Contributors: 36
Author |
Tokens |
Token Proportion |
Commits |
Commit Proportion |
Chris Wilson |
1721 |
63.20% |
59 |
45.74% |
Matthew Auld |
338 |
12.41% |
15 |
11.63% |
Thomas Hellstrom |
226 |
8.30% |
6 |
4.65% |
Matthew Wilcox |
140 |
5.14% |
4 |
3.10% |
Maarten Lankhorst |
62 |
2.28% |
4 |
3.10% |
Dave Gordon |
41 |
1.51% |
2 |
1.55% |
Eric Anholt |
40 |
1.47% |
2 |
1.55% |
Dave Airlie |
21 |
0.77% |
2 |
1.55% |
Fei Yang |
15 |
0.55% |
1 |
0.78% |
Gwan-gyeong Mun |
15 |
0.55% |
1 |
0.78% |
Michal Wajdeczko |
14 |
0.51% |
3 |
2.33% |
Imre Deak |
10 |
0.37% |
1 |
0.78% |
Niranjana Vishwanathapura |
7 |
0.26% |
1 |
0.78% |
Lukasz Fiedorowicz |
7 |
0.26% |
1 |
0.78% |
Tvrtko A. Ursulin |
7 |
0.26% |
4 |
3.10% |
Xiong Zhang |
7 |
0.26% |
1 |
0.78% |
Zhi Wang |
7 |
0.26% |
1 |
0.78% |
Lionel Landwerlin |
6 |
0.22% |
1 |
0.78% |
Daniel Vetter |
6 |
0.22% |
2 |
1.55% |
Anusha Srivatsa |
5 |
0.18% |
1 |
0.78% |
Brad Volkin |
4 |
0.15% |
1 |
0.78% |
Gabriel Krisman Bertazi |
3 |
0.11% |
1 |
0.78% |
Joonas Lahtinen |
3 |
0.11% |
1 |
0.78% |
Jani Nikula |
3 |
0.11% |
2 |
1.55% |
Peter Antoine |
2 |
0.07% |
1 |
0.78% |
Fernando Pacheco |
2 |
0.07% |
1 |
0.78% |
Sagar Arun Kamble |
2 |
0.07% |
1 |
0.78% |
Paulo Zanoni |
1 |
0.04% |
1 |
0.78% |
Nirmoy Das |
1 |
0.04% |
1 |
0.78% |
Robert Beckett |
1 |
0.04% |
1 |
0.78% |
Al Viro |
1 |
0.04% |
1 |
0.78% |
Kirill A. Shutemov |
1 |
0.04% |
1 |
0.78% |
Mika Kuoppala |
1 |
0.04% |
1 |
0.78% |
Aravind Iddamsetty |
1 |
0.04% |
1 |
0.78% |
Michał Winiarski |
1 |
0.04% |
1 |
0.78% |
Ben Widawsky |
1 |
0.04% |
1 |
0.78% |
Total |
2723 |
|
129 |
|
/*
* SPDX-License-Identifier: MIT
*
* Copyright © 2014-2016 Intel Corporation
*/
#include <linux/pagevec.h>
#include <linux/shmem_fs.h>
#include <linux/swap.h>
#include <drm/drm_cache.h>
#include "gem/i915_gem_region.h"
#include "i915_drv.h"
#include "i915_gem_object.h"
#include "i915_gem_tiling.h"
#include "i915_gemfs.h"
#include "i915_scatterlist.h"
#include "i915_trace.h"
/*
* Move folios to appropriate lru and release the batch, decrementing the
* ref count of those folios.
