Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Lucas De Marchi | 1722 | 25.09% | 2 | 1.04% |
Nirmoy Das | 1273 | 18.55% | 3 | 1.56% |
Matthew Auld | 1234 | 17.98% | 7 | 3.65% |
Chris Wilson | 773 | 11.26% | 70 | 36.46% |
Casey Bowman | 544 | 7.93% | 1 | 0.52% |
Andrzej Hajda | 196 | 2.86% | 2 | 1.04% |
Fei Yang | 139 | 2.03% | 2 | 1.04% |
Imre Deak | 113 | 1.65% | 2 | 1.04% |
Aravind Iddamsetty | 101 | 1.47% | 3 | 1.56% |
Tvrtko A. Ursulin | 78 | 1.14% | 15 | 7.81% |
Thomas Hellstrom | 70 | 1.02% | 7 | 3.65% |
Ben Widawsky | 65 | 0.95% | 9 | 4.69% |
Prathap Kumar Valsan | 59 | 0.86% | 1 | 0.52% |
Daniele Ceraolo Spurio | 58 | 0.85% | 5 | 2.60% |
Maarten Lankhorst | 52 | 0.76% | 3 | 1.56% |
Joonas Lahtinen | 46 | 0.67% | 1 | 0.52% |
Wambui Karuga | 35 | 0.51% | 1 | 0.52% |
Daniel Vetter | 30 | 0.44% | 9 | 4.69% |
Piotr Piórkowski | 29 | 0.42% | 2 | 1.04% |
Nathan Chancellor | 23 | 0.34% | 1 | 0.52% |
Michal Wajdeczko | 21 | 0.31% | 2 | 1.04% |
Michał Winiarski | 20 | 0.29% | 3 | 1.56% |
Michel Thierry | 19 | 0.28% | 3 | 1.56% |
Kenneth Graunke | 17 | 0.25% | 1 | 0.52% |
Jon Bloomfield | 15 | 0.22% | 1 | 0.52% |
Ville Syrjälä | 14 | 0.20% | 6 | 3.12% |
Zou Nan hai | 12 | 0.17% | 2 | 1.04% |
Javier Pello | 11 | 0.16% | 1 | 0.52% |
Damien Lespiau | 11 | 0.16% | 1 | 0.52% |
Jani Nikula | 9 | 0.13% | 4 | 2.08% |
Matt Roper | 9 | 0.13% | 2 | 1.04% |
Zhi Wang | 9 | 0.13% | 3 | 1.56% |
Andi Shyti | 8 | 0.12% | 2 | 1.04% |
Akash Goel | 7 | 0.10% | 1 | 0.52% |
Thomas Zimmermann | 6 | 0.09% | 2 | 1.04% |
Zhenyu Wang | 5 | 0.07% | 1 | 0.52% |
Alex Dai | 5 | 0.07% | 1 | 0.52% |
Dave Gordon | 4 | 0.06% | 1 | 0.52% |
José Roberto de Souza | 4 | 0.06% | 1 | 0.52% |
Ramalingam C | 3 | 0.04% | 1 | 0.52% |
Yu Zhang | 2 | 0.03% | 1 | 0.52% |
CQ Tang | 2 | 0.03% | 1 | 0.52% |
Venkata Sandeep Dhanalakota | 2 | 0.03% | 1 | 0.52% |
Michael Cheng | 2 | 0.03% | 1 | 0.52% |
Huang, Sean Z | 2 | 0.03% | 1 | 0.52% |
Chen Zhou | 2 | 0.03% | 1 | 0.52% |
Eric Anholt | 2 | 0.03% | 1 | 0.52% |
Total | 6863 | 192 |
// SPDX-License-Identifier: MIT /* * Copyright © 2020 Intel Corporation */ #include <asm/set_memory.h> #include <asm/smp.h> #include <linux/types.h> #include <linux/stop_machine.h> #include <drm/drm_managed.h> #include <drm/i915_drm.h> #include <drm/intel-gtt.h> #include "display/intel_display.h" #include "gem/i915_gem_lmem.h" #include "intel_context.h" #include "intel_ggtt_gmch.h" #include "intel_gpu_commands.h" #include "intel_gt.h" #include "intel_gt_regs.h" #include "intel_pci_config.h" #include "intel_ring.h" #include "i915_drv.h" #include "i915_pci.h" #include "i915_request.h" #include "i915_scatterlist.h" #include "i915_utils.h" #include "i915_vgpu.h" #include "intel_gtt.h" #include "gen8_ppgtt.h" #include "intel_engine_pm.h" static void i915_ggtt_color_adjust(const struct drm_mm_node *node, unsigned long color, u64 *start, u64 *end) { if (i915_node_color_differs(node, color)) *start += I915_GTT_PAGE_SIZE; /* * Also leave a space between the unallocated reserved node after the * GTT and any objects within the GTT, i.e. we use the color adjustment * to insert a guard page to prevent prefetches crossing over the * GTT boundary. */ node = list_next_entry(node, node_list); if (node->color != color) *end -= I915_GTT_PAGE_SIZE; } static int ggtt_init_hw(struct i915_ggtt *ggtt) { struct drm_i915_private *i915 = ggtt->vm.i915; i915_address_space_init(&ggtt->vm, VM_CLASS_GGTT); ggtt->vm.is_ggtt = true; /* Only VLV supports read-only GGTT mappings */ ggtt->vm.has_read_only = IS_VALLEYVIEW(i915); if (!HAS_LLC(i915) && !HAS_PPGTT(i915)) ggtt->vm.mm.color_adjust = i915_ggtt_color_adjust; if (ggtt->mappable_end) { if (!io_mapping_init_wc(&ggtt->iomap, ggtt->gmadr.start, ggtt->mappable_end)) { ggtt->vm.cleanup(&ggtt->vm); return -EIO; } ggtt->mtrr = arch_phys_wc_add(ggtt->gmadr.start, ggtt->mappable_end); } intel_ggtt_init_fences(ggtt); return 0; } /** * i915_ggtt_init_hw - Initialize GGTT hardware * @i915: i915 device */ int i915_ggtt_init_hw(struct drm_i915_private *i915) { int ret; /* * Note that we use page colouring to enforce a guard page at the * end of the address space. This is required as the CS may prefetch * beyond the end of the batch buffer, across the page boundary, * and beyond the end of the GTT if we do not provide a guard. */ ret = ggtt_init_hw(to_gt(i915)->ggtt); if (ret) return ret; return 0; } /** * i915_ggtt_suspend_vm - Suspend the memory mappings for a GGTT or DPT VM * @vm: The VM to suspend the mappings for * * Suspend the memory mappings for all objects mapped to HW via the GGTT or a * DPT page table. */ void i915_ggtt_suspend_vm(struct i915_address_space *vm) { struct i915_vma *vma, *vn; int save_skip_rewrite; drm_WARN_ON(&vm->i915->drm, !vm->is_ggtt && !vm->is_dpt); retry: i915_gem_drain_freed_objects(vm->i915); mutex_lock(&vm->mutex); /* * Skip rewriting PTE on VMA unbind. * FIXME: Use an argument to i915_vma_unbind() instead? */ save_skip_rewrite = vm->skip_pte_rewrite; vm->skip_pte_rewrite = true; list_for_each_entry_safe(vma, vn, &vm->bound_list, vm_link) { struct drm_i915_gem_object *obj = vma->obj; GEM_BUG_ON(!drm_mm_node_allocated(&vma->node)); if (i915_vma_is_pinned(vma) || !i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND)) continue; /* unlikely to race when