unblock_tc_cold; intel_display_power_put(i915, port_power_domain, port_wakeref); return true; out_unblock_tc_cold: tc_cold_unblock(tc, fetch_and_zero(&tc->lock_wakeref)); out_release_phy: adlp_tc_phy_take_ownership(tc, false); out_put_port_power: intel_display_power_put(i915, port_power_domain, port_wakeref); return false; } static void adlp_tc_phy_disconnect(struct intel_tc_port *tc) { struct drm_i915_private *i915 = tc_to_i915(tc); enum intel_display_power_domain port_power_domain = tc_port_power_domain(tc); intel_wakeref_t port_wakeref; port_wakeref = intel_display_power_get(i915, port_power_domain); tc_cold_unblock(tc, fetch_and_zero(&tc->lock_wakeref)); switch (tc->mode) { case TC_PORT_LEGACY: case TC_PORT_DP_ALT: adlp_tc_phy_take_ownership(tc, false); fallthrough; case TC_PORT_TBT_ALT: break; default: MISSING_CASE(tc->mode); } intel_display_power_put(i915, port_power_domain, port_wakeref); } static void adlp_tc_phy_init(struct intel_tc_port *tc) { tc_phy_load_fia_params(tc, true); } static const struct intel_tc_phy_ops adlp_tc_phy_ops = { .cold_off_domain = adlp_tc_phy_cold_off_domain, .hpd_live_status = adlp_tc_phy_hpd_live_status, .is_ready = adlp_tc_phy_is_ready, .is_owned = adlp_tc_phy_is_owned, .get_hw_state = adlp_tc_phy_get_hw_state, .connect = adlp_tc_phy_connect, .disconnect = adlp_tc_phy_disconnect, .init = adlp_tc_phy_init, }; /* * XELPDP TC PHY handlers * ---------------------- */ static u32 xelpdp_tc_phy_hpd_live_status(struct intel_tc_port *tc) { struct drm_i915_private *i915 = tc_to_i915(tc); struct intel_digital_port *dig_port = tc->dig_port; enum hpd_pin hpd_pin = dig_port->base.hpd_pin; u32 pica_isr_bits = i915->display.hotplug.hpd[hpd_pin]; u32 pch_isr_bit = i915->display.hotplug.pch_hpd[hpd_pin]; intel_wakeref_t wakeref; u32 pica_isr; u32 pch_isr; u32 mask = 0; with_intel_display_power(i915, POWER_DOMAIN_DISPLAY_CORE, wakeref) { pica_isr = intel_de_read(i915, PICAINTERRUPT_ISR); pch_isr = intel_de_read(i915, SDEISR); } if (pica_isr & (pica_isr_bits & XELPDP_DP_ALT_HOTPLUG_MASK)) mask |= BIT(TC_PORT_DP_ALT); if (pica_isr & (pica_isr_bits & XELPDP_TBT_HOTPLUG_MASK)) mask |= BIT(TC_PORT_TBT_ALT); if (tc->legacy_port && (pch_isr & pch_isr_bit)) mask |= BIT(TC_PORT_LEGACY); return mask; } static bool xelpdp_tc_phy_tcss_power_is_enabled(struct intel_tc_port *tc) { struct drm_i915_private *i915 = tc_to_i915(tc); enum port port = tc->dig_port->base.port; assert_tc_cold_blocked(tc); return intel_de_read(i915, XELPDP_PORT_BUF_CTL1(port)) & XELPDP_TCSS_POWER_STATE; } static bool xelpdp_tc_phy_wait_for_tcss_power(struct intel_tc_port *tc, bool enabled) { struct drm_i915_private *i915 = tc_to_i915(tc); if (wait_for(xelpdp_tc_phy_tcss_power_is_enabled(tc) == enabled, 5)) { drm_dbg_kms(&i915->drm, "Port %s: timeout waiting for TCSS power to get %s\n", enabled ? "enabled" : "disabled", tc->port_name); return false; } return true; } static void __xelpdp_tc_phy_enable_tcss_power(struct intel_tc_port *tc, bool enable) { struct drm_i915_private *i915 = tc_to_i915(tc); enum port port = tc->dig_port->base.port; u32 val; assert_tc_cold_blocked(tc); val = intel_de_read(i915, XELPDP_PORT_BUF_CTL1(port)); if (enable) val |= XELPDP_TCSS_POWER_REQUEST; else val &= ~XELPDP_TCSS_POWER_REQUEST; intel_de_write(i915, XELPDP_PORT_BUF_CTL1(port), val); } static bool xelpdp_tc_phy_enable_tcss_power(struct intel_tc_port *tc, bool enable) { struct drm_i915_private *i915 = tc_to_i915(tc); __xelpdp_tc_phy_enable_tcss_power(tc, enable); if ((!tc_phy_wait_for_ready(tc) || !xelpdp_tc_phy_wait_for_tcss_power(tc, enable)) && !drm_WARN_ON(&i915->drm, tc->mode == TC_PORT_LEGACY)) { if (enable) { __xelpdp_tc_phy_enable_tcss_power(tc, false); xelpdp_tc_phy_wait_for_tcss_power(tc, false); } return false; } return true; } static void xelpdp_tc_phy_take_ownership(struct intel_tc_port *tc, bool take) { struct drm_i915_private *i915 = tc_to_i915(tc); enum port port = tc->dig_port->base.port; u32 val; assert_tc_cold_blocked(tc); val = intel_de_read(i915, XELPDP_PORT_BUF_CTL1(port)); if (take) val |= XELPDP_TC_PHY_OWNERSHIP; else val &= ~XELPDP_TC_PHY_OWNERSHIP; intel_de_write(i915, XELPDP_PORT_BUF_CTL1(port), val); } static bool xelpdp_tc_phy_is_owned(struct intel_tc_port *tc) { struct drm_i915_private *i915 = tc_to_i915(tc); enum port port = tc->dig_port->base.port; assert_tc_cold_blocked(tc); return intel_de_read(i915, XELPDP_PORT_BUF_CTL1(port)) & XELPDP_TC_PHY_OWNERSHIP; } static void xelpdp_tc_phy_get_hw_state(struct intel_tc_port *tc) { struct drm_i915_private *i915 = tc_to_i915(tc); intel_wakeref_t tc_cold_wref; enum intel_display_power_domain domain; tc_cold_wref = __tc_cold_block(tc, &domain); tc->mode = tc_phy_get_current_mode(tc); if (tc->mode != TC_PORT_DISCONNECTED) tc->lock_wakeref = tc_cold_block(tc); drm_WARN_ON(&i915->drm, (tc->mode == TC_PORT_DP_ALT || tc->mode == TC_PORT_LEGACY) && !xelpdp_tc_phy_tcss_power_is_enabled(tc)); __tc_cold_unblock(tc, domain, tc_cold_wref); } static bool xelpdp_tc_phy_connect(struct intel_tc_port *tc, int required_lanes) { tc->lock_wakeref = tc_cold_block(tc); if (tc->mode == TC_PORT_TBT_ALT) return true; if (!xelpdp_tc_phy_enable_tcss_power(tc, true)) goto out_unblock_tccold; xelpdp_tc_phy_take_ownership(tc, true); if (!tc_phy_verify_legacy_or_dp_alt_mode(tc, required_lanes)) goto out_release_phy; return true; out_release_phy: xelpdp_tc_phy_take_ownership(tc, false); xelpdp_tc_phy_wait_for_tcss_power(tc, false); out_unblock_tccold: tc_cold_unblock(tc, fetch_and_zero(&tc->lock_wakeref)); return false; } static void xelpdp_tc_phy_disconnect(struct intel_tc_port *tc) { switch (tc->mode) { case TC_PORT_LEGACY: case TC_PORT_DP_ALT: xelpdp_tc_phy_take_ownership(tc, false); xelpdp_tc_phy_enable_tcss_power(tc, false); fallthrough; case TC_PORT_TBT_ALT: tc_cold_unblock(tc, fetch_and_zero(&tc->lock_wakeref)); break; default: MISSING_CASE(tc->mode); } } static const struct intel_tc_phy_ops xelpdp_tc_phy_ops = { .cold_off_domain = tgl_tc_phy_cold_off_domain, .hpd_live_status = xelpdp_tc_phy_hpd_live_status, .is_ready = adlp_tc_phy_is_ready, .is_owned = xelpdp_tc_phy_is_owned, .get_hw_state = xelpdp_tc_phy_get_hw_state, .connect = xelpdp_tc_phy_connect, .disconnect = xelpdp_tc_phy_disconnect, .init = adlp_tc_phy_init, }; /* * Generic TC PHY handlers * ----------------------- */ static enum intel_display_power_domain tc_phy_cold_off_domain(struct intel_tc_port *tc) { return tc->phy_ops->cold_off_domain(tc); } static