*/
static void check_release_folio_batch(struct folio_batch *fbatch)
{
check_move_unevictable_folios(fbatch);
__folio_batch_release(fbatch);
cond_resched();
}
void shmem_sg_free_table(struct sg_table *st, struct address_space *mapping,
bool dirty, bool backup)
{
struct sgt_iter sgt_iter;
struct folio_batch fbatch;
struct folio *last = NULL;
struct page *page;
mapping_clear_unevictable(mapping);
folio_batch_init(&fbatch);
for_each_sgt_page(page, sgt_iter, st) {
struct folio *folio = page_folio(page);
if (folio == last)
continue;
last = folio;
if (dirty)
folio_mark_dirty(folio);
if (backup)
folio_mark_accessed(folio);
if (!folio_batch_add(&fbatch, folio))
check_release_folio_batch(&fbatch);
}
if (fbatch.nr)
check_release_folio_batch(&fbatch);
sg_free_table(st);
}
int shmem_sg_alloc_table(struct drm_i915_private *i915, struct sg_table *st,
size_t size, struct intel_memory_region *mr,
struct address_space *mapping,
unsigned int max_segment)
{
unsigned int page_count; /* restricted by sg_alloc_table */
unsigned long i;
struct scatterlist *sg;
unsigned long next_pfn = 0; /* suppress gcc warning */
gfp_t noreclaim;
int ret;
if (overflows_type(size / PAGE_SIZE, page_count))
return -E2BIG;
page_count = size / PAGE_SIZE;
/*
* If there's no chance of allocating enough pages for the whole
* object, bail early.
*/
if (size > resource_size(&mr->region))
return -ENOMEM;
if (sg_alloc_table(st, page_count, GFP_KERNEL | __GFP_NOWARN))
return -ENOMEM;
/*
* Get the list of pages out of our struct file. They'll be pinned
* at this point until we release them.
*
* Fail silently without starting the shrinker
*/
mapping_set_unevictable(mapping);
noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM);
noreclaim |= __GFP_NORETRY | __GFP_NOWARN;
sg = st->sgl;
st->nents = 0;
for (i = 0; i < page_count; i++) {
struct folio *folio;
unsigned long nr_pages;
const unsigned int shrink[] = {
I915_SHRINK_BOUND | I915_SHRINK_UNBOUND,
0,
}, *s = shrink;
gfp_t gfp = noreclaim;
do {
cond_resched();
folio = shmem_read_folio_gfp(mapping, i, gfp);
if (!IS_ERR(folio))
break;
if (!*s) {
ret = PTR_ERR(folio);
goto err_sg;
}
i915_gem_shrink(NULL, i915, 2 * page_count, NULL, *s++);
/*
* We've tried hard to allocate the memory by reaping
* our own buffer, now let the real VM do its job and
* go down in flames if truly OOM.
*
* However, since graphics tend to be disposable,
* defer the oom here by reporting the ENOMEM back
* to userspace.
*/
if (!*s) {
/* reclaim and warn, but no oom */
gfp = mapping_gfp_mask(mapping);
/*
* Our bo are always dirty and so we require
* kswapd to reclaim our pages (direct reclaim
* does not effectively begin pageout of our
* buffers on its own). However, direct reclaim
* only waits for kswapd when under allocation
* congestion. So as a result __GFP_RECLAIM is
* unreliable and fails to actually reclaim our
* dirty pages -- unless you try over and over
* again with !__GFP_NORETRY. However, we still
* want to fail this allocation rather than
* trigger the out-of-memory killer and for
* this we want __GFP_RETRY_MAYFAIL.
*/
gfp |= __GFP_RETRY_MAYFAIL | __GFP_NOWARN;
}
} while (1);
nr_pages = min_t(unsigned long,
folio_nr_pages(folio), page_count - i);
if (!i ||
sg->length >= max_segment ||
folio_pfn(folio) != next_pfn) {
if (i)
sg = sg_next(sg);
st->nents++;
sg_set_folio(sg, folio, nr_pages * PAGE_SIZE, 0);
} else {
/* XXX: could overflow? */
sg->length += nr_pages * PAGE_SIZE;
}
next_pfn = folio_pfn(folio) + nr_pages;
i += nr_pages - 1;
/* Check that the i965g/gm workaround works. */
GEM_BUG_ON(gfp & __GFP_DMA32 && next_pfn >= 0x00100000UL);
}
if (sg) /* loop terminated early; short sg table */
sg_mark_end(sg);
/* Trim unused sg entries to avoid wasting memory. */
i915_sg_trim(st);
return 0;
err_sg:
sg_mark_end(sg);
if (sg != st->sgl) {
shmem_sg_free_table(st, mapping, false, false);
} else {
mapping_clear_unevictable(mapping);
sg_free_table(st);
}
/*
* shmemfs first checks if there is enough memory to allocate the page
* and reports ENOSPC should there be insufficient, along with the usual
* ENOMEM for a genuine allocation failure.
