Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Matt Roper | 2533 | 84.46% | 32 | 39.02% |
Daniele Ceraolo Spurio | 202 | 6.74% | 6 | 7.32% |
Tvrtko A. Ursulin | 99 | 3.30% | 10 | 12.20% |
Chris Wilson | 40 | 1.33% | 8 | 9.76% |
Nirmoy Das | 23 | 0.77% | 1 | 1.22% |
John Harrison | 20 | 0.67% | 2 | 2.44% |
Abdiel Janulgue | 16 | 0.53% | 1 | 1.22% |
Andi Shyti | 14 | 0.47% | 3 | 3.66% |
Jani Nikula | 9 | 0.30% | 2 | 2.44% |
Matthew Auld | 8 | 0.27% | 2 | 2.44% |
Oscar Mateo | 6 | 0.20% | 2 | 2.44% |
Alan Previn | 5 | 0.17% | 1 | 1.22% |
Joonas Lahtinen | 4 | 0.13% | 1 | 1.22% |
Arun Siluvery | 4 | 0.13% | 1 | 1.22% |
Mika Kuoppala | 4 | 0.13% | 2 | 2.44% |
Dave Airlie | 3 | 0.10% | 1 | 1.22% |
Lionel Landwerlin | 2 | 0.07% | 1 | 1.22% |
Sujaritha Sundaresan | 2 | 0.07% | 1 | 1.22% |
Michel Thierry | 1 | 0.03% | 1 | 1.22% |
Michal Wajdeczko | 1 | 0.03% | 1 | 1.22% |
Dave Gordon | 1 | 0.03% | 1 | 1.22% |
Venkata Sandeep Dhanalakota | 1 | 0.03% | 1 | 1.22% |
Ville Syrjälä | 1 | 0.03% | 1 | 1.22% |
Total | 2999 | 82 |
// SPDX-License-Identifier: MIT /* * Copyright © 2022 Intel Corporation */ #include "i915_drv.h" #include "intel_gt.h" #include "intel_gt_mcr.h" #include "intel_gt_print.h" #include "intel_gt_regs.h" /** * DOC: GT Multicast/Replicated (MCR) Register Support * * Some GT registers are designed as "multicast" or "replicated" registers: * multiple instances of the same register share a single MMIO offset. MCR * registers are generally used when the hardware needs to potentially track * independent values of a register per hardware unit (e.g., per-subslice, * per-L3bank, etc.). The specific types of replication that exist vary * per-platform. * * MMIO accesses to MCR registers are controlled according to the settings * programmed in the platform's MCR_SELECTOR register(s). MMIO writes to MCR * registers can be done in either a (i.e., a single write updates all * instances of the register to the same value) or unicast (a write updates only * one specific instance). Reads of MCR registers always operate in a unicast * manner regardless of how the multicast/unicast bit is set in MCR_SELECTOR. * Selection of a specific MCR instance for unicast operations is referred to * as "steering." * * If MCR register operations are steered toward a hardware unit that is * fused off or currently powered down due to power gating, the MMIO operation * is "terminated" by the hardware. Terminated read operations will return a * value of zero and terminated unicast write operations will be silently * ignored. */ #define HAS_MSLICE_STEERING(i915) (INTEL_INFO(i915)->has_mslice_steering) static const char * const intel_steering_types[] = { "L3BANK", "MSLICE", "LNCF", "GAM", "DSS", "OADDRM", "INSTANCE 0", }; static const struct intel_mmio_range icl_l3bank_steering_table[] = { { 0x00B100, 0x00B3FF }, {}, }; /* * Although the bspec lists more "MSLICE" ranges than shown here, some of those * are of a "GAM" subclass that has special rules. Thus we use a separate * GAM table farther down for those. */ static const struct intel_mmio_range xehpsdv_mslice_steering_table[] = { { 0x00DD00, 0x00DDFF }, { 0x00E900, 0x00FFFF }, /* 0xEA00 - OxEFFF is unused */ {}, }; static const struct intel_mmio_range xehpsdv_gam_steering_table[] = { { 0x004000, 0x004AFF }, { 0x00C800, 0x00CFFF }, {}, }; static const struct intel_mmio_range xehpsdv_lncf_steering_table[] = { { 0x00B000, 0x00B0FF }, { 0x00D800, 0x00D8FF }, {}, }; static const struct intel_mmio_range dg2_lncf_steering_table[] = { { 0x00B000, 0x00B0FF }, { 0x00D880, 0x00D8FF }, {}, }; /* * We have several types of MCR registers