Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Manasi D Navare | 972 | 69.28% | 8 | 17.02% |
Ville Syrjälä | 330 | 23.52% | 21 | 44.68% |
Kumar, Mahesh | 30 | 2.14% | 1 | 2.13% |
Paulo Zanoni | 14 | 1.00% | 1 | 2.13% |
José Roberto de Souza | 12 | 0.86% | 1 | 2.13% |
Jani Nikula | 12 | 0.86% | 4 | 8.51% |
Maarten Lankhorst | 10 | 0.71% | 3 | 6.38% |
Jesse Barnes | 10 | 0.71% | 1 | 2.13% |
Chris Wilson | 6 | 0.43% | 4 | 8.51% |
Chandra Konduru | 4 | 0.29% | 1 | 2.13% |
Matt Roper | 2 | 0.14% | 1 | 2.13% |
Aditya Swarup | 1 | 0.07% | 1 | 2.13% |
Total | 1403 | 47 |
// SPDX-License-Identifier: MIT /* * Copyright © 2020 Intel Corporation * */ #include "i915_drv.h" #include "i915_reg.h" #include "intel_de.h" #include "intel_display_types.h" #include "intel_vrr.h" bool intel_vrr_is_capable(struct intel_connector *connector) { const struct drm_display_info *info = &connector->base.display_info; struct drm_i915_private *i915 = to_i915(connector->base.dev); struct intel_dp *intel_dp; /* * DP Sink is capable of VRR video timings if * Ignore MSA bit is set in DPCD. * EDID monitor range also should be atleast 10 for reasonable * Adaptive Sync or Variable Refresh Rate end user experience. */ switch (connector->base.connector_type) { case DRM_MODE_CONNECTOR_eDP: if (!connector->panel.vbt.vrr) return false; fallthrough; case DRM_MODE_CONNECTOR_DisplayPort: intel_dp = intel_attached_dp(connector); if (!drm_dp_sink_can_do_video_without_timing_msa(intel_dp->dpcd)) return false; break; default: return false; } return HAS_VRR(i915) && info->monitor_range.max_vfreq - info->monitor_range.min_vfreq > 10; } bool intel_vrr_is_in_range(struct intel_connector *connector, int vrefresh) { const struct drm_display_info *info = &connector->base.display_info; return intel_vrr_is_capable(connector) && vrefresh >= info->monitor_range.min_vfreq && vrefresh <= info->monitor_range.max_vfreq; } void intel_vrr_check_modeset(struct intel_atomic_state *state) { int i; struct intel_crtc_state *old_crtc_state, *new_crtc_state; struct intel_crtc *crtc; for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { if (new_crtc_state->uapi.vrr_enabled != old_crtc_state->uapi.vrr_enabled) new_crtc_state->uapi.mode_changed = true; } } /* * Without VRR registers get latched at: * vblank_start * * With VRR the earliest registers can get latched is: * intel_vrr_vmin_vblank_start(), which if we want to maintain * the correct min vtotal is >=vblank_start+1 * * The latest point registers can get latched is the vmax decision boundary: * intel_vrr_vmax_vblank_start() * * Between those two points the vblank exit starts (and hence registers get * latched) ASAP after a push is sent. * * framestart_delay is programmable 1-4. */ static int intel_vrr_vblank_exit_length(const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct drm_i915_private *i915 = to_i915(crtc->base.dev); if (DISPLAY_VER(i915) >= 13) return crtc_state->vrr.guardband; else /* The hw imposes the extra scanline before frame start */ return crtc_state->vrr.pipeline_full + crtc_state->framestart_delay + 1; } int intel_vrr_vmin_vblank_start(const struct intel_crtc_state *crtc_state) { /* Min vblank actually determined by flipline that is always >=vmin+1 */ return crtc_state->vrr.vmin + 1 - intel_vrr_vblank_exit_length(crtc_state); } int intel_vrr_vmax_vblank_start(const struct intel_crtc_state *crtc_state) { return crtc_state->vrr.vmax - intel_vrr_vblank_exit_length(crtc_state); } void intel_vrr_compute_config(struct intel_crtc_state *crtc_state, struct drm_connector_state *conn_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct drm_i915_private *i915 = to_i915(crtc->base.dev); struct intel_connector *connector = to_intel_connector(conn_state->connector); struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode; const struct drm_display_info *info = &connector->base.display_info; int vmin, vmax; if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) return; crtc_state->vrr.in_range = intel_vrr_is_in_range(connector, drm_mode_vrefresh(adjusted_mode)); if (!crtc_state->vrr.in_range) return; if (HAS_LRR(i915)) crtc_state->update_lrr = true; vmin = DIV_ROUND_UP(adjusted_mode->crtc_clock * 1000, adjusted_mode->crtc_htotal * info->monitor_range.max_vfreq); vmax = adjusted_mode->crtc_clock * 1000 / (adjusted_mode->crtc_htotal * info->monitor_range.min_vfreq); vmin = max_t(int, vmin, adjusted_mode->crtc_vtotal); vmax = max_t(int, vmax, adjusted_mode->crtc_vtotal); if (vmin >= vmax) return; /* * flipline determines the min vblank length the hardware will * generate, and flipline>=vmin+1, hence we reduce vmin by one * to make sure we can get the actual min vblank length. */ crtc_state->vrr.vmin = vmin - 1; crtc_state->vrr.vmax = vmax; crtc_state->vrr.flipline = crtc_state->vrr.vmin + 1; /* * For XE_LPD+, we use guardband and pipeline override * is deprecated. */ if (DISPLAY_VER(i915) >= 13) { crtc_state->vrr.guardband = crtc_state->vrr.vmin + 1 - adjusted_mode->crtc_vblank_start; } else { crtc_state->vrr.pipeline_full = min(255, crtc_state->vrr.vmin - adjusted_mode->crtc_vblank_start - crtc_state->framestart_delay - 1); } if (crtc_state->uapi.vrr_enabled) { crtc_state->vrr.enable = true; crtc_state->mode_flags |= I915_MODE_FLAG_VRR; } } static u32 trans_vrr_ctl(const struct intel_crtc_state *crtc_state) { struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev); if (DISPLAY_VER(i915) >= 13) return VRR_CTL_IGN_MAX_SHIFT | VRR_CTL_FLIP_LINE_EN | XELPD_VRR_CTL_VRR_GUARDBAND(crtc_state->vrr.guardband); else return VRR_CTL_IGN_MAX_SHIFT | VRR_CTL_FLIP_LINE_EN | VRR_CTL_PIPELINE_FULL(crtc_state->vrr.pipeline_full) | VRR_CTL_PIPELINE_FULL_OVERRIDE; } void intel_vrr_set_transcoder_timings(const struct intel_crtc_state *crtc_state) { struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; /* * TRANS_SET_CONTEXT_LATENCY with VRR enabled * requires this chicken bit on ADL/DG2. */ if (DISPLAY_VER(dev_priv) == 13) intel_de_rmw(dev_priv, CHICKEN_TRANS(cpu_transcoder), 0, PIPE_VBLANK_WITH_DELAY); if (!crtc_state->vrr.flipline) { intel_de_write(dev_priv, TRANS_VRR_CTL(cpu_transcoder), 0); return; } intel_de_write(dev_priv, TRANS_VRR_VMIN(cpu_transcoder), crtc_state->vrr.vmin - 1); intel_de_write(dev_priv, TRANS_VRR_VMAX(cpu_transcoder), crtc_state->vrr.vmax - 1); intel_de_write(dev_priv, TRANS_VRR_CTL(cpu_transcoder), trans_vrr_ctl(crtc_state)); intel_de_write(dev_priv, TRANS_VRR_FLIPLINE(cpu_transcoder), crtc_state->vrr.flipline - 1); } void intel_vrr_send_push(const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; if (!crtc_state->vrr.enable) return; intel_de_write(dev_priv, TRANS_PUSH(cpu_transcoder), TRANS_PUSH_EN | TRANS_PUSH_SEND); } bool intel_vrr_is_push_sent(const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; if (!crtc_state->vrr.enable) return false; return intel_de_read(dev_priv, TRANS_PUSH(cpu_transcoder)) & TRANS_PUSH_SEND; } void intel_vrr_enable(const struct intel_crtc_state *crtc_state) { struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; if (!crtc_state->vrr.enable) return; intel_de_write(dev_priv, TRANS_PUSH(cpu_transcoder), TRANS_PUSH_EN); intel_de_write(dev_priv, TRANS_VRR_CTL(cpu_transcoder), VRR_CTL_VRR_ENABLE | trans_vrr_ctl(crtc_state)); } void intel_vrr_disable(const struct intel_crtc_state *old_crtc_state) { struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); enum transcoder cpu_transcoder = old_crtc_state->cpu_transcoder; if (!old_crtc_state->vrr.enable) return; intel_de_write(dev_priv, TRANS_VRR_CTL(cpu_transcoder), trans_vrr_ctl(old_crtc_state)); intel_de_wait_for_clear(dev_priv, TRANS_VRR_STATUS(cpu_transcoder), VRR_STATUS_VRR_EN_LIVE, 1000); intel_de_write(dev_priv, TRANS_PUSH(cpu_transcoder), 0); } void intel_vrr_get_config(struct intel_crtc_state *crtc_state) { struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; u32 trans_vrr_ctl; trans_vrr_ctl = intel_de_read(dev_priv, TRANS_VRR_CTL(cpu_transcoder)); crtc_state->vrr.enable = trans_vrr_ctl & VRR_CTL_VRR_ENABLE; if (DISPLAY_VER(dev_priv) >= 13) crtc_state->vrr.guardband = REG_FIELD_GET(XELPD_VRR_CTL_VRR_GUARDBAND_MASK, trans_vrr_ctl); else if (trans_vrr_ctl & VRR_CTL_PIPELINE_FULL_OVERRIDE) crtc_state->vrr.pipeline_full = REG_FIELD_GET(VRR_CTL_PIPELINE_FULL_MASK, trans_vrr_ctl); if (trans_vrr_ctl & VRR_CTL_FLIP_LINE_EN) { crtc_state->vrr.flipline = intel_de_read(dev_priv, TRANS_VRR_FLIPLINE(cpu_transcoder)) + 1; crtc_state->vrr.vmax = intel_de_read(dev_priv, TRANS_VRR_VMAX(cpu_transcoder)) + 1; crtc_state->vrr.vmin = intel_de_read(dev_priv, TRANS_VRR_VMIN(cpu_transcoder)) + 1; } if (crtc_state->vrr.enable) crtc_state->mode_flags |= I915_MODE_FLAG_VRR; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1