*
* We use ENOSPC in our driver to mean that we have run out of aperture
* space and so want to translate the error from shmemfs back to our
* usual understanding of ENOMEM.
*/
if (ret == -ENOSPC)
ret = -ENOMEM;
return ret;
}
static int shmem_get_pages(struct drm_i915_gem_object *obj)
{
struct drm_i915_private *i915 = to_i915(obj->base.dev);
struct intel_memory_region *mem = obj->mm.region;
struct address_space *mapping = obj->base.filp->f_mapping;
unsigned int max_segment = i915_sg_segment_size(i915->drm.dev);
struct sg_table *st;
struct sgt_iter sgt_iter;
struct page *page;
int ret;
/*
* Assert that the object is not currently in any GPU domain. As it
* wasn't in the GTT, there shouldn't be any way it could have been in
* a GPU cache
*/
GEM_BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
GEM_BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
rebuild_st:
st = kmalloc(sizeof(*st), GFP_KERNEL | __GFP_NOWARN);
if (!st)
return -ENOMEM;
ret = shmem_sg_alloc_table(i915, st, obj->base.size, mem, mapping,
max_segment);
if (ret)
goto err_st;
ret = i915_gem_gtt_prepare_pages(obj, st);
if (ret) {
/*
* DMA remapping failed? One possible cause is that
* it could not reserve enough large entries, asking
* for PAGE_SIZE chunks instead may be helpful.
*/
if (max_segment > PAGE_SIZE) {
for_each_sgt_page(page, sgt_iter, st)
put_page(page);
sg_free_table(st);
kfree(st);
max_segment = PAGE_SIZE;
goto rebuild_st;
} else {
dev_warn(i915->drm.dev,
"Failed to DMA remap %zu pages\n",
obj->base.size >> PAGE_SHIFT);
goto err_pages;
}
}
if (i915_gem_object_needs_bit17_swizzle(obj))
i915_gem_object_do_bit_17_swizzle(obj, st);
if (i915_gem_object_can_bypass_llc(obj))
obj->cache_dirty = true;
__i915_gem_object_set_pages(obj, st);
return 0;
err_pages:
shmem_sg_free_table(st, mapping, false, false);
/*
* shmemfs first checks if there is enough memory to allocate the page
* and reports ENOSPC should there be insufficient, along with the usual
* ENOMEM for a genuine allocation failure.
*
* We use ENOSPC in our driver to mean that we have run out of aperture
* space and so want to translate the error from shmemfs back to our
* usual understanding of ENOMEM.
*/
err_st:
if (ret == -ENOSPC)
ret = -ENOMEM;
kfree(st);
return ret;
}
static int
shmem_truncate(struct drm_i915_gem_object *obj)
{
/*
* Our goal here is to return as much of the memory as
* is possible back to the system as we are called from OOM.
* To do this we must instruct the shmfs to drop all of its
* backing pages, *now*.
*/
shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
obj->mm.madv = __I915_MADV_PURGED;
obj->mm.pages = ERR_PTR(-EFAULT);
return 0;
}
void __shmem_writeback(size_t size, struct address_space *mapping)
{
struct writeback_control wbc = {
.sync_mode = WB_SYNC_NONE,
.nr_to_write = SWAP_CLUSTER_MAX,
.range_start = 0,
.range_end = LLONG_MAX,
.for_reclaim = 1,
};
unsigned long i;
/*
* Leave mmapings intact (GTT will have been revoked on unbinding,
* leaving only CPU mmapings around) and add those pages to the LRU
* instead of invoking writeback so they are aged and paged out
* as normal.
