Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Andi Shyti | 1502 | 40.66% | 5 | 10.42% |
Ashutosh Dixit | 579 | 15.67% | 5 | 10.42% |
Nathan Chancellor | 412 | 11.15% | 1 | 2.08% |
Sujaritha Sundaresan | 295 | 7.99% | 1 | 2.08% |
Tvrtko A. Ursulin | 277 | 7.50% | 3 | 6.25% |
Ben Widawsky | 206 | 5.58% | 4 | 8.33% |
Dale B Stimson | 121 | 3.28% | 1 | 2.08% |
Vinay Belgaumkar | 83 | 2.25% | 1 | 2.08% |
Chris Wilson | 64 | 1.73% | 8 | 16.67% |
Ville Syrjälä | 46 | 1.25% | 1 | 2.08% |
Mika Kuoppala | 35 | 0.95% | 2 | 4.17% |
John Harrison | 20 | 0.54% | 1 | 2.08% |
Rodrigo Vivi | 18 | 0.49% | 1 | 2.08% |
Jani Nikula | 9 | 0.24% | 4 | 8.33% |
Paul Cercueil | 6 | 0.16% | 1 | 2.08% |
Carlis | 6 | 0.16% | 1 | 2.08% |
Daniele Ceraolo Spurio | 5 | 0.14% | 2 | 4.17% |
Arvind Yadav | 3 | 0.08% | 1 | 2.08% |
Matt Roper | 2 | 0.05% | 1 | 2.08% |
Oscar Mateo | 2 | 0.05% | 1 | 2.08% |
Paulo Zanoni | 1 | 0.03% | 1 | 2.08% |
Imre Deak | 1 | 0.03% | 1 | 2.08% |
Lucas De Marchi | 1 | 0.03% | 1 | 2.08% |
Total | 3694 | 48 |
// SPDX-License-Identifier: MIT /* * Copyright © 2022 Intel Corporation */ #include <drm/drm_device.h> #include <linux/sysfs.h> #include <linux/printk.h> #include "i915_drv.h" #include "i915_reg.h" #include "i915_sysfs.h" #include "intel_gt.h" #include "intel_gt_print.h" #include "intel_gt_regs.h" #include "intel_gt_sysfs.h" #include "intel_gt_sysfs_pm.h" #include "intel_pcode.h" #include "intel_rc6.h" #include "intel_rps.h" enum intel_gt_sysfs_op { INTEL_GT_SYSFS_MIN = 0, INTEL_GT_SYSFS_MAX, }; static int sysfs_gt_attribute_w_func(struct kobject *kobj, struct attribute *attr, int (func)(struct intel_gt *gt, u32 val), u32 val) { struct intel_gt *gt; int ret; if (!is_object_gt(kobj)) { int i; struct device *dev = kobj_to_dev(kobj); struct drm_i915_private *i915 = kdev_minor_to_i915(dev); for_each_gt(gt, i915, i) { ret = func(gt, val); if (ret) break; } } else { gt = intel_gt_sysfs_get_drvdata(kobj, attr->name); ret = func(gt, val); } return ret; } static u32 sysfs_gt_attribute_r_func(struct kobject *kobj, struct attribute *attr, u32 (func)(struct intel_gt *gt), enum intel_gt_sysfs_op op) { struct intel_gt *gt; u32 ret; ret = (op == INTEL_GT_SYSFS_MAX) ? 0 : (u32) -1; if (!is_object_gt(kobj)) { int i; struct device *dev = kobj_to_dev(kobj); struct drm_i915_private *i915 = kdev_minor_to_i915(dev); for_each_gt(gt, i915, i) { u32 val = func(gt); switch (op) { case INTEL_GT_SYSFS_MIN: if (val < ret) ret = val; break; case INTEL_GT_SYSFS_MAX: if (val > ret) ret = val; break; } } } else { gt = intel_gt_sysfs_get_drvdata(kobj, attr->name); ret = func(gt); } return ret; } /* RC6 interfaces will show the minimum RC6 residency value */ #define sysfs_gt_attribute_r_min_func(d, a, f) \ sysfs_gt_attribute_r_func(d, a, f, INTEL_GT_SYSFS_MIN) /* Frequency interfaces will show the maximum frequency value */ #define sysfs_gt_attribute_r_max_func(d, a, f) \ sysfs_gt_attribute_r_func(d, a, f, INTEL_GT_SYSFS_MAX) #define INTEL_GT_SYSFS_SHOW(_name, _attr_type) \ static ssize_t _name##_show_common(struct kobject *kobj, \ struct attribute *attr, char *buff) \ { \ u32 val = sysfs_gt_attribute_r_##_attr_type##_func(kobj, attr, \ __##_name##_show); \ \ return sysfs_emit(buff, "%u\n", val); \ } \ static ssize_t _name##_show(struct kobject *kobj, \ struct kobj_attribute *attr, char *buff) \ { \ return _name ##_show_common(kobj, &attr->attr, buff); \ } \ static ssize_t _name##_dev_show(struct device *dev, \ struct device_attribute *attr, char *buff) \ { \ return _name##_show_common(&dev->kobj, &attr->attr, buff); \ } #define INTEL_GT_SYSFS_STORE(_name, _func) \ static ssize_t _name##_store_common(struct kobject *kobj, \ struct attribute *attr, \ const char *buff, size_t count) \ { \ int ret; \ u32 val; \ \ ret = kstrtou32(buff, 0, &val); \ if (ret) \ return ret; \ \ ret = sysfs_gt_attribute_w_func(kobj, attr, _func, val); \ \ return ret ?: count; \ } \ static ssize_t _name##_store(struct kobject *kobj, \ struct kobj_attribute *attr, const char *buff, \ size_t count) \ { \ return _name##_store_common(kobj, &attr->attr, buff, count); \ } \ static ssize_t _name##_dev_store(struct device *dev, \ struct device_attribute *attr, \ const char *buff, size_t count) \ { \ return _name##_store_common(&dev->kobj, &attr->attr, buff, count); \ } #define INTEL_GT_SYSFS_SHOW_MAX(_name) INTEL_GT_SYSFS_SHOW(_name, max) #define INTEL_GT_SYSFS_SHOW_MIN(_name) INTEL_GT_SYSFS_SHOW(_name, min) #define INTEL_GT_ATTR_RW(_name) \ static struct kobj_attribute attr_##_name = __ATTR_RW(_name) #define INTEL_GT_ATTR_RO(_name) \ static struct kobj_attribute attr_##_name = __ATTR_RO(_name) #define INTEL_GT_DUAL_ATTR_RW(_name) \ static struct device_attribute dev_attr_##_name = __ATTR(_name, 0644, \ _name##_dev_show, \ _name##_dev_store); \ INTEL_GT_ATTR_RW(_name) #define INTEL_GT_DUAL_ATTR_RO(_name) \ static struct device_attribute dev_attr_##_name = __ATTR(_name, 0444, \ _name##_dev_show, \ NULL); \ INTEL_GT_ATTR_RO(_name) static u32 get_residency(struct intel_gt *gt, enum intel_rc6_res_type id) { intel_wakeref_t wakeref; u64 res = 0; with_intel_runtime_pm(gt->uncore->rpm, wakeref) res = intel_rc6_residency_us(>->rc6, id); return DIV_ROUND_CLOSEST_ULL(res, 1000); } static u8 get_rc6_mask(struct intel_gt *gt) { u8 mask = 0; if (HAS_RC6(gt->i915)) mask |= BIT(0); if (HAS_RC6p(gt->i915)) mask |= BIT(1); if (HAS_RC6pp(gt->i915)) mask |= BIT(2); return mask; } static ssize_t rc6_enable_show(struct kobject *kobj, struct kobj_attribute *attr, char *buff) { struct intel_gt *gt = intel_gt_sysfs_get_drvdata(kobj, attr->attr.name); return sysfs_emit(buff, "%x\n", get_rc6_mask(gt)); } static ssize_t rc6_enable_dev_show(struct device *dev, struct device_attribute *attr, char *buff) { struct intel_gt *gt = intel_gt_sysfs_get_drvdata(&dev->kobj, attr->attr.name); return sysfs_emit(buff, "%x\n", get_rc6_mask(gt)); } static u32 __rc6_residency_ms_show(struct intel_gt *gt) { return get_residency(gt, INTEL_RC6_RES_RC6); } static u32 __rc6p_residency_ms_show(struct intel_gt *gt) { return get_residency(gt, INTEL_RC6_RES_RC6p); } static u32 __rc6pp_residency_ms_show(struct intel_gt *gt) { return get_residency(gt, INTEL_RC6_RES_RC6pp); } static u32 __media_rc6_residency_ms_show(struct intel_gt *gt) { return get_residency(gt, INTEL_RC6_RES_VLV_MEDIA); } INTEL_GT_SYSFS_SHOW_MIN(rc6_residency_ms); INTEL_GT_SYSFS_SHOW_MIN(rc6p_residency_ms); INTEL_GT_SYSFS_SHOW_MIN(rc6pp_residency_ms); INTEL_GT_SYSFS_SHOW_MIN(media_rc6_residency_ms); INTEL_GT_DUAL_ATTR_RO(rc6_enable); INTEL_GT_DUAL_ATTR_RO(rc6_residency_ms); INTEL_GT_DUAL_ATTR_RO(rc6p_residency_ms); INTEL_GT_DUAL_ATTR_RO(rc6pp_residency_ms); INTEL_GT_DUAL_ATTR_RO(media_rc6_residency_ms); static struct attribute *rc6_attrs[] = { &attr_rc6_enable.attr, &attr_rc6_residency_ms.attr, NULL }; static struct attribute *rc6p_attrs[] = { &attr_rc6p_residency_ms.attr, &attr_rc6pp_residency_ms.attr, NULL }; static struct attribute *media_rc6_attrs[] = { &attr_media_rc6_residency_ms.attr, NULL }; static struct attribute *rc6_dev_attrs[] = { &dev_attr_rc6_enable.attr, &dev_attr_rc6_residency_ms.attr, NULL }; static struct attribute *rc6p_dev_attrs[] = { &dev_attr_rc6p_residency_ms.attr, &dev_attr_rc6pp_residency_ms.attr, NULL }; static struct attribute *media_rc6_dev_attrs[] = { &dev_attr_media_rc6_residency_ms.attr, NULL }; static const struct attribute_group rc6_attr_group[] = { { .attrs = rc6_attrs, }, { .name = power_group_name, .attrs = rc6_dev_attrs, }, }; static const struct attribute_group rc6p_attr_group[] = { { .attrs = rc6p_attrs, }, { .name = power_group_name, .attrs = rc6p_dev_attrs, }, }; static const struct attribute_group media_rc6_attr_group[] = { { .attrs = media_rc6_attrs, }, { .name = power_group_name, .attrs = media_rc6_dev_attrs, }, }; static int __intel_gt_sysfs_create_group(struct kobject *kobj, const struct attribute_group *grp) { return is_object_gt(kobj) ? sysfs_create_group(kobj, &grp[0]) : sysfs_merge_group(kobj, &grp[1]); } static void intel_sysfs_rc6_init(struct intel_gt *gt, struct kobject *kobj) { int ret; if (!IS_ENABLED(CONFIG_PM) || !HAS_RC6(gt->i915)) return; ret = __intel_gt_sysfs_create_group(kobj, rc6_attr_group); if (ret) gt_warn(gt, "failed to create RC6 sysfs files (%pe)\n", ERR_PTR(ret)); /* * cannot use the is_visible() attribute because * the upper object inherits from the parent group. */ if (HAS_RC6p(gt->i915)) { ret = __intel_gt_sysfs_create_group(kobj, rc6p_attr_group); if (ret) gt_warn(gt, "failed to create RC6p sysfs files (%pe)\n", ERR_PTR(ret)); } if (IS_VALLEYVIEW(gt->i915) || IS_CHERRYVIEW(gt->i915)) { ret = __intel_gt_sysfs_create_group(kobj, media_rc6_attr_group); if (ret) gt_warn(gt, "failed to create media RC6 sysfs files (%pe)\n", ERR_PTR(ret)); } } static u32 __act_freq_mhz_show(struct intel_gt *gt) { return intel_rps_read_actual_frequency(>->rps); } static u32 __cur_freq_mhz_show(struct intel_gt *gt) { return intel_rps_get_requested_frequency(>->rps); } static u32 __boost_freq_mhz_show(struct intel_gt *gt) { return intel_rps_get_boost_frequency(>->rps); } static int __boost_freq_mhz_store(struct intel_gt *gt, u32 val) { return intel_rps_set_boost_frequency(>->rps, val); } static u32 __RP0_freq_mhz_show(struct intel_gt *gt) { return intel_rps_get_rp0_frequency(>->rps); } static u32 __RPn_freq_mhz_show(struct intel_gt *gt) { return intel_rps_get_rpn_frequency(>->rps); } static