u32 tc_phy_hpd_live_status(struct intel_tc_port *tc) { struct drm_i915_private *i915 = tc_to_i915(tc); u32 mask; mask = tc->phy_ops->hpd_live_status(tc); /* The sink can be connected only in a single mode. */ drm_WARN_ON_ONCE(&i915->drm, hweight32(mask) > 1); return mask; } static bool tc_phy_is_ready(struct intel_tc_port *tc) { return tc->phy_ops->is_ready(tc); } static bool tc_phy_is_owned(struct intel_tc_port *tc) { return tc->phy_ops->is_owned(tc); } static void tc_phy_get_hw_state(struct intel_tc_port *tc) { tc->phy_ops->get_hw_state(tc); } static bool tc_phy_is_ready_and_owned(struct intel_tc_port *tc, bool phy_is_ready, bool phy_is_owned) { struct drm_i915_private *i915 = tc_to_i915(tc); drm_WARN_ON(&i915->drm, phy_is_owned && !phy_is_ready); return phy_is_ready && phy_is_owned; } static bool tc_phy_is_connected(struct intel_tc_port *tc, enum icl_port_dpll_id port_pll_type) { struct intel_encoder *encoder = &tc->dig_port->base; struct drm_i915_private *i915 = to_i915(encoder->base.dev); bool phy_is_ready = tc_phy_is_ready(tc); bool phy_is_owned = tc_phy_is_owned(tc); bool is_connected; if (tc_phy_is_ready_and_owned(tc, phy_is_ready, phy_is_owned)) is_connected = port_pll_type == ICL_PORT_DPLL_MG_PHY; else is_connected = port_pll_type == ICL_PORT_DPLL_DEFAULT; drm_dbg_kms(&i915->drm, "Port %s: PHY connected: %s (ready: %s, owned: %s, pll_type: %s)\n", tc->port_name, str_yes_no(is_connected), str_yes_no(phy_is_ready), str_yes_no(phy_is_owned), port_pll_type == ICL_PORT_DPLL_DEFAULT ? "tbt" : "non-tbt"); return is_connected; } static bool tc_phy_wait_for_ready(struct intel_tc_port *tc) { struct drm_i915_private *i915 = tc_to_i915(tc); if (wait_for(tc_phy_is_ready(tc), 500)) { drm_err(&i915->drm, "Port %s: timeout waiting for PHY ready\n", tc->port_name); return false; } return true; } static enum tc_port_mode hpd_mask_to_tc_mode(u32 live_status_mask) { if (live_status_mask) return fls(live_status_mask) - 1; return TC_PORT_DISCONNECTED; } static enum tc_port_mode tc_phy_hpd_live_mode(struct intel_tc_port *tc) { u32 live_status_mask = tc_phy_hpd_live_status(tc); return hpd_mask_to_tc_mode(live_status_mask); } static enum tc_port_mode get_tc_mode_in_phy_owned_state(struct intel_tc_port *tc, enum tc_port_mode live_mode) { switch (live_mode) { case TC_PORT_LEGACY: case TC_PORT_DP_ALT: return live_mode; default: MISSING_CASE(live_mode); fallthrough; case TC_PORT_TBT_ALT: case TC_PORT_DISCONNECTED: if (tc->legacy_port) return TC_PORT_LEGACY; else return TC_PORT_DP_ALT; } } static enum tc_port_mode get_tc_mode_in_phy_not_owned_state(struct intel_tc_port *tc, enum tc_port_mode live_mode) { switch (live_mode) { case TC_PORT_LEGACY: return TC_PORT_DISCONNECTED; case TC_PORT_DP_ALT: case TC_PORT_TBT_ALT: return TC_PORT_TBT_ALT; default: MISSING_CASE(live_mode); fallthrough; case TC_PORT_DISCONNECTED: if (tc->legacy_port) return TC_PORT_DISCONNECTED; else return TC_PORT_TBT_ALT; } } static enum tc_port_mode tc_phy_get_current_mode(struct intel_tc_port *tc) { struct drm_i915_private *i915 = tc_to_i915(tc); enum tc_port_mode live_mode = tc_phy_hpd_live_mode(tc); bool phy_is_ready; bool phy_is_owned; enum tc_port_mode mode; /* * For legacy ports the IOM firmware