*/
/* Begin writeback on each dirty page */
for (i = 0; i < size >> PAGE_SHIFT; i++) {
struct page *page;
page = find_lock_page(mapping, i);
if (!page)
continue;
if (!page_mapped(page) && clear_page_dirty_for_io(page)) {
int ret;
SetPageReclaim(page);
ret = mapping->a_ops->writepage(page, &wbc);
if (!PageWriteback(page))
ClearPageReclaim(page);
if (!ret)
goto put;
}
unlock_page(page);
put:
put_page(page);
}
}
static void
shmem_writeback(struct drm_i915_gem_object *obj)
{
__shmem_writeback(obj->base.size, obj->base.filp->f_mapping);
}
static int shmem_shrink(struct drm_i915_gem_object *obj, unsigned int flags)
{
switch (obj->mm.madv) {
case I915_MADV_DONTNEED:
return i915_gem_object_truncate(obj);
case __I915_MADV_PURGED:
return 0;
}
if (flags & I915_GEM_OBJECT_SHRINK_WRITEBACK)
shmem_writeback(obj);
return 0;
}
void
__i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
struct sg_table *pages,
bool needs_clflush)
{
struct drm_i915_private *i915 = to_i915(obj->base.dev);
GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
if (obj->mm.madv == I915_MADV_DONTNEED)
obj->mm.dirty = false;
if (needs_clflush &&
(obj->read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
!(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ))
drm_clflush_sg(pages);
__start_cpu_write(obj);
/*
* On non-LLC igfx platforms, force the flush-on-acquire if this is ever
* swapped-in. Our async flush path is not trust worthy enough yet(and
* happens in the wrong order), and with some tricks it's conceivable
* for userspace to change the cache-level to I915_CACHE_NONE after the
* pages are swapped-in, and since execbuf binds the object before doing
* the async flush, we have a race window.
*/
if (!HAS_LLC(i915) && !IS_DGFX(i915))
obj->cache_dirty = true;
}
void i915_gem_object_put_pages_shmem(struct drm_i915_gem_object *obj, struct sg_table *pages)
{
__i915_gem_object_release_shmem(obj, pages, true);
i915_gem_gtt_finish_pages(obj, pages);
if (i915_gem_object_needs_bit17_swizzle(obj))
i915_gem_object_save_bit_17_swizzle(obj, pages);
shmem_sg_free_table(pages, file_inode(obj->base.filp)->i_mapping,
obj->mm.dirty, obj->mm.madv == I915_MADV_WILLNEED);
kfree(pages);
obj->mm.dirty = false;
}
static void
shmem_put_pages(struct drm_i915_gem_object *obj, struct sg_table *pages)
{
if (likely(i915_gem_object_has_struct_page(obj)))
i915_gem_object_put_pages_shmem(obj, pages);
else
i915_gem_object_put_pages_phys(obj, pages);
}
static int
shmem_pwrite(struct drm_i915_gem_object *obj,
const struct drm_i915_gem_pwrite *arg)
{
struct address_space *mapping = obj->base.filp->f_mapping;
const struct address_space_operations *aops = mapping->a_ops;
char __user *user_data = u64_to_user_ptr(arg->data_ptr);
u64 remain, offset;
unsigned int pg;
/* Caller already validated user args */
GEM_BUG_ON(!access_ok(user_data, arg->size));
if (!i915_gem_object_has_struct_page(obj))
return i915_gem_object_pwrite_phys(obj, arg);
/*
* Before we instantiate/pin the backing store for our use, we
* can prepopulate the shmemfs filp efficiently using a write into
* the pagecache. We avoid the penalty of instantiating all the
* pages, important if the user is just writing to a few and never
* uses the object on the GPU, and using a direct write into shmemfs
* allows it to avoid the cost of retrieving a page (either swapin
* or clearing-before-use) before it is overwritten.
*/
if (i915_gem_object_has_pages(obj))
return -ENODEV;
if (obj->mm.madv != I915_MADV_WILLNEED)
return -EFAULT;
/*
* Before the pages are instantiated the object is treated as being
* in the CPU domain. The pages will be clflushed as required before
* use, and we can freely write into the pages directly. If userspace
* races pwrite with any other operation; corruption will ensue -
* that is userspace's prerogative!