GPU is idle, so no worry about slowpath.. */ if (WARN_ON(!i915_gem_object_trylock(obj, NULL))) { /* * No dead objects should appear here, GPU should be * completely idle, and userspace suspended */ i915_gem_object_get(obj); mutex_unlock(&vm->mutex); i915_gem_object_lock(obj, NULL); GEM_WARN_ON(i915_vma_unbind(vma)); i915_gem_object_unlock(obj); i915_gem_object_put(obj); vm->skip_pte_rewrite = save_skip_rewrite; goto retry; } if (!i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND)) { i915_vma_wait_for_bind(vma); __i915_vma_evict(vma, false); drm_mm_remove_node(&vma->node); } i915_gem_object_unlock(obj); } vm->clear_range(vm, 0, vm->total); vm->skip_pte_rewrite = save_skip_rewrite; mutex_unlock(&vm->mutex); } void i915_ggtt_suspend(struct i915_ggtt *ggtt) { struct intel_gt *gt; i915_ggtt_suspend_vm(&ggtt->vm); ggtt->invalidate(ggtt); list_for_each_entry(gt, &ggtt->gt_list, ggtt_link) intel_gt_check_and_clear_faults(gt); } void gen6_ggtt_invalidate(struct i915_ggtt *ggtt) { struct intel_uncore *uncore = ggtt->vm.gt->uncore; spin_lock_irq(&uncore->lock); intel_uncore_write_fw(uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN); intel_uncore_read_fw(uncore, GFX_FLSH_CNTL_GEN6); spin_unlock_irq(&uncore->lock); } static bool needs_wc_ggtt_mapping(struct drm_i915_private *i915) { /* * On BXT+/ICL+ writes larger than 64 bit to the GTT pagetable range * will be dropped. For WC mappings in general we have 64 byte burst * writes when the WC buffer is flushed, so we can't use it, but have to * resort to an uncached mapping. The WC issue is easily caught by the * readback check when writing GTT PTE entries. */ if (!IS_GEN9_LP(i915) && GRAPHICS_VER(i915) < 11) return true; return false; } static void gen8_ggtt_invalidate(struct i915_ggtt *ggtt) { struct intel_uncore *uncore = ggtt->vm.gt->uncore; /* * Note that as an uncached mmio write, this will flush the * WCB of the writes into the GGTT before it triggers the invalidate. * * Only perform this when GGTT is mapped as WC, see ggtt_probe_common(). */ if (needs_wc_ggtt_mapping(ggtt->vm.i915)) intel_uncore_write_fw(uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN); } static void guc_ggtt_ct_invalidate(struct intel_gt *gt) { struct intel_uncore *uncore = gt->uncore; intel_wakeref_t wakeref; with_intel_runtime_pm_if_active(uncore->rpm, wakeref) { struct intel_guc *guc = >->uc.guc; intel_guc_invalidate_tlb_guc(guc); } } static void guc_ggtt_invalidate(struct i915_ggtt *ggtt) { struct drm_i915_private *i915 = ggtt->vm.i915; struct intel_gt *gt; gen8_ggtt_invalidate(ggtt); list_for_each_entry(gt, &ggtt->gt_list, ggtt_link) { if (intel_guc_tlb_invalidation_is_available(>->uc.guc)) { guc_ggtt_ct_invalidate(gt); } else if (GRAPHICS_VER(i915) >= 12) { intel_uncore_write_fw(gt->uncore, GEN12_GUC_TLB_INV_CR, GEN12_GUC_TLB_INV_CR_INVALIDATE); } else { intel_uncore_write_fw(gt->uncore, GEN8_GTCR, GEN8_GTCR_INVALIDATE); } } } static u64 mtl_ggtt_pte_encode(dma_addr_t addr, unsigned int pat_index, u32 flags) { gen8_pte_t pte = addr | GEN8_PAGE_PRESENT; WARN_ON_ONCE(addr & ~GEN12_GGTT_PTE_ADDR_MASK); if (flags & PTE_LM) pte |= GEN12_GGTT_PTE_LM; if (pat_index & BIT(0)) pte |= MTL_GGTT_PTE_PAT0; if (pat_index & BIT(1)) pte |= MTL_GGTT_PTE_PAT1; return pte; } u64 gen8_ggtt_pte_encode(dma_addr_t addr, unsigned int pat_index, u32 flags) { gen8_pte_t pte = addr | GEN8_PAGE_PRESENT; if (flags & PTE_LM) pte |= GEN12_GGTT_PTE_LM; return pte; } static bool should_update_ggtt_with_bind(struct i915_ggtt *ggtt) { struct intel_gt *gt = ggtt->vm.gt; return intel_gt_is_bind_context_ready(gt); } static struct intel_context *gen8_ggtt_bind_get_ce(struct i915_ggtt *ggtt) { struct intel_context *ce; struct intel_gt *gt = ggtt->vm.gt; if (intel_gt_is_wedged(gt)) return NULL; ce = gt->engine[BCS0]->bind_context; GEM_BUG_ON(!ce); /* * If the GT is not awake already at this stage then fallback * to pci based GGTT update otherwise __intel_wakeref_get_first() * would conflict with fs_reclaim trying to allocate memory while * doing rpm_resume(). */ if (!intel_gt_pm_get_if_awake(gt)) return NULL; intel_engine_pm_get(ce->engine); return ce; } static void gen8_ggtt_bind_put_ce(struct intel_context *ce) { intel_engine_pm_put(ce->engine); intel_gt_pm_put(ce->engine->gt); } static bool gen8_ggtt_bind_ptes(struct i915_ggtt *ggtt, u32 offset, struct sg_table *pages, u32 num_entries, const gen8_pte_t pte) { struct i915_sched_attr attr = {}; struct intel_gt *gt = ggtt->vm.gt; const gen8_pte_t scratch_pte = ggtt->vm.scratch[0]->encode; struct sgt_iter iter; struct i915_request *rq; struct intel_context *ce; u32 *cs; if (!num_entries) return true; ce = gen8_ggtt_bind_get_ce(ggtt); if (!ce) return false; if (pages) iter = __sgt_iter(pages->sgl, true); while (num_entries) { int count = 0; dma_addr_t addr; /* * MI_UPDATE_GTT can update 512 entries in a single command but * that end up with engine reset, 511 works. */ u32 n_ptes = min_t(u32, 511, num_entries); if (mutex_lock_interruptible(&ce->timeline->mutex)) goto put_ce; intel_context_enter(ce); rq = __i915_request_create(ce, GFP_NOWAIT | GFP_ATOMIC); intel_context_exit(ce); if (IS_ERR(rq)) { GT_TRACE(gt, "Failed to get bind request\n"); mutex_unlock(&ce->timeline->mutex); goto put_ce; } cs = intel_ring_begin(rq, 2 * n_ptes + 