initializes the PHY during boot-up * and system resume whether or not a sink is connected. Wait here for * the initialization to get ready. */ if (tc->legacy_port) tc_phy_wait_for_ready(tc); phy_is_ready = tc_phy_is_ready(tc); phy_is_owned = tc_phy_is_owned(tc); if (!tc_phy_is_ready_and_owned(tc, phy_is_ready, phy_is_owned)) { mode = get_tc_mode_in_phy_not_owned_state(tc, live_mode); } else { drm_WARN_ON(&i915->drm, live_mode == TC_PORT_TBT_ALT); mode = get_tc_mode_in_phy_owned_state(tc, live_mode); } drm_dbg_kms(&i915->drm, "Port %s: PHY mode: %s (ready: %s, owned: %s, HPD: %s)\n", tc->port_name, tc_port_mode_name(mode), str_yes_no(phy_is_ready), str_yes_no(phy_is_owned), tc_port_mode_name(live_mode)); return mode; } static enum tc_port_mode default_tc_mode(struct intel_tc_port *tc) { if (tc->legacy_port) return TC_PORT_LEGACY; return TC_PORT_TBT_ALT; } static enum tc_port_mode hpd_mask_to_target_mode(struct intel_tc_port *tc, u32 live_status_mask) { enum tc_port_mode mode = hpd_mask_to_tc_mode(live_status_mask); if (mode != TC_PORT_DISCONNECTED) return mode; return default_tc_mode(tc); } static enum tc_port_mode tc_phy_get_target_mode(struct intel_tc_port *tc) { u32 live_status_mask = tc_phy_hpd_live_status(tc); return hpd_mask_to_target_mode(tc, live_status_mask); } static void tc_phy_connect(struct intel_tc_port *tc, int required_lanes) { struct drm_i915_private *i915 = tc_to_i915(tc); u32 live_status_mask = tc_phy_hpd_live_status(tc); bool connected; tc_port_fixup_legacy_flag(tc, live_status_mask); tc->mode = hpd_mask_to_target_mode(tc, live_status_mask); connected = tc->phy_ops->connect(tc, required_lanes); if (!connected && tc->mode != default_tc_mode(tc)) { tc->mode = default_tc_mode(tc); connected = tc->phy_ops->connect(tc, required_lanes); } drm_WARN_ON(&i915->drm, !connected); } static void tc_phy_disconnect(struct intel_tc_port *tc) { if (tc->mode != TC_PORT_DISCONNECTED) { tc->phy_ops->disconnect(tc); tc->mode = TC_PORT_DISCONNECTED; } } static void tc_phy_init(struct intel_tc_port *tc) { mutex_lock(&tc->lock); tc->phy_ops->init(tc); mutex_unlock(&tc->lock); } static void intel_tc_port_reset_mode(struct intel_tc_port *tc, int required_lanes, bool force_disconnect) { struct drm_i915_private *i915 = tc_to_i915(tc); struct intel_digital_port *dig_port = tc->dig_port; enum tc_port_mode old_tc_mode = tc->mode; intel_display_power_flush_work(i915); if (!intel_tc_cold_requires_aux_pw(dig_port)) { enum intel_display_power_domain aux_domain; bool aux_powered; aux_domain = intel_aux_power_domain(dig_port); aux_powered = intel_display_power_is_enabled(i915, aux_domain); drm_WARN_ON(&i915->drm, aux_powered); } tc_phy_disconnect(tc); if (!force_disconnect) tc_phy_connect(tc, required_lanes); drm_dbg_kms(&i915->drm, "Port %s: TC port mode reset (%s -> %s)\n", tc->port_name, tc_port_mode_name(old_tc_mode), tc_port_mode_name(tc->mode)); } static bool intel_tc_port_needs_reset(struct intel_tc_port *tc) { return tc_phy_get_target_mode(tc) != tc->mode; } static void intel_tc_port_update_mode(struct intel_tc_port *tc, int required_lanes, bool force_disconnect) { if (force_disconnect || intel_tc_port_needs_reset(tc)) intel_tc_port_reset_mode(tc, required_lanes, force_disconnect); } static