*/
remain = arg->size;
offset = arg->offset;
pg = offset_in_page(offset);
do {
unsigned int len, unwritten;
struct page *page;
void *data, *vaddr;
int err;
char __maybe_unused c;
len = PAGE_SIZE - pg;
if (len > remain)
len = remain;
/* Prefault the user page to reduce potential recursion */
err = __get_user(c, user_data);
if (err)
return err;
err = __get_user(c, user_data + len - 1);
if (err)
return err;
err = aops->write_begin(obj->base.filp, mapping, offset, len,
&page, &data);
if (err < 0)
return err;
vaddr = kmap_atomic(page);
unwritten = __copy_from_user_inatomic(vaddr + pg,
user_data,
len);
kunmap_atomic(vaddr);
err = aops->write_end(obj->base.filp, mapping, offset, len,
len - unwritten, page, data);
if (err < 0)
return err;
/* We don't handle -EFAULT, leave it to the caller to check */
if (unwritten)
return -ENODEV;
remain -= len;
user_data += len;
offset += len;
pg = 0;
} while (remain);
return 0;
}
static int
shmem_pread(struct drm_i915_gem_object *obj,
const struct drm_i915_gem_pread *arg)
{
if (!i915_gem_object_has_struct_page(obj))
return i915_gem_object_pread_phys(obj, arg);
return -ENODEV;
}
static void shmem_release(struct drm_i915_gem_object *obj)
{
if (i915_gem_object_has_struct_page(obj))
i915_gem_object_release_memory_region(obj);
fput(obj->base.filp);
}
const struct drm_i915_gem_object_ops i915_gem_shmem_ops = {
.name = "i915_gem_object_shmem",
.flags = I915_GEM_OBJECT_IS_SHRINKABLE,
.get_pages = shmem_get_pages,
.put_pages = shmem_put_pages,
.truncate = shmem_truncate,
.shrink = shmem_shrink,
.pwrite = shmem_pwrite,
.pread = shmem_pread,
.release = shmem_release,
};
static int __create_shmem(struct drm_i915_private *i915,
struct drm_gem_object *obj,
resource_size_t size)
{
unsigned long flags = VM_NORESERVE;
struct file *filp;
drm_gem_private_object_init(&i915->drm, obj, size);
/* XXX: The __shmem_file_setup() function returns -EINVAL if size is
* greater than MAX_LFS_FILESIZE.
* To handle the same error as other code that returns -E2BIG when
* the size is too large, we add a code that returns -E2BIG when the
* size is larger than the size that can be handled.
* If BITS_PER_LONG is 32, size > MAX_LFS_FILESIZE is always false,
* so we only needs to check when BITS_PER_LONG is 64.
* If BITS_PER_LONG is 32, E2BIG checks are processed when
* i915_gem_object_size_2big() is called before init_object() callback
* is called.