on PVC where steering to (0,0) * will always provide us with a non-terminated value. We'll stick them * all in the same table for simplicity. */ static const struct intel_mmio_range pvc_instance0_steering_table[] = { { 0x004000, 0x004AFF }, /* HALF-BSLICE */ { 0x008800, 0x00887F }, /* CC */ { 0x008A80, 0x008AFF }, /* TILEPSMI */ { 0x00B000, 0x00B0FF }, /* HALF-BSLICE */ { 0x00B100, 0x00B3FF }, /* L3BANK */ { 0x00C800, 0x00CFFF }, /* HALF-BSLICE */ { 0x00D800, 0x00D8FF }, /* HALF-BSLICE */ { 0x00DD00, 0x00DDFF }, /* BSLICE */ { 0x00E900, 0x00E9FF }, /* HALF-BSLICE */ { 0x00EC00, 0x00EEFF }, /* HALF-BSLICE */ { 0x00F000, 0x00FFFF }, /* HALF-BSLICE */ { 0x024180, 0x0241FF }, /* HALF-BSLICE */ {}, }; static const struct intel_mmio_range xelpg_instance0_steering_table[] = { { 0x000B00, 0x000BFF }, /* SQIDI */ { 0x001000, 0x001FFF }, /* SQIDI */ { 0x004000, 0x0048FF }, /* GAM */ { 0x008700, 0x0087FF }, /* SQIDI */ { 0x00B000, 0x00B0FF }, /* NODE */ { 0x00C800, 0x00CFFF }, /* GAM */ { 0x00D880, 0x00D8FF }, /* NODE */ { 0x00DD00, 0x00DDFF }, /* OAAL2 */ {}, }; static const struct intel_mmio_range xelpg_l3bank_steering_table[] = { { 0x00B100, 0x00B3FF }, {}, }; /* DSS steering is used for SLICE ranges as well */ static const struct intel_mmio_range xelpg_dss_steering_table[] = { { 0x005200, 0x0052FF }, /* SLICE */ { 0x005500, 0x007FFF }, /* SLICE */ { 0x008140, 0x00815F }, /* SLICE (0x8140-0x814F), DSS (0x8150-0x815F) */ { 0x0094D0, 0x00955F }, /* SLICE (0x94D0-0x951F), DSS (0x9520-0x955F) */ { 0x009680, 0x0096FF }, /* DSS */ { 0x00D800, 0x00D87F }, /* SLICE */ { 0x00DC00, 0x00DCFF }, /* SLICE */ { 0x00DE80, 0x00E8FF }, /* DSS (0xE000-0xE0FF reserved) */ {}, }; static const struct intel_mmio_range xelpmp_oaddrm_steering_table[] = { { 0x393200, 0x39323F }, { 0x393400, 0x3934FF }, {}, }; void intel_gt_mcr_init(struct intel_gt *gt) { struct drm_i915_private *i915 = gt->i915; unsigned long fuse; int i; spin_lock_init(>->mcr_lock); /* * An mslice is unavailable only if both the meml3 for the slice is * disabled *and* all of the DSS in the slice (quadrant) are disabled. */ if (HAS_MSLICE_STEERING(i915)) { gt->info.mslice_mask = intel_slicemask_from_xehp_dssmask(gt->info.sseu.subslice_mask, GEN_DSS_PER_MSLICE); gt->info.mslice_mask |= (intel_uncore_read(gt->uncore, GEN10_MIRROR_FUSE3) & GEN12_MEML3_EN_MASK); if (!gt->info.mslice_mask) /* should be impossible! */ gt_warn(gt, "mslice mask all zero!\n"); } if (MEDIA_VER(i915) >= 13 && gt->type == GT_MEDIA) { gt->steering_table[OADDRM] = xelpmp_oaddrm_steering_table; } else if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 70)) { /* Wa_14016747170 */ if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) || IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0)) fuse = REG_FIELD_GET(MTL_GT_L3_EXC_MASK, intel_uncore_read(gt->uncore, MTL_GT_ACTIVITY_FACTOR)); else fuse = REG_FIELD_GET(GT_L3_EXC_MASK, intel_uncore_read(gt->uncore, XEHP_FUSE4)); /* * Despite the register field being named "exclude mask" the * bits actually represent enabled banks (two banks per bit). */ for_each_set_bit(i, &fuse, 3) gt->info.l3bank_mask |= 0x3 << 2 * i; gt->steering_table[INSTANCE0] = xelpg_instance0_steering_table; gt->steering_table[L3BANK] = xelpg_l3bank_steering_table; gt->steering_table[DSS] = xelpg_dss_steering_table; } else if (IS_PONTEVECCHIO(i915)) { gt->steering_table[INSTANCE0] = pvc_instance0_steering_table; } else if (IS_DG2(i915)) { gt->steering_table[MSLICE] = xehpsdv_mslice_steering_table; gt->steering_table[LNCF] = dg2_lncf_steering_table; /* * No need to hook up the GAM table since it has a dedicated * steering