void __intel_tc_port_get_link(struct intel_tc_port *tc) { tc->link_refcount++; } static void __intel_tc_port_put_link(struct intel_tc_port *tc) { tc->link_refcount--; } static bool tc_port_is_enabled(struct intel_tc_port *tc) { struct drm_i915_private *i915 = tc_to_i915(tc); struct intel_digital_port *dig_port = tc->dig_port; assert_tc_port_power_enabled(tc); return intel_de_read(i915, DDI_BUF_CTL(dig_port->base.port)) & DDI_BUF_CTL_ENABLE; } /** * intel_tc_port_init_mode: Read out HW state and init the given port's TypeC mode * @dig_port: digital port * * Read out the HW state and initialize the TypeC mode of @dig_port. The mode * will be locked until intel_tc_port_sanitize_mode() is called. */ void intel_tc_port_init_mode(struct intel_digital_port *dig_port) { struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev); struct intel_tc_port *tc = to_tc_port(dig_port); bool update_mode = false; mutex_lock(&tc->lock); drm_WARN_ON(&i915->drm, tc->mode != TC_PORT_DISCONNECTED); drm_WARN_ON(&i915->drm, tc->lock_wakeref); drm_WARN_ON(&i915->drm, tc->link_refcount); tc_phy_get_hw_state(tc); /* * Save the initial mode for the state check in * intel_tc_port_sanitize_mode(). */ tc->init_mode = tc->mode; /* * The PHY needs to be connected for AUX to work during HW readout and * MST topology resume, but the PHY mode can only be changed if the * port is disabled. * * An exception is the case where BIOS leaves the PHY incorrectly * disconnected on an enabled legacy port. Work around that by * connecting the PHY even though the port is enabled. This doesn't * cause a problem as the PHY ownership state is ignored by the * IOM/TCSS firmware (only display can own the PHY in that case). */ if (!tc_port_is_enabled(tc)) { update_mode = true; } else if (tc->mode == TC_PORT_DISCONNECTED) { drm_WARN_ON(&i915->drm, !tc->legacy_port); drm_err(&i915->drm, "Port %s: PHY disconnected on enabled port, connecting it\n", tc->port_name); update_mode = true; } if (update_mode) intel_tc_port_update_mode(tc, 1, false); /* Prevent changing tc->mode until intel_tc_port_sanitize_mode() is called. */ __intel_tc_port_get_link(tc); mutex_unlock(&tc->lock); } static bool tc_port_has_active_links(struct intel_tc_port *tc, const struct intel_crtc_state *crtc_state) { struct drm_i915_private *i915 = tc_to_i915(tc); struct intel_digital_port *dig_port = tc->dig_port; enum icl_port_dpll_id pll_type = ICL_PORT_DPLL_DEFAULT; int active_links = 0; if (dig_port->dp.is_mst) { /* TODO: get the PLL type for MST, once HW readout is done for it. */ active_links = intel_dp_mst_encoder_active_links(dig_port); } else if (crtc_state && crtc_state->hw.active) { pll_type = intel_ddi_port_pll_type(&dig_port->base, crtc_state); active_links = 1; } if (active_links && !tc_phy_is_connected(tc, pll_type)) drm_err(&i915->drm, "Port %s: PHY disconnected with %d active link(s)\n", tc->port_name, active_links); return active_links; } /** * intel_tc_port_sanitize_mode: Sanitize the given port's TypeC mode * @dig_port: digital port * @crtc_state: atomic state of CRTC connected to @dig_port * * Sanitize @dig_port's TypeC mode wrt. the encoder's state right after driver * loading and system resume: * If