*/
if (BITS_PER_LONG == 64 && size > MAX_LFS_FILESIZE)
return -E2BIG;
if (i915->mm.gemfs)
filp = shmem_file_setup_with_mnt(i915->mm.gemfs, "i915", size,
flags);
else
filp = shmem_file_setup("i915", size, flags);
if (IS_ERR(filp))
return PTR_ERR(filp);
obj->filp = filp;
return 0;
}
static int shmem_object_init(struct intel_memory_region *mem,
struct drm_i915_gem_object *obj,
resource_size_t offset,
resource_size_t size,
resource_size_t page_size,
unsigned int flags)
{
static struct lock_class_key lock_class;
struct drm_i915_private *i915 = mem->i915;
struct address_space *mapping;
unsigned int cache_level;
gfp_t mask;
int ret;
ret = __create_shmem(i915, &obj->base, size);
if (ret)
return ret;
mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
if (IS_I965GM(i915) || IS_I965G(i915)) {
/* 965gm cannot relocate objects above 4GiB. */
mask &= ~__GFP_HIGHMEM;
mask |= __GFP_DMA32;
}
mapping = obj->base.filp->f_mapping;
mapping_set_gfp_mask(mapping, mask);
GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
i915_gem_object_init(obj, &i915_gem_shmem_ops, &lock_class, flags);
obj->mem_flags |= I915_BO_FLAG_STRUCT_PAGE;
obj->write_domain = I915_GEM_DOMAIN_CPU;
obj->read_domains = I915_GEM_DOMAIN_CPU;
/*
* MTL doesn't snoop CPU cache by default for GPU access (namely
* 1-way coherency). However some UMD's are currently depending on
* that. Make 1-way coherent the default setting for MTL. A follow
* up patch will extend the GEM_CREATE uAPI to allow UMD's specify
* caching mode at BO creation time
*/
if (HAS_LLC(i915) || (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 70)))
/* On some devices, we can have the GPU use the LLC (the CPU
* cache) for about a 10% performance improvement
* compared to uncached. Graphics requests other than
* display scanout are coherent with the CPU in
* accessing this cache. This means in this mode we
* don't need to clflush on the CPU side, and on the
* GPU side we only need to flush internal caches to
* get data visible to the CPU.
*
* However, we maintain the display planes as UC, and so
* need to rebind when first used as such.
*/
cache_level = I915_CACHE_LLC;
else
cache_level = I915_CACHE_NONE;
i915_gem_object_set_cache_coherency(obj, cache_level);
i915_gem_object_init_memory_region(obj, mem);
return 0;
}
struct drm_i915_gem_object *
i915_gem_object_create_shmem(struct drm_i915_private *i915,
resource_size_t size)
{
return i915_gem_object_create_region(i915->mm.regions[INTEL_REGION_SMEM],
size, 0, 0);
}
/* Allocate a new GEM object and fill it with the supplied data */
struct drm_i915_gem_object *
i915_gem_object_create_shmem_from_data(struct drm_i915_private *dev_priv,
const void *data, resource_size_t size)
{
struct drm_i915_gem_object *obj;
struct file *file;
const struct address_space_operations *aops;
resource_size_t offset;
int err;
GEM_WARN_ON(IS_DGFX(dev_priv));
obj = i915_gem_object_create_shmem(dev_priv, round_up(size, PAGE_SIZE));
if (IS_ERR(obj))
return obj;
GEM_BUG_ON(obj->write_domain != I915_GEM_DOMAIN_CPU);
file = obj->base.filp;
aops = file->f_mapping->a_ops;
offset = 0;
do {
unsigned int len = min_t(typeof(size), size, PAGE_SIZE);
struct page *page;
void *pgdata, *vaddr;
err = aops->write_begin(file, file->f_mapping, offset, len,
&page, &pgdata);
if (err < 0)
goto fail;
vaddr = kmap(page);
memcpy(vaddr, data, len);
kunmap(page);
err = aops->write_end(file, file->f_mapping, offset, len, len,
page, pgdata);
if (err < 0)
goto fail;
size -= len;
data += len;
offset += len;
} while (size);
return obj;
fail:
i915_gem_object_put(obj);
return ERR_PTR(err);
}
static int init_shmem(struct intel_memory_region *mem)
{
i915_gemfs_init(mem->i915);
intel_memory_region_set_name(mem, "system");
return 0; /* We have fallback to the kernel mnt if gemfs init failed. */
}
static int release_shmem(struct intel_memory_region *mem)
{
i915_gemfs_fini(mem->i915);
return 0;
}
static const struct intel_memory_region_ops shmem_region_ops = {
.init = init_shmem,
.release = release_shmem,
.init_object = shmem_object_init,
};
struct intel_memory_region *i915_gem_shmem_setup(struct drm_i915_private *i915,
u16 type, u16 instance)
{
return intel_memory_region_create(i915, 0,
totalram_pages() << PAGE_SHIFT,
PAGE_SIZE, 0, 0,
type, instance,
&shmem_region_ops);
}
bool i915_gem_object_is_shmem(const struct drm_i915_gem_object *obj)
{
return obj->ops == &i915_gem_shmem_ops;
}