u32 __RP1_freq_mhz_show(struct intel_gt *gt) { return intel_rps_get_rp1_frequency(>->rps); } static u32 __max_freq_mhz_show(struct intel_gt *gt) { return intel_rps_get_max_frequency(>->rps); } static int __set_max_freq(struct intel_gt *gt, u32 val) { return intel_rps_set_max_frequency(>->rps, val); } static u32 __min_freq_mhz_show(struct intel_gt *gt) { return intel_rps_get_min_frequency(>->rps); } static int __set_min_freq(struct intel_gt *gt, u32 val) { return intel_rps_set_min_frequency(>->rps, val); } static u32 __vlv_rpe_freq_mhz_show(struct intel_gt *gt) { struct intel_rps *rps = >->rps; return intel_gpu_freq(rps, rps->efficient_freq); } INTEL_GT_SYSFS_SHOW_MAX(act_freq_mhz); INTEL_GT_SYSFS_SHOW_MAX(boost_freq_mhz); INTEL_GT_SYSFS_SHOW_MAX(cur_freq_mhz); INTEL_GT_SYSFS_SHOW_MAX(RP0_freq_mhz); INTEL_GT_SYSFS_SHOW_MAX(RP1_freq_mhz); INTEL_GT_SYSFS_SHOW_MAX(RPn_freq_mhz); INTEL_GT_SYSFS_SHOW_MAX(max_freq_mhz); INTEL_GT_SYSFS_SHOW_MIN(min_freq_mhz); INTEL_GT_SYSFS_SHOW_MAX(vlv_rpe_freq_mhz); INTEL_GT_SYSFS_STORE(boost_freq_mhz, __boost_freq_mhz_store); INTEL_GT_SYSFS_STORE(max_freq_mhz, __set_max_freq); INTEL_GT_SYSFS_STORE(min_freq_mhz, __set_min_freq); #define INTEL_GT_RPS_SYSFS_ATTR(_name, _mode, _show, _store, _show_dev, _store_dev) \ static struct device_attribute dev_attr_gt_##_name = __ATTR(gt_##_name, _mode, \ _show_dev, _store_dev); \ static struct kobj_attribute attr_rps_##_name = __ATTR(rps_##_name, _mode, \ _show, _store) #define INTEL_GT_RPS_SYSFS_ATTR_RO(_name) \ INTEL_GT_RPS_SYSFS_ATTR(_name, 0444, _name##_show, NULL, \ _name##_dev_show, NULL) #define INTEL_GT_RPS_SYSFS_ATTR_RW(_name) \ INTEL_GT_RPS_SYSFS_ATTR(_name, 0644, _name##_show, _name##_store, \ _name##_dev_show, _name##_dev_store) /* The below macros generate static structures */ INTEL_GT_RPS_SYSFS_ATTR_RO(act_freq_mhz); INTEL_GT_RPS_SYSFS_ATTR_RO(cur_freq_mhz); INTEL_GT_RPS_SYSFS_ATTR_RW(boost_freq_mhz); INTEL_GT_RPS_SYSFS_ATTR_RO(RP0_freq_mhz); INTEL_GT_RPS_SYSFS_ATTR_RO(RP1_freq_mhz); INTEL_GT_RPS_SYSFS_ATTR_RO(RPn_freq_mhz); INTEL_GT_RPS_SYSFS_ATTR_RW(max_freq_mhz); INTEL_GT_RPS_SYSFS_ATTR_RW(min_freq_mhz); INTEL_GT_RPS_SYSFS_ATTR_RO(vlv_rpe_freq_mhz); #define GEN6_ATTR(p, s) { \ &p##attr_##s##_act_freq_mhz.attr, \ &p##attr_##s##_cur_freq_mhz.attr, \ &p##attr_##s##_boost_freq_mhz.attr, \ &p##attr_##s##_max_freq_mhz.attr, \ &p##attr_##s##_min_freq_mhz.attr, \ &p##attr_##s##_RP0_freq_mhz.attr, \ &p##attr_##s##_RP1_freq_mhz.attr, \ &p##attr_##s##_RPn_freq_mhz.attr, \ NULL, \ } #define GEN6_RPS_ATTR GEN6_ATTR(, rps) #define GEN6_GT_ATTR GEN6_ATTR(dev_, gt) static const struct attribute * const gen6_rps_attrs[] = GEN6_RPS_ATTR; static const struct attribute * const gen6_gt_attrs[] = GEN6_GT_ATTR; static ssize_t punit_req_freq_mhz_show(struct kobject *kobj, struct kobj_attribute *attr, char *buff) { struct intel_gt *gt = intel_gt_sysfs_get_drvdata(kobj, attr->attr.name); u32 preq = intel_rps_read_punit_req_frequency(>->rps); return sysfs_emit(buff, "%u\n", preq); } static ssize_t slpc_ignore_eff_freq_show(struct kobject *kobj, struct kobj_attribute *attr, char *buff) { struct