the encoder is enabled keep the TypeC mode/PHY connected state locked until * the encoder is disabled. * If the encoder is disabled make sure the PHY is disconnected. * @crtc_state is valid if @dig_port is enabled, NULL otherwise. */ void intel_tc_port_sanitize_mode(struct intel_digital_port *dig_port, const struct intel_crtc_state *crtc_state) { struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev); struct intel_tc_port *tc = to_tc_port(dig_port); mutex_lock(&tc->lock); drm_WARN_ON(&i915->drm, tc->link_refcount != 1); if (!tc_port_has_active_links(tc, crtc_state)) { /* * TBT-alt is the default mode in any case the PHY ownership is not * held (regardless of the sink's connected live state), so * we'll just switch to disconnected mode from it here without * a note. */ if (tc->init_mode != TC_PORT_TBT_ALT && tc->init_mode != TC_PORT_DISCONNECTED) drm_dbg_kms(&i915->drm, "Port %s: PHY left in %s mode on disabled port, disconnecting it\n", tc->port_name, tc_port_mode_name(tc->init_mode)); tc_phy_disconnect(tc); __intel_tc_port_put_link(tc); } drm_dbg_kms(&i915->drm, "Port %s: sanitize mode (%s)\n", tc->port_name, tc_port_mode_name(tc->mode)); mutex_unlock(&tc->lock); } /* * The type-C ports are different because even when they are connected, they may * not be available/usable by the graphics driver: see the comment on * icl_tc_phy_connect(). So in our driver instead of adding the additional * concept of "usable" and make everything check for "connected and usable" we * define a port as "connected" when it is not only connected, but also when it * is usable by the rest of the driver. That maintains the old assumption that * connected ports are usable, and avoids exposing to the users objects they * can't really use. */ bool intel_tc_port_connected_locked(struct intel_encoder *encoder) { struct intel_digital_port *dig_port = enc_to_dig_port(encoder); struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev); struct intel_tc_port *tc = to_tc_port(dig_port); u32 mask = ~0; drm_WARN_ON(&i915->drm, !intel_tc_port_ref_held(dig_port)); if (tc->mode != TC_PORT_DISCONNECTED) mask = BIT(tc->mode); return tc_phy_hpd_live_status(tc) & mask; } bool intel_tc_port_connected(struct intel_encoder *encoder) { struct intel_digital_port *dig_port = enc_to_dig_port(encoder); struct intel_tc_port *tc = to_tc_port(dig_port); bool is_connected; mutex_lock(&tc->lock); is_connected = intel_tc_port_connected_locked(encoder); mutex_unlock(&tc->lock); return is_connected; } static bool __intel_tc_port_link_needs_reset(struct intel_tc_port *tc) { bool ret; mutex_lock(&tc->lock); ret = tc->link_refcount && tc->mode == TC_PORT_DP_ALT && intel_tc_port_needs_reset(tc); mutex_unlock(&tc->lock); return ret; } bool intel_tc_port_link_needs_reset(struct intel_digital_port *dig_port) { struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev); enum phy phy = intel_port_to_phy(i915, dig_port->base.port); if (!intel_phy_is_tc(i915, phy)) return false; return __intel_tc_port_link_needs_reset(to_tc_port(dig_port)); } static int reset_link_commit(struct intel_tc_port *tc, struct intel_atomic_state *state, struct drm_modeset_acquire_ctx *ctx) { struct drm_i915_private *i915 = tc_to_i915(tc); struct