2); if (IS_ERR(cs)) { GT_TRACE(gt, "Failed to ring space for GGTT bind\n"); i915_request_set_error_once(rq, PTR_ERR(cs)); /* once a request is created, it must be queued */ goto queue_err_rq; } *cs++ = MI_UPDATE_GTT | (2 * n_ptes); *cs++ = offset << 12; if (pages) { for_each_sgt_daddr_next(addr, iter) { if (count == n_ptes) break; *cs++ = lower_32_bits(pte | addr); *cs++ = upper_32_bits(pte | addr); count++; } /* fill remaining with scratch pte, if any */ if (count < n_ptes) { memset64((u64 *)cs, scratch_pte, n_ptes - count); cs += (n_ptes - count) * 2; } } else { memset64((u64 *)cs, pte, n_ptes); cs += n_ptes * 2; } intel_ring_advance(rq, cs); queue_err_rq: i915_request_get(rq); __i915_request_commit(rq); __i915_request_queue(rq, &attr); mutex_unlock(&ce->timeline->mutex); /* This will break if the request is complete or after engine reset */ i915_request_wait(rq, 0, MAX_SCHEDULE_TIMEOUT); if (rq->fence.error) goto err_rq; i915_request_put(rq); num_entries -= n_ptes; offset += n_ptes; } gen8_ggtt_bind_put_ce(ce); return true; err_rq: i915_request_put(rq); put_ce: gen8_ggtt_bind_put_ce(ce); return false; } static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte) { writeq(pte, addr); } static void gen8_ggtt_insert_page(struct i915_address_space *vm, dma_addr_t addr, u64 offset, unsigned int pat_index, u32 flags) { struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); gen8_pte_t __iomem *pte = (gen8_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE; gen8_set_pte(pte, ggtt->vm.pte_encode(addr, pat_index, flags)); ggtt->invalidate(ggtt); } static void gen8_ggtt_insert_page_bind(struct i915_address_space *vm, dma_addr_t addr, u64 offset, unsigned int pat_index, u32 flags) { struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); gen8_pte_t pte; pte = ggtt->vm.pte_encode(addr, pat_index, flags); if (should_update_ggtt_with_bind(i915_vm_to_ggtt(vm)) && gen8_ggtt_bind_ptes(ggtt, offset, NULL, 1, pte)) return ggtt->invalidate(ggtt); gen8_ggtt_insert_page(vm, addr, offset, pat_index, flags); } static void gen8_ggtt_insert_entries(struct i915_address_space *vm, struct i915_vma_resource *vma_res, unsigned int pat_index, u32 flags) { struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); const gen8_pte_t pte_encode = ggtt->vm.pte_encode(0, pat_index, flags); gen8_pte_t __iomem *gte; gen8_pte_t __iomem *end; struct sgt_iter iter; dma_addr_t addr; /* * Note that we ignore PTE_READ_ONLY here. The caller must be careful * not to allow the user to override access to a read only page. */ gte = (gen8_pte_t __iomem *)ggtt->gsm; gte += (vma_res->start - vma_res->guard) / I915_GTT_PAGE_SIZE; end = gte + vma_res->guard / I915_GTT_PAGE_SIZE; while (gte < end) gen8_set_pte(gte++, vm->scratch[0]->encode); end += (vma_res->node_size + vma_res->guard) / I915_GTT_PAGE_SIZE; for_each_sgt_daddr(addr, iter, vma_res->bi.pages) gen8_set_pte(gte++, pte_encode | addr); GEM_BUG_ON(gte > end); /* Fill the allocated but "unused" space beyond the end of the buffer */ while (gte < end) gen8_set_pte(gte++, vm->scratch[0]->encode); /* * We want to flush the TLBs only after we're certain all the PTE * updates have finished. */ ggtt->invalidate(ggtt); } static bool __gen8_ggtt_insert_entries_bind(struct i915_address_space *vm, struct i915_vma_resource *vma_res, unsigned int pat_index, u32 flags) { struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); gen8_pte_t scratch_pte = vm->scratch[0]->encode; gen8_pte_t pte_encode; u64 start, end; pte_encode = ggtt->vm.pte_encode(0, pat_index, flags); start = (vma_res->start - vma_res->guard) / I915_GTT_PAGE_SIZE; end = start + vma_res->guard / I915_GTT_PAGE_SIZE; if (!gen8_ggtt_bind_ptes(ggtt, start, NULL, end - start, scratch_pte)) goto err; start = end; end += (vma_res->node_size + vma_res->guard) / I915_GTT_PAGE_SIZE; if (!gen8_ggtt_bind_ptes(ggtt, start, vma_res->bi.pages, vma_res->node_size / I915_GTT_PAGE_SIZE, pte_encode)) goto err; start += vma_res->node_size / I915_GTT_PAGE_SIZE; if (!gen8_ggtt_bind_ptes(ggtt, start, NULL, end - start, scratch_pte)) goto err; return true; err: return false; } static void gen8_ggtt_insert_entries_bind(struct i915_address_space *vm, struct i915_vma_resource *vma_res, unsigned int pat_index, u32 flags) { struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); if (should_update_ggtt_with_bind(i915_vm_to_ggtt(vm)) && __gen8_ggtt_insert_entries_bind(vm, vma_res, pat_index, flags)) return ggtt->invalidate(ggtt); gen8_ggtt_insert_entries(vm, vma_res, pat_index, flags); } static void gen8_ggtt_clear_range(struct i915_address_space *vm, u64 start, u64 length) { struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); unsigned int first_entry = start / I915_GTT_PAGE_SIZE; unsigned int num_entries = length / I915_GTT_PAGE_SIZE; const gen8_pte_t scratch_pte = vm->scratch[0]->encode; gen8_pte_t __iomem *gtt_base = (gen8_pte_t __iomem *)ggtt->gsm + first_entry; const int max_entries = ggtt_total_entries(ggtt) - first_entry; int i; if (WARN(num_entries > max_entries, "First entry = %d; Num entries = %d (max=%d)\n", first_entry, num_entries, max_entries)) num_entries = max_entries; for (i = 0; i < num_entries; i++) gen8_set_pte(>t_base[i], scratch_pte); } static void gen8_ggtt_scratch_range_bind(struct i915_address_space *vm, u64 start, u64 length) { struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); unsigned int first_entry = start / I915_GTT_PAGE_SIZE; unsigned int num_entries = length / I915_GTT_PAGE_SIZE; const gen8_pte_t scratch_pte = vm->scratch[0]->encode; const int max_entries = ggtt_total_entries(ggtt) - first_entry; if (WARN(num_entries > max_entries, "First entry = %d; Num entries = %d (max=%d)\n", first_entry, num_entries, max_entries)) num_entries = max_entries; if (should_update_ggtt_with_bind(ggtt) && gen8_ggtt_bind_ptes(ggtt, first_entry, NULL, num_entries, scratch_pte)) return ggtt->invalidate(ggtt); gen8_ggtt_clear_range(vm, start, length); } static void gen6_ggtt_insert_page(struct i915_address_space *vm, dma_addr_t addr, u64 offset, unsigned int pat_index, u32 flags) { struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); gen6_pte_t __iomem *pte = (gen6_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE; iowrite32(vm->pte_encode(addr, pat_index, flags), pte); ggtt->invalidate(ggtt); } /* * Binds an object into the global gtt with the specified cache level. * The object will be accessible to the GPU via commands whose operands * reference offsets within the global GTT as well as accessible by the GPU * through the GMADR mapped BAR (i915->mm.gtt->gtt). */ static void gen6_ggtt_insert_entries(struct i915_address_space *vm, struct i915_vma_resource *vma_res, unsigned int pat_index, u32 flags) { struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); gen6_pte_t __iomem *gte; gen6_pte_t __iomem *end; struct sgt_iter iter; dma_addr_t addr; gte = (gen6_pte_t __iomem *)ggtt->gsm; gte += (vma_res->start - vma_res->guard) / I915_GTT_PAGE_SIZE; end = gte + vma_res->guard / I915_GTT_PAGE_SIZE; while (gte < end) iowrite32(vm->scratch[0]->encode, gte++); end += (vma_res->node_size + vma_res->guard) / I915_GTT_PAGE_SIZE; for_each_sgt_daddr(addr, iter, vma_res->bi.pages) iowrite32(vm->pte_encode(addr, pat_index, flags), gte++); GEM_BUG_ON(gte > end); /* Fill the allocated but "unused" space beyond the end of the buffer */ while (gte < end) iowrite32(vm->scratch[0]->encode, gte++); /* * We want to flush the TLBs only after we're certain all the PTE * updates have finished. */ ggtt->invalidate(ggtt); } static void nop_clear_range(struct i915_address_space *vm, u64 start, u64 length) { } static void bxt_vtd_ggtt_wa(struct i915_address_space *vm) { /* * Make sure the internal GAM fifo has been cleared of all GTT * writes before exiting stop_machine(). This guarantees that * any aperture accesses waiting to start in another process * cannot back up behind the GTT writes causing a hang. * The register can be any arbitrary GAM register. */ intel_uncore_posting_read_fw(vm->gt->uncore, GFX_FLSH_CNTL_GEN6); } struct insert_page { struct i915_address_space *vm; dma_addr_t addr; u64 offset; unsigned int pat_index; }; static int bxt_vtd_ggtt_insert_page__cb(void *_arg) { struct insert_page *arg = _arg; gen8_ggtt_insert_page(arg->vm, arg->addr, arg->offset, arg->pat_index, 0); bxt_vtd_ggtt_wa(arg->vm); return 0; } static void bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space *vm, dma_addr_t addr, u64 offset, unsigned int pat_index, u32 unused) { struct insert_page arg = { vm, addr, offset, pat_index }; stop_machine(bxt_vtd_ggtt_insert_page__cb, &arg, NULL); } struct insert_entries { struct i915_address_space *vm; struct i915_vma_resource *vma_res; unsigned int pat_index; u32 flags; }; static int bxt_vtd_ggtt_insert_entries__cb(void *_arg) { struct insert_entries *arg = _arg; gen8_ggtt_insert_entries(arg->vm, arg->vma_res, arg->pat_index, arg->flags); bxt_vtd_ggtt_wa(arg->vm); return 0; } static void bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space *vm, struct i915_vma_resource *vma_res, unsigned int pat_index, u32 flags) { struct insert_entries arg = { vm, vma_res, pat_index, flags }; stop_machine(bxt_vtd_ggtt_insert_entries__cb, &arg, NULL); } static void gen6_ggtt_clear_range(struct i915_address_space *vm, u64 start, u64 length) { struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); unsigned int first_entry = start / I915_GTT_PAGE_SIZE; unsigned int num_entries = length / I915_GTT_PAGE_SIZE; gen6_pte_t scratch_pte, __iomem *gtt_base = (gen6_pte_t __iomem *)ggtt->gsm + first_entry; const int max_entries = ggtt_total_entries(ggtt) - first_entry; int i; if (WARN(num_entries > max_entries, "First entry = %d; Num entries = %d (max=%d)\n", first_entry, num_entries, max_entries)) num_entries = max_entries; scratch_pte = vm->scratch[0]->encode; for (i = 0; i < num_entries; i++) iowrite32(scratch_pte, >t_base[i]); } void intel_ggtt_bind_vma(struct i915_address_space *vm, struct i915_vm_pt_stash *stash, struct i915_vma_resource *vma_res, unsigned int pat_index, u32 flags) { u32 pte_flags; if (vma_res->bound_flags & (~flags & I915_VMA_BIND_MASK)) return; vma_res->bound_flags |= flags; /* Applicable to VLV (gen8+ do not support RO in the GGTT) */ pte_flags = 0; if (vma_res->bi.readonly) pte_flags |= PTE_READ_ONLY; if (vma_res->bi.lmem) pte_flags |= PTE_LM; vm->insert_entries(vm, vma_res, pat_index, pte_flags); vma_res->page_sizes_gtt = I915_GTT_PAGE_SIZE; } void intel_ggtt_unbind_vma(struct i915_address_space *vm, struct i915_vma_resource *vma_res) { vm->clear_range(vm, vma_res->start, vma_res->vma_size); } /* * Reserve the top of the GuC address space for firmware images. Addresses * beyond GUC_GGTT_TOP in the GuC address space are inaccessible by GuC, * which makes for a suitable range to hold GuC/HuC firmware images if the * size of the GGTT is 4G. However, on a 32-bit platform the size of the GGTT * is limited to 2G, which is less than GUC_GGTT_TOP, but we reserve a chunk * of the same size anyway, which is far more than needed, to keep the logic * in uc_fw_ggtt_offset() simple. */ #define GUC_TOP_RESERVE_SIZE (SZ_4G - GUC_GGTT_TOP) static int ggtt_reserve_guc_top(struct i915_ggtt *ggtt) { u64 offset; int ret; if (!intel_uc_uses_guc(&ggtt->vm.gt->uc)) return 0; GEM_BUG_ON(ggtt->vm.total <= GUC_TOP_RESERVE_SIZE); offset = ggtt->vm.total - GUC_TOP_RESERVE_SIZE; ret = i915_gem_gtt_reserve(&ggtt->vm, NULL, &ggtt->uc_fw, GUC_TOP_RESERVE_SIZE, offset, I915_COLOR_UNEVICTABLE, PIN_NOEVICT); if (ret) drm_dbg(&ggtt->vm.i915->drm, "Failed to reserve top of GGTT for GuC\n"); return ret; } static void ggtt_release_guc_top(struct i915_ggtt *ggtt) { if (drm_mm_node_allocated(&ggtt->uc_fw)) drm_mm_remove_node(&ggtt->uc_fw); } static void cleanup_init_ggtt(struct i915_ggtt *ggtt) { ggtt_release_guc_top(ggtt); if (drm_mm_node_allocated(&ggtt->error_capture)) drm_mm_remove_node(&ggtt->error_capture); mutex_destroy(&ggtt->error_mutex); } static int init_ggtt(struct i915_ggtt *ggtt) { /* * Let GEM Manage all of the aperture. * * However, leave one page at the end still bound to the scratch page. * There are a number of places where the hardware apparently prefetches * past the end of the object, and we've seen multiple hangs with the * GPU head pointer stuck in a batchbuffer bound at the last page of the * aperture. One page should be enough to keep any prefetching inside * of the aperture. */ unsigned long hole_start, hole_end; struct drm_mm_node *entry; int ret; /* * GuC requires all resources that we're sharing with it to be placed in * non-WOPCM memory. If GuC is not present or not in use we still need a * small bias as ring wraparound at offset 0 sometimes hangs. No idea * why. */ ggtt->pin_bias = max_t(u32, I915_GTT_PAGE_SIZE, intel_wopcm_guc_size(&ggtt->vm.gt->wopcm)); ret = intel_vgt_balloon(ggtt); if (ret) return ret; mutex_init(&ggtt->error_mutex); if (ggtt->mappable_end) { /* * Reserve a mappable slot for our lockless error capture. * * We strongly prefer taking address 0x0 in order to protect * other critical buffers against accidental overwrites, * as writing to address 0 is a very common mistake. * * Since 0 may already be in use by the system (e.g. the BIOS * framebuffer), we let the reservation fail quietly and hope * 0 remains reserved always. * * If we fail to reserve 0, and then fail to find any space * for an error-capture, remain silent. We can afford not * to reserve an error_capture node as we have fallback * paths, and we trust that 0 will remain reserved. However, * the only likely reason for failure to insert is a driver * bug, which we expect to cause other failures... * * Since CPU can perform speculative reads on error capture * (write-combining allows it) add scratch page after error * capture to avoid DMAR errors. */ ggtt->error_capture.size = 2 * I915_GTT_PAGE_SIZE; ggtt->error_capture.color = I915_COLOR_UNEVICTABLE; if (drm_mm_reserve_node(&ggtt->vm.mm, &ggtt->error_capture)) drm_mm_insert_node_in_range(&ggtt->vm.mm, &ggtt->error_capture, ggtt->error_capture.size, 0, ggtt->error_capture.color, 0, ggtt->mappable_end, DRM_MM_INSERT_LOW); } if (drm_mm_node_allocated(&ggtt->error_capture)) { u64 start = ggtt->error_capture.start; u64 size = ggtt->error_capture.size; ggtt->vm.scratch_range(&ggtt->vm, start, size); drm_dbg(&ggtt->vm.i915->drm, "Reserved GGTT:[%llx, %llx] for use by error capture\n", start, start + size); } /* * The upper portion of the GuC address space has a sizeable hole * (several MB) that is inaccessible by GuC. Reserve this range within * GGTT as it can comfortably hold GuC/HuC firmware images. */ ret = ggtt_reserve_guc_top(ggtt); if (ret) goto err; /* Clear any non-preallocated blocks */ drm_mm_for_each_hole(entry, &ggtt->vm.mm, hole_start, hole_end) { drm_dbg(&ggtt->vm.i915->drm, "clearing unused GTT space: [%lx, %lx]\n", hole_start, hole_end); ggtt->vm.clear_range(&ggtt->vm, hole_start, hole_end - hole_start); } /* And finally clear the reserved guard page */ ggtt->vm.clear_range(&ggtt->vm, ggtt->vm.total - PAGE_SIZE, PAGE_SIZE); return 0; err: cleanup_init_ggtt(ggtt); return ret; } static void aliasing_gtt_bind_vma(struct i915_address_space *vm, struct i915_vm_pt_stash *stash, struct i915_vma_resource *vma_res, unsigned int pat_index, u32 flags) { u32 pte_flags; /* Currently applicable only to VLV */ pte_flags = 0; if (vma_res->bi.readonly) pte_flags |= PTE_READ_ONLY; if (flags & I915_VMA_LOCAL_BIND) ppgtt_bind_vma(&i915_vm_to_ggtt(vm)->alias->vm, stash, vma_res, pat_index, flags); if (flags & I915_VMA_GLOBAL_BIND) vm->insert_entries(vm, vma_res, pat_index, pte_flags); vma_res->bound_flags |= flags; } static void aliasing_gtt_unbind_vma(struct i915_address_space *vm, struct i915_vma_resource *vma_res) { if (vma_res->bound_flags & I915_VMA_GLOBAL_BIND) vm->clear_range(vm, vma_res->start, vma_res->vma_size); if (vma_res->bound_flags & I915_VMA_LOCAL_BIND) ppgtt_unbind_vma(&i915_vm_to_ggtt(vm)->alias->vm, vma_res); } static int init_aliasing_ppgtt(struct i915_ggtt *ggtt) { struct i915_vm_pt_stash stash = {}; struct i915_ppgtt *ppgtt; int err; ppgtt = i915_ppgtt_create(ggtt->vm.gt, 0); if (IS_ERR(ppgtt)) return PTR_ERR(ppgtt); if (GEM_WARN_ON(ppgtt->vm.total < ggtt->vm.total)) { err = -ENODEV; goto err_ppgtt; } err = i915_vm_alloc_pt_stash(&ppgtt->vm, &stash, ggtt->vm.total); if (err) goto err_ppgtt; i915_gem_object_lock(ppgtt->vm.scratch[0], NULL); err = i915_vm_map_pt_stash(&ppgtt->vm, &stash); i915_gem_object_unlock(ppgtt->vm.scratch[0]); if (err) goto err_stash; /* * Note we only pre-allocate as far as the end of the global * GTT. On 48b / 4-level page-tables, the difference is very, * very significant! We have to preallocate as GVT/vgpu does * not like the page directory disappearing. */ ppgtt->vm.allocate_va_range(&ppgtt->vm, &stash, 0, ggtt->vm.total); ggtt->alias = ppgtt; ggtt->vm.bind_async_flags |= ppgtt->vm.bind_async_flags; GEM_BUG_ON(ggtt->vm.vma_ops.bind_vma != intel_ggtt_bind_vma); ggtt->vm.vma_ops.bind_vma = aliasing_gtt_bind_vma; GEM_BUG_ON(ggtt->vm.vma_ops.unbind_vma != intel_ggtt_unbind_vma); ggtt->vm.vma_ops.unbind_vma = aliasing_gtt_unbind_vma; i915_vm_free_pt_stash(&ppgtt->vm, &stash); return 0; err_stash: i915_vm_free_pt_stash(&ppgtt->vm, &stash); err_ppgtt: i915_vm_put(&ppgtt->vm); return err; } static void fini_aliasing_ppgtt(struct i915_ggtt *ggtt) { struct i915_ppgtt *ppgtt; ppgtt = fetch_and_zero(&ggtt->alias); if (!ppgtt) return; i915_vm_put(&ppgtt->vm); ggtt->vm.vma_ops.bind_vma = intel_ggtt_bind_vma; ggtt->vm.vma_ops.unbind_vma = intel_ggtt_unbind_vma; } int i915_init_ggtt(struct drm_i915_private *i915) { int ret; ret = init_ggtt(to_gt(i915)->ggtt); if (ret) return ret; if (INTEL_PPGTT(i915) == INTEL_PPGTT_ALIASING) { ret = init_aliasing_ppgtt(to_gt(i915)->ggtt); if (ret) cleanup_init_ggtt(to_gt(i915)->ggtt); } return 0; } static void ggtt_cleanup_hw(struct i915_ggtt *ggtt) { struct i915_vma *vma, *vn; flush_workqueue(ggtt->vm.i915->wq); i915_gem_drain_freed_objects(ggtt->vm.i915); mutex_lock(&ggtt->vm.mutex); ggtt->vm.skip_pte_rewrite = true; list_for_each_entry_safe(vma, vn, &ggtt->vm.bound_list, vm_link) { struct drm_i915_gem_object *obj = vma->obj; bool trylock; trylock = i915_gem_object_trylock(obj, NULL); WARN_ON(!trylock); WARN_ON(__i915_vma_unbind(vma)); if (trylock) i915_gem_object_unlock(obj); } if (drm_mm_node_allocated(&ggtt->error_capture)) drm_mm_remove_node(&ggtt->error_capture); mutex_destroy(&ggtt->error_mutex); ggtt_release_guc_top(ggtt); intel_vgt_deballoon(ggtt); ggtt->vm.cleanup(&ggtt->vm); mutex_unlock(&ggtt->vm.mutex); i915_address_space_fini(&ggtt->vm); arch_phys_wc_del(ggtt->mtrr); if (ggtt->iomap.size) io_mapping_fini(&ggtt->iomap); } /** * i915_ggtt_driver_release - Clean up GGTT hardware initialization * @i915: i915 device */ void i915_ggtt_driver_release(struct drm_i915_private *i915) { struct i915_ggtt *ggtt = to_gt(i915)->ggtt; fini_aliasing_ppgtt(ggtt); intel_ggtt_fini_fences(ggtt); ggtt_cleanup_hw(ggtt); } /** * i915_ggtt_driver_late_release - Cleanup of GGTT that needs to be done after * all free objects have been drained. * @i915: i915 device */ void i915_ggtt_driver_late_release(struct drm_i915_private *i915) { struct i915_ggtt *ggtt = to_gt(i915)->ggtt; GEM_WARN_ON(kref_read(&ggtt->vm.resv_ref) != 1); dma_resv_fini(&ggtt->vm._resv); } static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl) { snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT; snb_gmch_ctl &= SNB_GMCH_GGMS_MASK; return snb_gmch_ctl << 20; } static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl) { bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT; bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK; if (bdw_gmch_ctl) bdw_gmch_ctl = 1 << bdw_gmch_ctl; #ifdef CONFIG_X86_32 /* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * I915_GTT_PAGE_SIZE */ if (bdw_gmch_ctl > 4) bdw_gmch_ctl = 4; #endif return bdw_gmch_ctl << 20; } static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl) { gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT; gmch_ctrl &= SNB_GMCH_GGMS_MASK; if (gmch_ctrl) return 1 << (20 + gmch_ctrl); return 0; } static unsigned int gen6_gttmmadr_size(struct drm_i915_private *i915) { /* * GEN6: GTTMMADR size is 4MB and GTTADR starts at 2MB offset * GEN8: GTTMMADR size is 16MB and GTTADR starts at 8MB offset */ GEM_BUG_ON(GRAPHICS_VER(i915) < 6); return (GRAPHICS_VER(i915) < 8) ? SZ_4M : SZ_16M; } static unsigned int gen6_gttadr_offset(struct drm_i915_private *i915) { return gen6_gttmmadr_size(i915) / 2; } static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size) { struct drm_i915_private *i915 = ggtt->vm.i915; struct pci_dev *pdev = to_pci_dev(i915->drm.dev); phys_addr_t phys_addr; u32 pte_flags; int ret; GEM_WARN_ON(pci_resource_len(pdev, GEN4_GTTMMADR_BAR) != gen6_gttmmadr_size(i915)); phys_addr = pci_resource_start(pdev, GEN4_GTTMMADR_BAR) + gen6_gttadr_offset(i915); if (needs_wc_ggtt_mapping(i915)) ggtt->gsm = ioremap_wc(phys_addr, size); else ggtt->gsm = ioremap(phys_addr, size); if (!ggtt->gsm) { drm_err(&i915->drm, "Failed to map the ggtt page table\n"); return -ENOMEM; } kref_init(&ggtt->vm.resv_ref); ret = setup_scratch_page(&ggtt->vm); if (ret) { drm_err(&i915->drm, "Scratch setup failed\n"); /* iounmap will also get called at remove, but meh */ iounmap(ggtt->gsm); return ret; } pte_flags = 0; if (i915_gem_object_is_lmem(ggtt->vm.scratch[0])) pte_flags |= PTE_LM; ggtt->vm.scratch[0]->encode = ggtt->vm.pte_encode(px_dma(ggtt->vm.scratch[0]), i915_gem_get_pat_index(i915, I915_CACHE_NONE), pte_flags); return 0; } static void gen6_gmch_remove(struct i915_address_space *vm) { struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); iounmap(ggtt->gsm); free_scratch(vm); } static struct resource pci_resource(struct pci_dev *pdev, int bar) { return DEFINE_RES_MEM(pci_resource_start(pdev, bar), pci_resource_len(pdev, bar)); } static int gen8_gmch_probe(struct i915_ggtt *ggtt) { struct drm_i915_private *i915 = ggtt->vm.i915; struct pci_dev *pdev = to_pci_dev(i915->drm.dev); unsigned int size; u16 snb_gmch_ctl; if (!HAS_LMEM(i915) && !HAS_LMEMBAR_SMEM_STOLEN(i915)) { if (!i915_pci_resource_valid(pdev, GEN4_GMADR_BAR)) return -ENXIO; ggtt->gmadr = pci_resource(pdev, GEN4_GMADR_BAR); ggtt->mappable_end = resource_size(&ggtt->gmadr); } pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl); if (IS_CHERRYVIEW(i915)) size = chv_get_total_gtt_size(snb_gmch_ctl); else size = gen8_get_total_gtt_size(snb_gmch_ctl); ggtt->vm.alloc_pt_dma = alloc_pt_dma; ggtt->vm.alloc_scratch_dma = alloc_pt_dma; ggtt->vm.lmem_pt_obj_flags = I915_BO_ALLOC_PM_EARLY; ggtt->vm.total = (size / sizeof(gen8_pte_t)) * I915_GTT_PAGE_SIZE; ggtt->vm.cleanup = gen6_gmch_remove; ggtt->vm.insert_page = gen8_ggtt_insert_page; ggtt->vm.clear_range = nop_clear_range; ggtt->vm.scratch_range = gen8_ggtt_clear_range; ggtt->vm.insert_entries = gen8_ggtt_insert_entries; /* * Serialize GTT updates with aperture access on BXT if VT-d is on, * and always on CHV. */ if (intel_vm_no_concurrent_access_wa(i915)) { ggtt->vm.insert_entries = bxt_vtd_ggtt_insert_entries__BKL; ggtt->vm.insert_page = bxt_vtd_ggtt_insert_page__BKL; /* * Calling stop_machine() version of GGTT update function * at error capture/reset path will raise lockdep warning. * Allow calling gen8_ggtt_insert_* directly at reset path * which is safe from parallel GGTT updates. */ ggtt->vm.raw_insert_page = gen8_ggtt_insert_page; ggtt->vm.raw_insert_entries = gen8_ggtt_insert_entries; ggtt->vm.bind_async_flags = I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND; } if (i915_ggtt_require_binder(i915)) { ggtt->vm.scratch_range = gen8_ggtt_scratch_range_bind; ggtt->vm.insert_page = gen8_ggtt_insert_page_bind; ggtt->vm.insert_entries = gen8_ggtt_insert_entries_bind; /* * On GPU is hung, we might bind VMAs for error capture. * Fallback to CPU GGTT updates in that case. */ ggtt->vm.raw_insert_page = gen8_ggtt_insert_page; } if (intel_uc_wants_guc_submission(&ggtt->vm.gt->uc)) ggtt->invalidate = guc_ggtt_invalidate; else ggtt->invalidate = gen8_ggtt_invalidate; ggtt->vm.vma_ops.bind_vma = intel_ggtt_bind_vma; ggtt->vm.vma_ops.unbind_vma = intel_ggtt_unbind_vma; if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 70)) ggtt->vm.pte_encode = mtl_ggtt_pte_encode; else ggtt->vm.pte_encode = gen8_ggtt_pte_encode; return ggtt_probe_common(ggtt, size); } /* * For pre-gen8 platforms pat_index is the same as enum i915_cache_level, * so the switch-case statements in these PTE encode functions are still valid. * See translation table LEGACY_CACHELEVEL. */ static u64 snb_pte_encode(dma_addr_t addr, unsigned int pat_index, u32 flags) { gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID; switch (pat_index) { case I915_CACHE_L3_LLC: case I915_CACHE_LLC: pte |= GEN6_PTE_CACHE_LLC; break; case I915_CACHE_NONE: pte |= GEN6_PTE_UNCACHED; break; default: MISSING_CASE(pat_index); } return pte; } static u64 ivb_pte_encode(dma_addr_t addr, unsigned int pat_index, u32 flags) { gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID; switch (pat_index) { case I915_CACHE_L3_LLC: pte |= GEN7_PTE_CACHE_L3_LLC; break; case I915_CACHE_LLC: pte |= GEN6_PTE_CACHE_LLC; break; case I915_CACHE_NONE: pte |= GEN6_PTE_UNCACHED; break; default: MISSING_CASE(pat_index); } return pte; } static u64 byt_pte_encode(dma_addr_t addr, unsigned int pat_index, u32 flags) { gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID; if (!(flags & PTE_READ_ONLY)) pte |= BYT_PTE_WRITEABLE; if (pat_index != I915_CACHE_NONE) pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES; return pte; } static u64 hsw_pte_encode(dma_addr_t addr, unsigned int pat_index, u32 flags) { gen6_pte_t pte = HSW_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID; if (pat_index != I915_CACHE_NONE) pte |= HSW_WB_LLC_AGE3; return pte; } static u64 iris_pte_encode(dma_addr_t addr, unsigned int pat_index, u32 flags) { gen6_pte_t pte = HSW_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID; switch (pat_index) { case I915_CACHE_NONE: break; case I915_CACHE_WT: pte |= HSW_WT_ELLC_LLC_AGE3; break; default: pte |= HSW_WB_ELLC_LLC_AGE3; break; } return pte; } static int gen6_gmch_probe(struct i915_ggtt *ggtt) { struct drm_i915_private *i915 = ggtt->vm.i915; struct pci_dev *pdev = to_pci_dev(i915->drm.dev); unsigned int size; u16 snb_gmch_ctl; if (!i915_pci_resource_valid(pdev, GEN4_GMADR_BAR)) return -ENXIO; ggtt->gmadr = pci_resource(pdev, GEN4_GMADR_BAR); ggtt->mappable_end = resource_size(&ggtt->gmadr); /* * 64/512MB is the current min/max we actually know of, but this is * just a coarse sanity check. */ if (ggtt->mappable_end < (64 << 20) || ggtt->mappable_end > (512 << 20)) { drm_err(&i915->drm, "Unknown GMADR size (%pa)\n", &ggtt->mappable_end); return -ENXIO; } pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl); size = gen6_get_total_gtt_size(snb_gmch_ctl); ggtt->vm.total = (size / sizeof(gen6_pte_t)) * I915_GTT_PAGE_SIZE; ggtt->vm.alloc_pt_dma = alloc_pt_dma; ggtt->vm.alloc_scratch_dma = alloc_pt_dma; ggtt->vm.clear_range = nop_clear_range; if (!HAS_FULL_PPGTT(i915)) ggtt->vm.clear_range = gen6_ggtt_clear_range; ggtt->vm.scratch_range = gen6_ggtt_clear_range; ggtt->vm.insert_page = gen6_ggtt_insert_page; ggtt->vm.insert_entries = gen6_ggtt_insert_entries; ggtt->vm.cleanup = gen6_gmch_remove; ggtt->invalidate = gen6_ggtt_invalidate; if (HAS_EDRAM(i915)) ggtt->vm.pte_encode = iris_pte_encode; else if (IS_HASWELL(i915)) ggtt->vm.pte_encode = hsw_pte_encode; else if (IS_VALLEYVIEW(i915)) ggtt->vm.pte_encode = byt_pte_encode; else if (GRAPHICS_VER(i915) >= 7) ggtt->vm.pte_encode = ivb_pte_encode; else ggtt->vm.pte_encode = snb_pte_encode; ggtt->vm.vma_ops.bind_vma = intel_ggtt_bind_vma; ggtt->vm.vma_ops.unbind_vma = intel_ggtt_unbind_vma; return ggtt_probe_common(ggtt, size); } static int ggtt_probe_hw(struct i915_ggtt *ggtt, struct intel_gt *gt) { struct drm_i915_private *i915 = gt->i915; int ret; ggtt->vm.gt = gt; ggtt->vm.i915 = i915; ggtt->vm.dma = i915->drm.dev; dma_resv_init(&ggtt->vm._resv); if (GRAPHICS_VER(i915) >= 8) ret = gen8_gmch_probe(ggtt); else if (GRAPHICS_VER(i915) >= 6) ret = gen6_gmch_probe(ggtt); else ret = intel_ggtt_gmch_probe(ggtt); if (ret) { dma_resv_fini(&ggtt->vm._resv); return ret; } if ((ggtt->vm.total - 1) >> 32) { drm_err(&i915->drm, "We never expected a Global GTT with more than 32bits" " of address space! Found %lldM!\n", ggtt->vm.total >> 20); ggtt->vm.total = 1ULL << 32; ggtt->mappable_end = min_t(u64, ggtt->mappable_end, ggtt->vm.total); } if (ggtt->mappable_end > ggtt->vm.total) { drm_err(&i915->drm, "mappable aperture extends past end of GGTT," " aperture=%pa, total=%llx\n", &ggtt->mappable_end, ggtt->vm.total); ggtt->mappable_end = ggtt->vm.total; } /* GMADR is the PCI mmio aperture into the global GTT. */ drm_dbg(&i915->drm, "GGTT size = %lluM\n", ggtt->vm.total >> 20); drm_dbg(&i915->drm, "GMADR size = %lluM\n", (u64)ggtt->mappable_end >> 20); drm_dbg(&i915->drm, "DSM size = %lluM\n", (u64)resource_size(&intel_graphics_stolen_res) >> 20); return 0; } /** * i915_ggtt_probe_hw - Probe GGTT hardware location * @i915: i915 device */ int i915_ggtt_probe_hw(struct drm_i915_private *i915) { struct intel_gt *gt; int ret, i; for_each_gt(gt, i915, i) { ret = intel_gt_assign_ggtt(gt); if (ret) return ret; } ret = ggtt_probe_hw(to_gt(i915)->ggtt, to_gt(i915)); if (ret) return ret; if (i915_vtd_active(i915)) drm_info(&i915->drm, "VT-d active for gfx access\n"); return 0; } struct i915_ggtt *i915_ggtt_create(struct drm_i915_private *i915) { struct i915_ggtt *ggtt; ggtt = drmm_kzalloc(&i915->drm, sizeof(*ggtt), GFP_KERNEL); if (!ggtt) return ERR_PTR(-ENOMEM); INIT_LIST_HEAD(&ggtt->gt_list); return ggtt; } int i915_ggtt_enable_hw(struct drm_i915_private *i915) { if (GRAPHICS_VER(i915) < 6) return intel_ggtt_gmch_enable_hw(i915); return 0; } /** * i915_ggtt_resume_vm - Restore the memory mappings for a GGTT or DPT VM * @vm: The VM to restore the mappings for * * Restore the memory mappings for all objects mapped to HW via the GGTT or a * DPT page table. * * Returns %true if restoring the mapping for any object that was in a write * domain before suspend. */ bool i915_ggtt_resume_vm(struct i915_address_space *vm) { struct i915_vma *vma; bool write_domain_objs = false; drm_WARN_ON(&vm->i915->drm, !vm->is_ggtt && !vm->is_dpt); /* First fill our portion of the GTT with scratch pages */ vm->clear_range(vm, 0, vm->total); /* clflush objects bound into the GGTT and rebind them. */ list_for_each_entry(vma, &vm->bound_list, vm_link) { struct drm_i915_gem_object *obj = vma->obj; unsigned int was_bound = atomic_read(&vma->flags) & I915_VMA_BIND_MASK; GEM_BUG_ON(!was_bound); /* * Clear the bound flags of the vma resource to allow * ptes to be repopulated. */ vma->resource->bound_flags = 0; vma->ops->bind_vma(vm, NULL, vma->resource, obj ? obj->pat_index : i915_gem_get_pat_index(vm->i915, I915_CACHE_NONE), was_bound); if (obj) { /* only used during resume => exclusive access */ write_domain_objs |= fetch_and_zero(&obj->write_domain); obj->read_domains |= I915_GEM_DOMAIN_GTT; } } return write_domain_objs; } void i915_ggtt_resume(struct i915_ggtt *ggtt) { struct intel_gt *gt; bool flush; list_for_each_entry(gt, &ggtt->gt_list, ggtt_link) intel_gt_check_and_clear_faults(gt); flush = i915_ggtt_resume_vm(&ggtt->vm); if (drm_mm_node_allocated(&ggtt->error_capture)) ggtt->vm.scratch_range(&ggtt->vm, ggtt->error_capture.start, ggtt->error_capture.size); list_for_each_entry(gt, &ggtt->gt_list, ggtt_link) intel_uc_resume_mappings(>->uc); ggtt->invalidate(ggtt); if (flush) wbinvd_on_all_cpus(); intel_ggtt_restore_fences(ggtt); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1