intel_gt *gt = intel_gt_sysfs_get_drvdata(kobj, attr->attr.name); struct intel_guc_slpc *slpc = >->uc.guc.slpc; return sysfs_emit(buff, "%u\n", slpc->ignore_eff_freq); } static ssize_t slpc_ignore_eff_freq_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buff, size_t count) { struct intel_gt *gt = intel_gt_sysfs_get_drvdata(kobj, attr->attr.name); struct intel_guc_slpc *slpc = >->uc.guc.slpc; int err; u32 val; err = kstrtou32(buff, 0, &val); if (err) return err; err = intel_guc_slpc_set_ignore_eff_freq(slpc, val); return err ?: count; } struct intel_gt_bool_throttle_attr { struct attribute attr; ssize_t (*show)(struct kobject *kobj, struct kobj_attribute *attr, char *buf); i915_reg_t (*reg32)(struct intel_gt *gt); u32 mask; }; static ssize_t throttle_reason_bool_show(struct kobject *kobj, struct kobj_attribute *attr, char *buff) { struct intel_gt *gt = intel_gt_sysfs_get_drvdata(kobj, attr->attr.name); struct intel_gt_bool_throttle_attr *t_attr = (struct intel_gt_bool_throttle_attr *) attr; bool val = rps_read_mask_mmio(>->rps, t_attr->reg32(gt), t_attr->mask); return sysfs_emit(buff, "%u\n", val); } #define INTEL_GT_RPS_BOOL_ATTR_RO(sysfs_func__, mask__) \ struct intel_gt_bool_throttle_attr attr_##sysfs_func__ = { \ .attr = { .name = __stringify(sysfs_func__), .mode = 0444 }, \ .show = throttle_reason_bool_show, \ .reg32 = intel_gt_perf_limit_reasons_reg, \ .mask = mask__, \ } INTEL_GT_ATTR_RO(punit_req_freq_mhz); static INTEL_GT_RPS_BOOL_ATTR_RO(throttle_reason_status, GT0_PERF_LIMIT_REASONS_MASK); static INTEL_GT_RPS_BOOL_ATTR_RO(throttle_reason_pl1, POWER_LIMIT_1_MASK); static INTEL_GT_RPS_BOOL_ATTR_RO(throttle_reason_pl2, POWER_LIMIT_2_MASK); static INTEL_GT_RPS_BOOL_ATTR_RO(throttle_reason_pl4, POWER_LIMIT_4_MASK); static INTEL_GT_RPS_BOOL_ATTR_RO(throttle_reason_thermal, THERMAL_LIMIT_MASK); static INTEL_GT_RPS_BOOL_ATTR_RO(throttle_reason_prochot, PROCHOT_MASK); static INTEL_GT_RPS_BOOL_ATTR_RO(throttle_reason_ratl, RATL_MASK); static INTEL_GT_RPS_BOOL_ATTR_RO(throttle_reason_vr_thermalert, VR_THERMALERT_MASK); static INTEL_GT_RPS_BOOL_ATTR_RO(throttle_reason_vr_tdc, VR_TDC_MASK); static const struct attribute *throttle_reason_attrs[] = { &attr_throttle_reason_status.attr, &attr_throttle_reason_pl1.attr, &attr_throttle_reason_pl2.attr, &attr_throttle_reason_pl4.attr, &attr_throttle_reason_thermal.attr, &attr_throttle_reason_prochot.attr, &attr_throttle_reason_ratl.attr, &attr_throttle_reason_vr_thermalert.attr, &attr_throttle_reason_vr_tdc.attr, NULL }; /* * Scaling for multipliers (aka frequency factors). * The format of the value in the register is u8.8. * * The presentation to userspace is inspired by the perf event framework. * See: * Documentation/ABI/testing/sysfs-bus-event_source-devices-events * for description of: * /sys/bus/event_source/devices/<pmu>/events/<event>.scale * * Summary: Expose two sysfs files for each multiplier. * * 1. File <attr> contains a raw hardware value. * 2. File <attr>.scale contains the multiplicative scale factor to be * used by userspace to compute the actual value. * * So userspace knows that to get the frequency_factor