control register on DG2 and can use implicit * steering. */ } else if (IS_XEHPSDV(i915)) { gt->steering_table[MSLICE] = xehpsdv_mslice_steering_table; gt->steering_table[LNCF] = xehpsdv_lncf_steering_table; gt->steering_table[GAM] = xehpsdv_gam_steering_table; } else if (GRAPHICS_VER(i915) >= 11 && GRAPHICS_VER_FULL(i915) < IP_VER(12, 50)) { gt->steering_table[L3BANK] = icl_l3bank_steering_table; gt->info.l3bank_mask = ~intel_uncore_read(gt->uncore, GEN10_MIRROR_FUSE3) & GEN10_L3BANK_MASK; if (!gt->info.l3bank_mask) /* should be impossible! */ gt_warn(gt, "L3 bank mask is all zero!\n"); } else if (GRAPHICS_VER(i915) >= 11) { /* * We expect all modern platforms to have at least some * type of steering that needs to be initialized. */ MISSING_CASE(INTEL_INFO(i915)->platform); } } /* * Although the rest of the driver should use MCR-specific functions to * read/write MCR registers, we still use the regular intel_uncore_* functions * internally to implement those, so we need a way for the functions in this * file to "cast" an i915_mcr_reg_t into an i915_reg_t. */ static i915_reg_t mcr_reg_cast(const i915_mcr_reg_t mcr) { i915_reg_t r = { .reg = mcr.reg }; return r; } /* * rw_with_mcr_steering_fw - Access a register with specific MCR steering * @gt: GT to read register from * @reg: register being accessed * @rw_flag: FW_REG_READ for read access or FW_REG_WRITE for write access * @group: group number (documented as "sliceid" on older platforms) * @instance: instance number (documented as "subsliceid" on older platforms) * @value: register value to be written (ignored for read) * * Context: The caller must hold the MCR lock * Return: 0 for write access. register value for read access. * * Caller needs to make sure the relevant forcewake wells are up. */ static u32 rw_with_mcr_steering_fw(struct intel_gt *gt, i915_mcr_reg_t reg, u8 rw_flag, int group, int instance, u32 value) { struct intel_uncore *uncore = gt->uncore; u32 mcr_mask, mcr_ss, mcr, old_mcr, val = 0; lockdep_assert_held(>->mcr_lock); if (GRAPHICS_VER_FULL(uncore->i915) >= IP_VER(12, 70)) { /* * Always leave the hardware in multicast mode when doing reads * (see comment about Wa_22013088509 below) and only change it * to unicast mode when doing writes of a specific instance. * * No need to save old steering reg value. */ intel_uncore_write_fw(uncore, MTL_MCR_SELECTOR, REG_FIELD_PREP(MTL_MCR_GROUPID, group) | REG_FIELD_PREP(MTL_MCR_INSTANCEID, instance) | (rw_flag == FW_REG_READ ? GEN11_MCR_MULTICAST : 0)); } else if (GRAPHICS_VER(uncore->i915) >= 11) { mcr_mask = GEN11_MCR_SLICE_MASK | GEN11_MCR_SUBSLICE_MASK; mcr_ss = GEN11_MCR_SLICE(group) | GEN11_MCR_SUBSLICE(instance); /* * Wa_22013088509 * * The setting of the multicast/unicast bit usually wouldn't * matter for read operations (which always return the value * from a single register instance regardless of how that bit * is set), but some platforms have a workaround requiring us * to remain in multicast mode for reads. There's no real * downside to this, so we'll just go ahead and do so on all * platforms; we'll only clear the multicast bit from the mask * when exlicitly doing a write operation. */ if (rw_flag == FW_REG_WRITE) mcr_mask |= GEN11_MCR_MULTICAST; mcr = intel_uncore_read_fw(uncore, GEN8_MCR_SELECTOR); old_mcr = mcr; mcr &= ~mcr_mask; mcr |= mcr_ss; intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr); } else { mcr_mask = GEN8_MCR_SLICE_MASK | GEN8_MCR_SUBSLICE_MASK; mcr_ss = GEN8_MCR_SLICE(group) | GEN8_MCR_SUBSLICE(instance); mcr = intel_uncore_read_fw(uncore, GEN8_MCR_SELECTOR); old_mcr = mcr; mcr &= ~mcr_mask; mcr |= mcr_ss; intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr); } if (rw_flag == FW_REG_READ) val = intel_uncore_read_fw(uncore, mcr_reg_cast(reg)); else intel_uncore_write_fw(uncore, mcr_reg_cast(reg), value); /* * For pre-MTL platforms, we need to restore the old value of the * steering control register to ensure that implicit steering continues * to behave as expected. For MTL and beyond, we need only reinstate * the 'multicast' bit (and only if we did a write that cleared it). */ if (GRAPHICS_VER_FULL(uncore->i915) >= IP_VER(12, 70) && rw_flag == FW_REG_WRITE) intel_uncore_write_fw(uncore, MTL_MCR_SELECTOR, GEN11_MCR_MULTICAST); else if (GRAPHICS_VER_FULL(uncore->i915) < IP_VER(12, 70)) intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, old_mcr); return val; } static u32 rw_with_mcr_steering(struct intel_gt *gt, i915_mcr_reg_t reg, u8 rw_flag, int group, int instance, u32 value) { struct intel_uncore *uncore = gt->uncore; enum forcewake_domains fw_domains; unsigned long flags; u32 val; fw_domains = intel_uncore_forcewake_for_reg(uncore, mcr_reg_cast(reg), rw_flag); fw_domains |= intel_uncore_forcewake_for_reg(uncore, GEN8_MCR_SELECTOR, FW_REG_READ | FW_REG_WRITE); intel_gt_mcr_lock(gt, &flags); spin_lock(&uncore->lock); intel_uncore_forcewake_get__locked(uncore, fw_domains); val = rw_with_mcr_steering_fw(gt, reg, rw_flag, group, instance, value); intel_uncore_forcewake_put__locked(uncore, fw_domains); spin_unlock(&uncore->lock); intel_gt_mcr_unlock(gt, flags); return val; } /** * intel_gt_mcr_lock - Acquire MCR steering lock * @gt: GT structure * @flags: storage to save IRQ flags to * * Performs locking to protect the steering for the duration of an MCR * operation. On MTL and beyond, a hardware lock will also be taken to * serialize access not only for the driver, but also for external hardware and * firmware agents. * * Context: Takes gt->mcr_lock. uncore->lock should *not* be held when this * function is called, although it may be acquired after this * function call. */ void intel_gt_mcr_lock(struct intel_gt *gt, unsigned long *flags) __acquires(>->mcr_lock) { unsigned long __flags; int err = 0; lockdep_assert_not_held(>->uncore->lock); /* * Starting with MTL, we need to coordinate not only with other * driver threads, but also with hardware/firmware agents. A dedicated * locking register is used. */ if (GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 70)) { /* * The steering control and semaphore registers are inside an * "always on" power domain with respect to RC6. However there * are some issues if higher-level platform sleep states are * entering/exiting at the same time these registers are * accessed. Grabbing GT forcewake and holding it over the * entire lock/steer/unlock cycle ensures that those sleep * states have been fully exited before we access these * registers. This wakeref will be released in the unlock * routine. * * This is expected to become a formally documented/numbered * workaround soon. */ intel_uncore_forcewake_get(gt->uncore, FORCEWAKE_GT); err = wait_for(intel_uncore_read_fw(gt->uncore, MTL_STEER_SEMAPHORE) == 0x1, 100); } /* * Even on platforms with a hardware lock, we'll continue to grab * a software spinlock too for lockdep purposes. If the hardware lock * was already acquired, there should never be contention on the * software lock. */ spin_lock_irqsave(>->mcr_lock, __flags); *flags = __flags; /* * In theory we should never fail to acquire the HW semaphore; this * would indicate some hardware/firmware is misbehaving and not * releasing it properly. */ if (err == -ETIMEDOUT) { gt_err_ratelimited(gt, "hardware