intel_digital_port *dig_port = tc->dig_port; struct intel_dp *intel_dp = enc_to_intel_dp(&dig_port->base); struct intel_crtc *crtc; u8 pipe_mask; int ret; ret = drm_modeset_lock(&i915->drm.mode_config.connection_mutex, ctx); if (ret) return ret; ret = intel_dp_get_active_pipes(intel_dp, ctx, &pipe_mask); if (ret) return ret; if (!pipe_mask) return 0; for_each_intel_crtc_in_pipe_mask(&i915->drm, crtc, pipe_mask) { struct intel_crtc_state *crtc_state; crtc_state = intel_atomic_get_crtc_state(&state->base, crtc); if (IS_ERR(crtc_state)) return PTR_ERR(crtc_state); crtc_state->uapi.connectors_changed = true; } if (!__intel_tc_port_link_needs_reset(tc)) return 0; return drm_atomic_commit(&state->base); } static int reset_link(struct intel_tc_port *tc) { struct drm_i915_private *i915 = tc_to_i915(tc); struct drm_modeset_acquire_ctx ctx; struct drm_atomic_state *_state; struct intel_atomic_state *state; int ret; _state = drm_atomic_state_alloc(&i915->drm); if (!_state) return -ENOMEM; state = to_intel_atomic_state(_state); state->internal = true; intel_modeset_lock_ctx_retry(&ctx, state, 0, ret) ret = reset_link_commit(tc, state, &ctx); drm_atomic_state_put(&state->base); return ret; } static void intel_tc_port_link_reset_work(struct work_struct *work) { struct intel_tc_port *tc = container_of(work, struct intel_tc_port, link_reset_work.work); struct drm_i915_private *i915 = tc_to_i915(tc); int ret; if (!__intel_tc_port_link_needs_reset(tc)) return; mutex_lock(&i915->drm.mode_config.mutex); drm_dbg_kms(&i915->drm, "Port %s: TypeC DP-alt sink disconnected, resetting link\n", tc->port_name); ret = reset_link(tc); drm_WARN_ON(&i915->drm, ret); mutex_unlock(&i915->drm.mode_config.mutex); } bool intel_tc_port_link_reset(struct intel_digital_port *dig_port) { if (!intel_tc_port_link_needs_reset(dig_port)) return false; queue_delayed_work(system_unbound_wq, &to_tc_port(dig_port)->link_reset_work, msecs_to_jiffies(2000)); return true; } void intel_tc_port_link_cancel_reset_work(struct intel_digital_port *dig_port) { struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev); enum phy phy = intel_port_to_phy(i915, dig_port->base.port); struct intel_tc_port *tc = to_tc_port(dig_port); if (!intel_phy_is_tc(i915, phy)) return; cancel_delayed_work(&tc->link_reset_work); } static void __intel_tc_port_lock(struct intel_tc_port *tc, int required_lanes) { struct drm_i915_private *i915 = tc_to_i915(tc); mutex_lock(&tc->lock); cancel_delayed_work(&tc->disconnect_phy_work); if (!tc->link_refcount) intel_tc_port_update_mode(tc, required_lanes, false); drm_WARN_ON(&i915->drm, tc->mode == TC_PORT_DISCONNECTED); drm_WARN_ON(&i915->drm, tc->mode != TC_PORT_TBT_ALT && !tc_phy_is_owned(tc)); } void intel_tc_port_lock(struct intel_digital_port *dig_port) { __intel_tc_port_lock(to_tc_port(dig_port), 1); } /* * Disconnect the given digital port from its TypeC PHY (handing back the * control of the PHY to the TypeC subsystem). This will happen in a delayed * manner after each aux transactions and modeset disables. */ static void intel_tc_port_disconnect_phy_work(struct work_struct *work) { struct intel_tc_port *tc = container_of(work, struct intel_tc_port, disconnect_phy_work.work); mutex_lock(&tc->lock); if (!tc->link_refcount) intel_tc_port_update_mode(tc, 1, true); mutex_unlock(&tc->lock); } /** * intel_tc_port_flush_work: flush the work disconnecting the PHY * @dig_port: digital port * * Flush the delayed work disconnecting an idle PHY. */ static void intel_tc_port_flush_work(struct intel_digital_port *dig_port) { flush_delayed_work(&to_tc_port(dig_port)->disconnect_phy_work); } void intel_tc_port_suspend(struct intel_digital_port *dig_port) { struct intel_tc_port *tc = to_tc_port(dig_port); cancel_delayed_work_sync(&tc->link_reset_work); intel_tc_port_flush_work(dig_port); } void intel_tc_port_unlock(struct intel_digital_port *dig_port) { struct intel_tc_port *tc = to_tc_port(dig_port); if (!tc->link_refcount && tc->mode != TC_PORT_DISCONNECTED) queue_delayed_work(system_unbound_wq, &tc->disconnect_phy_work, msecs_to_jiffies(1000)); mutex_unlock(&tc->lock); } bool intel_tc_port_ref_held(struct intel_digital_port *dig_port) { struct intel_tc_port *tc = to_tc_port(dig_port); return mutex_is_locked(&tc->lock) || tc->link_refcount; } void intel_tc_port_get_link(struct intel_digital_port *dig_port, int required_lanes) { struct intel_tc_port *tc = to_tc_port(dig_port); __intel_tc_port_lock(tc, required_lanes); __intel_tc_port_get_link(tc); intel_tc_port_unlock(dig_port); } void intel_tc_port_put_link(struct intel_digital_port *dig_port) { struct intel_tc_port *tc = to_tc_port(dig_port); intel_tc_port_lock(dig_port); __intel_tc_port_put_link(tc); intel_tc_port_unlock(dig_port); /* * The firmware will not update the HPD status of other TypeC ports * that are active in DP-alt mode with their sink disconnected, until * this port is disabled and its PHY gets disconnected. Make sure this * happens in a timely manner by disconnecting the PHY synchronously. */ intel_tc_port_flush_work(dig_port); } int intel_tc_port_init(struct intel_digital_port *dig_port, bool is_legacy) { struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev); struct intel_tc_port *tc; enum port port = dig_port->base.port; enum tc_port tc_port = intel_port_to_tc(i915, port); if (drm_WARN_ON(&i915->drm, tc_port == TC_PORT_NONE)) return -EINVAL; tc = kzalloc(sizeof(*tc), GFP_KERNEL); if (!tc) return -ENOMEM; dig_port->tc = tc; tc->dig_port = dig_port; if (DISPLAY_VER(i915) >= 14) tc->phy_ops = &xelpdp_tc_phy_ops; else if (DISPLAY_VER(i915) >= 13) tc->phy_ops = &adlp_tc_phy_ops; else if (DISPLAY_VER(i915) >= 12) tc->phy_ops = &tgl_tc_phy_ops; else tc->phy_ops = &icl_tc_phy_ops; tc->port_name = kasprintf(GFP_KERNEL, "%c/TC#%d", port_name(port), tc_port + 1); if (!tc->port_name) { kfree(tc); return -ENOMEM; } mutex_init(&tc->lock); /* TODO: Combine the two works */ INIT_DELAYED_WORK(&tc->disconnect_phy_work, intel_tc_port_disconnect_phy_work); INIT_DELAYED_WORK(&tc->link_reset_work, intel_tc_port_link_reset_work); tc->legacy_port = is_legacy; tc->mode = TC_PORT_DISCONNECTED; tc->link_refcount = 0; tc_phy_init(tc); intel_tc_port_init_mode(dig_port); return 0; } void intel_tc_port_cleanup(struct intel_digital_port *dig_port) { intel_tc_port_suspend(dig_port); kfree(dig_port->tc->port_name); kfree(dig_port->tc); dig_port->tc = NULL; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1