it multiplies the * provided value by the specified scale factor and vice-versa. * * That way there is no precision loss in the kernel interface and API * is future proof should one day the hardware register change to u16.u16, * on some platform. (Or any other fixed point representation.) * * Example: * File <attr> contains the value 2.5, represented as u8.8 0x0280, which * is comprised of: * - an integer part of 2 * - a fractional part of 0x80 (representing 0x80 / 2^8 == 0x80 / 256). * File <attr>.scale contains a string representation of floating point * value 0.00390625 (which is (1 / 256)). * Userspace computes the actual value: * 0x0280 * 0.00390625 -> 2.5 * or converts an actual value to the value to be written into <attr>: * 2.5 / 0.00390625 -> 0x0280 */ #define U8_8_VAL_MASK 0xffff #define U8_8_SCALE_TO_VALUE "0.00390625" static ssize_t freq_factor_scale_show(struct kobject *kobj, struct kobj_attribute *attr, char *buff) { return sysfs_emit(buff, "%s\n", U8_8_SCALE_TO_VALUE); } static u32 media_ratio_mode_to_factor(u32 mode) { /* 0 -> 0, 1 -> 256, 2 -> 128 */ return !mode ? mode : 256 / mode; } static ssize_t media_freq_factor_show(struct kobject *kobj, struct kobj_attribute *attr, char *buff) { struct intel_gt *gt = intel_gt_sysfs_get_drvdata(kobj, attr->attr.name); struct intel_guc_slpc *slpc = >->uc.guc.slpc; intel_wakeref_t wakeref; u32 mode; /* * Retrieve media_ratio_mode from GEN6_RPNSWREQ bit 13 set by * GuC. GEN6_RPNSWREQ:13 value 0 represents 1:2 and 1 represents 1:1 */ if (IS_XEHPSDV(gt->i915) && slpc->media_ratio_mode == SLPC_MEDIA_RATIO_MODE_DYNAMIC_CONTROL) { /* * For XEHPSDV dynamic mode GEN6_RPNSWREQ:13 does not contain * the media_ratio_mode, just return the cached media ratio */ mode = slpc->media_ratio_mode; } else { with_intel_runtime_pm(gt->uncore->rpm, wakeref) mode = intel_uncore_read(gt->uncore, GEN6_RPNSWREQ); mode = REG_FIELD_GET(GEN12_MEDIA_FREQ_RATIO, mode) ? SLPC_MEDIA_RATIO_MODE_FIXED_ONE_TO_ONE : SLPC_MEDIA_RATIO_MODE_FIXED_ONE_TO_TWO; } return sysfs_emit(buff, "%u\n", media_ratio_mode_to_factor(mode)); } static ssize_t media_freq_factor_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buff, size_t count) { struct intel_gt *gt = intel_gt_sysfs_get_drvdata(kobj, attr->attr.name); struct intel_guc_slpc *slpc = >->uc.guc.slpc; u32 factor, mode; int err; err = kstrtou32(buff, 0, &factor); if (err) return err; for (mode = SLPC_MEDIA_RATIO_MODE_DYNAMIC_CONTROL; mode <= SLPC_MEDIA_RATIO_MODE_FIXED_ONE_TO_TWO; mode++) if (factor == media_ratio_mode_to_factor(mode)) break; if (mode > SLPC_MEDIA_RATIO_MODE_FIXED_ONE_TO_TWO) return -EINVAL; err = intel_guc_slpc_set_media_ratio_mode(slpc, mode); if (!err) { slpc->media_ratio_mode = mode; DRM_DEBUG("Set slpc->media_ratio_mode to %d", mode); } return err ?: count; } static ssize_t media_RP0_freq_mhz_show(struct kobject *kobj, struct kobj_attribute *attr, char *buff) { struct intel_gt *gt = intel_gt_sysfs_get_drvdata(kobj, attr->attr.name); u32 val; int err; err = snb_pcode_read_p(gt->uncore, XEHP_PCODE_FREQUENCY_CONFIG, PCODE_MBOX_FC_SC_READ_FUSED_P0, PCODE_MBOX_DOMAIN_MEDIAFF, &val); if (err) return err; /* Fused media RP0 read from pcode is in units of 50 MHz */ val *= GT_FREQUENCY_MULTIPLIER; return sysfs_emit(buff, "%u\n", val); } static ssize_t media_RPn_freq_mhz_show(struct kobject *kobj, struct kobj_attribute *attr, char *buff) { struct intel_gt *gt = intel_gt_sysfs_get_drvdata(kobj, attr->attr.name); u32 val; int err; err = snb_pcode_read_p(gt->uncore, XEHP_PCODE_FREQUENCY_CONFIG, PCODE_MBOX_FC_SC_READ_FUSED_PN, PCODE_MBOX_DOMAIN_MEDIAFF, &val); if (err) return err; /* Fused media RPn read from pcode is in units of 50 MHz */ val *= GT_FREQUENCY_MULTIPLIER; return sysfs_emit(buff, "%u\n", val); } INTEL_GT_ATTR_RW(media_freq_factor); static struct kobj_attribute attr_media_freq_factor_scale = __ATTR(media_freq_factor.scale, 0444, freq_factor_scale_show, NULL); INTEL_GT_ATTR_RO(media_RP0_freq_mhz); INTEL_GT_ATTR_RO(media_RPn_freq_mhz); INTEL_GT_ATTR_RW(slpc_ignore_eff_freq); static const struct attribute *media_perf_power_attrs[] = { &attr_media_freq_factor.attr, &attr_media_freq_factor_scale.attr, &attr_media_RP0_freq_mhz.attr, &attr_media_RPn_freq_mhz.attr, NULL }; static ssize_t rps_up_threshold_pct_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { struct intel_gt *gt = intel_gt_sysfs_get_drvdata(kobj, attr->attr.name); struct intel_rps *rps = >->rps; return sysfs_emit(buf, "%u\n", intel_rps_get_up_threshold(rps)); } static ssize_t rps_up_threshold_pct_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t count) { struct intel_gt *gt = intel_gt_sysfs_get_drvdata(kobj, attr->attr.name); struct intel_rps *rps = >->rps; int ret; u8 val; ret = kstrtou8(buf, 10, &val); if (ret) return ret; ret = intel_rps_set_up_threshold(rps, val); return ret == 0 ? count : ret; } static struct kobj_attribute rps_up_threshold_pct = __ATTR(rps_up_threshold_pct, 0664, rps_up_threshold_pct_show, rps_up_threshold_pct_store); static ssize_t rps_down_threshold_pct_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { struct intel_gt *gt = intel_gt_sysfs_get_drvdata(kobj, attr->attr.name); struct intel_rps *rps = >->rps; return sysfs_emit(buf, "%u\n", intel_rps_get_down_threshold(rps)); } static ssize_t rps_down_threshold_pct_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t count) { struct intel_gt *gt = intel_gt_sysfs_get_drvdata(kobj, attr->attr.name); struct intel_rps *rps = >->rps; int ret; u8 val; ret = kstrtou8(buf, 10, &val); if (ret) return ret; ret = intel_rps_set_down_threshold(rps, val); return ret == 0 ? count : ret; } static struct kobj_attribute rps_down_threshold_pct = __ATTR(rps_down_threshold_pct, 0664, rps_down_threshold_pct_show, rps_down_threshold_pct_store); static const struct attribute * const gen6_gt_rps_attrs[] = { &rps_up_threshold_pct.attr, &rps_down_threshold_pct.attr, NULL }; static ssize_t default_min_freq_mhz_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { struct intel_gt *gt = kobj_to_gt(kobj->parent); return sysfs_emit(buf, "%u\n", gt->defaults.min_freq); } static struct kobj_attribute default_min_freq_mhz = __ATTR(rps_min_freq_mhz, 0444, default_min_freq_mhz_show, NULL); static ssize_t