MCR steering semaphore timed out"); add_taint_for_CI(gt->i915, TAINT_WARN); /* CI is now unreliable */ } } /** * intel_gt_mcr_unlock - Release MCR steering lock * @gt: GT structure * @flags: IRQ flags to restore * * Releases the lock acquired by intel_gt_mcr_lock(). * * Context: Releases gt->mcr_lock */ void intel_gt_mcr_unlock(struct intel_gt *gt, unsigned long flags) __releases(>->mcr_lock) { spin_unlock_irqrestore(>->mcr_lock, flags); if (GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 70)) { intel_uncore_write_fw(gt->uncore, MTL_STEER_SEMAPHORE, 0x1); intel_uncore_forcewake_put(gt->uncore, FORCEWAKE_GT); } } /** * intel_gt_mcr_lock_sanitize - Sanitize MCR steering lock * @gt: GT structure * * This will be used to sanitize the initial status of the hardware lock * during driver load and resume since there won't be any concurrent access * from other agents at those times, but it's possible that boot firmware * may have left the lock in a bad state. * */ void intel_gt_mcr_lock_sanitize(struct intel_gt *gt) { /* * This gets called at load/resume time, so we shouldn't be * racing with other driver threads grabbing the mcr lock. */ lockdep_assert_not_held(>->mcr_lock); if (GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 70)) intel_uncore_write_fw(gt->uncore, MTL_STEER_SEMAPHORE, 0x1); } /** * intel_gt_mcr_read - read a specific instance of an MCR register * @gt: GT structure * @reg: the MCR register to read * @group: the MCR group * @instance: the MCR instance * * Context: Takes and releases gt->mcr_lock * * Returns the value read from an MCR register after steering toward a specific * group/instance. */ u32 intel_gt_mcr_read(struct intel_gt *gt, i915_mcr_reg_t reg, int group, int instance) { return rw_with_mcr_steering(gt, reg, FW_REG_READ, group, instance, 0); } /** * intel_gt_mcr_unicast_write - write a specific instance of an MCR register * @gt: GT structure * @reg: the MCR register to write * @value: value to write * @group: the MCR group * @instance: the MCR instance * * Write an MCR register in unicast mode after steering toward a specific * group/instance. * * Context: Calls a function that takes and releases gt->mcr_lock */ void intel_gt_mcr_unicast_write(struct intel_gt *gt, i915_mcr_reg_t reg, u32 value, int group, int instance) { rw_with_mcr_steering(gt, reg, FW_REG_WRITE, group, instance, value); } /** * intel_gt_mcr_multicast_write - write a value to all instances of an MCR register * @gt: GT structure * @reg: the MCR register to write * @value: value to write * * Write an MCR register in multicast mode to update all instances. * * Context: Takes and releases gt->mcr_lock */ void intel_gt_mcr_multicast_write(struct intel_gt *gt, i915_mcr_reg_t reg, u32 value) { unsigned long flags; intel_gt_mcr_lock(gt, &flags); /* * Ensure we have multicast behavior, just in case some non-i915 agent * left the hardware in unicast mode. */ if (GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 70)) intel_uncore_write_fw(gt->uncore, MTL_MCR_SELECTOR, GEN11_MCR_MULTICAST); intel_uncore_write(gt->uncore, mcr_reg_cast(reg), value); intel_gt_mcr_unlock(gt, flags); } /** * intel_gt_mcr_multicast_write_fw - write a value to all instances of an MCR register * @gt: GT structure * @reg: the MCR register to write * @value: value to write * * Write an MCR register in multicast mode to update all instances. This * function assumes the caller is already holding any necessary forcewake * domains; use intel_gt_mcr_multicast_write() in cases where forcewake should * be obtained automatically. * * Context: The caller must hold gt->mcr_lock. */ void intel_gt_mcr_multicast_write_fw(struct intel_gt *gt, i915_mcr_reg_t reg, u32 value) { lockdep_assert_held(>->mcr_lock); /* * Ensure we have multicast behavior, just in case some non-i915 agent * left the hardware in unicast mode. */ if (GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 70)) intel_uncore_write_fw(gt->uncore, MTL_MCR_SELECTOR, GEN11_MCR_MULTICAST); intel_uncore_write_fw(gt->uncore, mcr_reg_cast(reg), value); } /** * intel_gt_mcr_multicast_rmw - Performs a multicast RMW operations * @gt: GT structure * @reg: the MCR register to read and write * @clear: bits to clear during RMW * @set: bits to set during RMW * * Performs a read-modify-write on an MCR register in a multicast manner. * This operation only makes sense on MCR registers where all instances are * expected to have the same value. The read will target any non-terminated * instance and the write will be applied to all instances. * * This function assumes the caller is already holding any necessary forcewake * domains; use intel_gt_mcr_multicast_rmw() in cases where forcewake should * be obtained automatically. * * Context: Calls functions that take and release gt->mcr_lock * * Returns the old (unmodified) value read. */ u32 intel_gt_mcr_multicast_rmw(struct intel_gt *gt, i915_mcr_reg_t reg, u32 clear, u32 set) { u32 val = intel_gt_mcr_read_any(gt, reg); intel_gt_mcr_multicast_write(gt, reg, (val & ~clear) | set); return val; } /* * reg_needs_read_steering - determine whether a register read requires * explicit steering * @gt: GT structure * @reg: the register to check steering requirements for * @type: type of multicast steering to check * * Determines whether @reg needs explicit steering of a specific type for * reads. * * Returns false if @reg does not belong to a register range of the given * steering type, or if the default (subslice-based) steering IDs are suitable * for @type steering too. */ static bool reg_needs_read_steering(struct intel_gt *gt, i915_mcr_reg_t reg, enum intel_steering_type type) { u32 offset = i915_mmio_reg_offset(reg); const struct intel_mmio_range *entry; if (likely(!gt->steering_table[type])) return false; if (IS_GSI_REG(offset)) offset += gt->uncore->gsi_offset; for (entry = gt->steering_table[type]; entry->end; entry++) { if (offset >= entry->start && offset <= entry->end) return true; } return false; } /* * get_nonterminated_steering - determines valid IDs for a class of MCR steering * @gt: GT structure * @type: multicast register type * @group: Group ID returned * @instance: Instance ID returned * * Determines group and instance values that will steer reads of the specified * MCR class to a non-terminated instance. */ static void get_nonterminated_steering(struct intel_gt *gt, enum intel_steering_type type, u8 *group, u8 *instance) { u32 dss; switch (type) { case L3BANK: *group = 0; /* unused */ *instance = __ffs(gt->info.l3bank_mask); break; case MSLICE: GEM_WARN_ON(!HAS_MSLICE_STEERING(gt->i915)); *group = __ffs(gt->info.mslice_mask); *instance = 0; /* unused */ break; case LNCF: /* * An LNCF is always present if its mslice is present, so we * can safely just steer to LNCF 0 in all cases. */ GEM_WARN_ON(!HAS_MSLICE_STEERING(gt->i915)); *group = __ffs(gt->info.mslice_mask) << 1; *instance = 0; /* unused */ break; case GAM: *group = IS_DG2(gt->i915) ? 1 : 0; *instance = 0; break; case DSS: dss = intel_sseu_find_first_xehp_dss(>->info.sseu, 0, 0); *group = dss / GEN_DSS_PER_GSLICE; *instance = dss % GEN_DSS_PER_GSLICE; break; case INSTANCE0: /* * There are a lot of MCR types for which instance (0, 0) * will always provide a non-terminated value. */ *group = 0; *instance = 0; break; case OADDRM: if ((VDBOX_MASK(gt) | VEBOX_MASK(gt) | gt->info.sfc_mask) & BIT(0)) *group = 0; else *group = 1; *instance = 0; break; default: MISSING_CASE(type); *group = 0; *instance = 0; } } /** * intel_gt_mcr_get_nonterminated_steering - find group/instance values that * will steer a register to a non-terminated instance * @gt: GT structure * @reg: register for which the steering is required * @group: return variable for group steering * @instance: return variable for instance steering * * This function returns a group/instance pair that is guaranteed to work for * read steering of the given register. Note that a value will be returned even * if the register is not replicated and therefore does not actually require * steering. */ void intel_gt_mcr_get_nonterminated_steering(struct intel_gt *gt, i915_mcr_reg_t reg, u8 *group, u8 *instance) { int type; for (type = 0; type < NUM_STEERING_TYPES; type++) { if (reg_needs_read_steering(gt, reg, type)) { get_nonterminated_steering(gt, type, group, instance); return; } } *group = gt->default_steering.groupid; *instance = gt->default_steering.instanceid; } /** * intel_gt_mcr_read_any_fw - reads one instance of an MCR register * @gt: GT structure * @reg: register to read * * Reads a GT MCR register. The read will be steered to a non-terminated * instance (i.e., one that isn't fused off or powered down by power gating). * This function assumes the caller is already holding any necessary forcewake * domains; use intel_gt_mcr_read_any() in cases where forcewake should be * obtained automatically. * * Context: The caller must hold gt->mcr_lock. * * Returns the value from a non-terminated instance of @reg. */ u32 intel_gt_mcr_read_any_fw(struct intel_gt *gt, i915_mcr_reg_t reg) { int type; u8 group, instance; lockdep_assert_held(>->mcr_lock); for (type = 0; type < NUM_STEERING_TYPES; type++) { if (reg_needs_read_steering(gt, reg, type)) { get_nonterminated_steering(gt, type, &group, &instance); return rw_with_mcr_steering_fw(gt, reg, FW_REG_READ, group, instance, 0); } } return intel_uncore_read_fw(gt->uncore, mcr_reg_cast(reg)); } /** * intel_gt_mcr_read_any - reads one instance of an MCR register * @gt: GT structure * @reg: register to read * * Reads a GT MCR register. The read will be steered to a non-terminated * instance (i.e., one that isn't fused off or powered down by power gating). * * Context: Calls a function that takes and releases gt->mcr_lock. * * Returns the value from a non-terminated instance of @reg. */ u32 intel_gt_mcr_read_any(struct intel_gt *gt, i915_mcr_reg_t reg) { int type; u8 group, instance; for (type = 0; type < NUM_STEERING_TYPES; type++) { if (reg_needs_read_steering(gt, reg, type)) { get_nonterminated_steering(gt, type, &group, &instance); return rw_with_mcr_steering(gt, reg, FW_REG_READ, group, instance, 0); } } return intel_uncore_read(gt->uncore, mcr_reg_cast(reg)); } static void report_steering_type(struct drm_printer *p, struct intel_gt *gt, enum intel_steering_type type, bool dump_table) { const struct intel_mmio_range *entry; u8 group, instance; BUILD_BUG_ON(ARRAY_SIZE(intel_steering_types) != NUM_STEERING_TYPES); if (!gt->steering_table[type]) { drm_printf(p, "%s steering: uses default steering\n", intel_steering_types[type]); return; } get_nonterminated_steering(gt, type, &group, &instance); drm_printf(p, "%s steering: group=0x%x, instance=0x%x\n", intel_steering_types[type], group, instance); if (!dump_table) return; for (entry = gt->steering_table[type]; entry->end; entry++) drm_printf(p, "\t0x%06x - 