default_max_freq_mhz_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { struct intel_gt *gt = kobj_to_gt(kobj->parent); return sysfs_emit(buf, "%u\n", gt->defaults.max_freq); } static struct kobj_attribute default_max_freq_mhz = __ATTR(rps_max_freq_mhz, 0444, default_max_freq_mhz_show, NULL); static ssize_t default_rps_up_threshold_pct_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { struct intel_gt *gt = kobj_to_gt(kobj->parent); return sysfs_emit(buf, "%u\n", gt->defaults.rps_up_threshold); } static struct kobj_attribute default_rps_up_threshold_pct = __ATTR(rps_up_threshold_pct, 0444, default_rps_up_threshold_pct_show, NULL); static ssize_t default_rps_down_threshold_pct_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { struct intel_gt *gt = kobj_to_gt(kobj->parent); return sysfs_emit(buf, "%u\n", gt->defaults.rps_down_threshold); } static struct kobj_attribute default_rps_down_threshold_pct = __ATTR(rps_down_threshold_pct, 0444, default_rps_down_threshold_pct_show, NULL); static const struct attribute * const rps_defaults_attrs[] = { &default_min_freq_mhz.attr, &default_max_freq_mhz.attr, &default_rps_up_threshold_pct.attr, &default_rps_down_threshold_pct.attr, NULL }; static int intel_sysfs_rps_init(struct intel_gt *gt, struct kobject *kobj) { const struct attribute * const *attrs; struct attribute *vlv_attr; int ret; if (GRAPHICS_VER(gt->i915) < 6) return 0; if (is_object_gt(kobj)) { attrs = gen6_rps_attrs; vlv_attr = &attr_rps_vlv_rpe_freq_mhz.attr; } else { attrs = gen6_gt_attrs; vlv_attr = &dev_attr_gt_vlv_rpe_freq_mhz.attr; } ret = sysfs_create_files(kobj, attrs); if (ret) return ret; if (IS_VALLEYVIEW(gt->i915) || IS_CHERRYVIEW(gt->i915)) ret = sysfs_create_file(kobj, vlv_attr); if (is_object_gt(kobj) && !intel_uc_uses_guc_slpc(>->uc)) { ret = sysfs_create_files(kobj, gen6_gt_rps_attrs); if (ret) return ret; } return ret; } void intel_gt_sysfs_pm_init(struct intel_gt *gt, struct kobject *kobj) { int ret; intel_sysfs_rc6_init(gt, kobj); ret = intel_sysfs_rps_init(gt, kobj); if (ret) gt_warn(gt, "failed to create RPS sysfs files (%pe)", ERR_PTR(ret)); /* end of the legacy interfaces */ if (!is_object_gt(kobj)) return; ret = sysfs_create_file(kobj, &attr_punit_req_freq_mhz.attr); if (ret) gt_warn(gt, "failed to create punit_req_freq_mhz sysfs (%pe)", ERR_PTR(ret)); if (intel_uc_uses_guc_slpc(>->uc)) { ret = sysfs_create_file(kobj, &attr_slpc_ignore_eff_freq.attr); if (ret) gt_warn(gt, "failed to create ignore_eff_freq sysfs (%pe)", ERR_PTR(ret)); } if (i915_mmio_reg_valid(intel_gt_perf_limit_reasons_reg(gt))) { ret = sysfs_create_files(kobj, throttle_reason_attrs); if (ret) gt_warn(gt, "failed to create throttle sysfs files (%pe)", ERR_PTR(ret)); } if (HAS_MEDIA_RATIO_MODE(gt->i915) && intel_uc_uses_guc_slpc(>->uc)) { ret = sysfs_create_files(kobj, media_perf_power_attrs); if (ret) gt_warn(gt, "failed to create media_perf_power_attrs sysfs (%pe)\n", ERR_PTR(ret)); } ret = sysfs_create_files(gt->sysfs_defaults, rps_defaults_attrs); if (ret) gt_warn(gt, "failed to add rps defaults (%pe)\n", ERR_PTR(ret)); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1