0x%06x\n", entry->start, entry->end); } void intel_gt_mcr_report_steering(struct drm_printer *p, struct intel_gt *gt, bool dump_table) { /* * Starting with MTL we no longer have default steering; * all ranges are explicitly steered. */ if (GRAPHICS_VER_FULL(gt->i915) < IP_VER(12, 70)) drm_printf(p, "Default steering: group=0x%x, instance=0x%x\n", gt->default_steering.groupid, gt->default_steering.instanceid); if (GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 70)) { for (int i = 0; i < NUM_STEERING_TYPES; i++) if (gt->steering_table[i]) report_steering_type(p, gt, i, dump_table); } else if (IS_PONTEVECCHIO(gt->i915)) { report_steering_type(p, gt, INSTANCE0, dump_table); } else if (HAS_MSLICE_STEERING(gt->i915)) { report_steering_type(p, gt, MSLICE, dump_table); report_steering_type(p, gt, LNCF, dump_table); } } /** * intel_gt_mcr_get_ss_steering - returns the group/instance steering for a SS * @gt: GT structure * @dss: DSS ID to obtain steering for * @group: pointer to storage for steering group ID * @instance: pointer to storage for steering instance ID * * Returns the steering IDs (via the @group and @instance parameters) that * correspond to a specific subslice/DSS ID. */ void intel_gt_mcr_get_ss_steering(struct intel_gt *gt, unsigned int dss, unsigned int *group, unsigned int *instance) { if (IS_PONTEVECCHIO(gt->i915)) { *group = dss / GEN_DSS_PER_CSLICE; *instance = dss % GEN_DSS_PER_CSLICE; } else if (GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 50)) { *group = dss / GEN_DSS_PER_GSLICE; *instance = dss % GEN_DSS_PER_GSLICE; } else { *group = dss / GEN_MAX_SS_PER_HSW_SLICE; *instance = dss % GEN_MAX_SS_PER_HSW_SLICE; return; } } /** * intel_gt_mcr_wait_for_reg - wait until MCR register matches expected state * @gt: GT structure * @reg: the register to read * @mask: mask to apply to register value * @value: value to wait for * @fast_timeout_us: fast timeout in microsecond for atomic/tight wait * @slow_timeout_ms: slow timeout in millisecond * * This routine waits until the target register @reg contains the expected * @value after applying the @mask, i.e. it waits until :: * * (intel_gt_mcr_read_any_fw(gt, reg) & mask) == value * * Otherwise, the wait will timeout after @slow_timeout_ms milliseconds. * For atomic context @slow_timeout_ms must be zero and @fast_timeout_us * must be not larger than 20,0000 microseconds. * * This function is basically an MCR-friendly version of * __intel_wait_for_register_fw(). Generally this function will only be used * on GAM registers which are a bit special --- although they're MCR registers, * reads (e.g., waiting for status updates) are always directed to the primary * instance. * * Note that this routine assumes the caller holds forcewake asserted, it is * not suitable for very long waits. * * Context: Calls a function that takes and releases gt->mcr_lock * Return: 0 if the register matches the desired condition, or -ETIMEDOUT. */ int intel_gt_mcr_wait_for_reg(struct intel_gt *gt, i915_mcr_reg_t reg, u32 mask, u32 value, unsigned int fast_timeout_us, unsigned int slow_timeout_ms) { int ret; lockdep_assert_not_held(>->mcr_lock); #define done ((intel_gt_mcr_read_any(gt, reg) & mask) == value) /* Catch any overuse of this function */ might_sleep_if(slow_timeout_ms); GEM_BUG_ON(fast_timeout_us > 20000); GEM_BUG_ON(!fast_timeout_us && !slow_timeout_ms); ret = -ETIMEDOUT; if (fast_timeout_us && fast_timeout_us <= 20000) ret = _wait_for_atomic(done, fast_timeout_us, 0); if (ret && slow_timeout_ms) ret = wait_for(done, slow_timeout_ms); return ret; #undef done }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1