Contributors: 22
Author Tokens Token Proportion Commits Commit Proportion
Daniele Ceraolo Spurio 1888 45.01% 6 6.90%
Matt Roper 1080 25.74% 12 13.79%
Chris Wilson 379 9.03% 14 16.09%
Lionel Landwerlin 246 5.86% 7 8.05%
Tvrtko A. Ursulin 151 3.60% 9 10.34%
Stuart Summers 151 3.60% 10 11.49%
Michal Wajdeczko 148 3.53% 3 3.45%
Matthew Auld 25 0.60% 1 1.15%
Jani Nikula 23 0.55% 3 3.45%
Venkata Sandeep Dhanalakota 20 0.48% 1 1.15%
Umesh Nerlige Ramappa 16 0.38% 2 2.30%
Lucas De Marchi 13 0.31% 2 2.30%
Imre Deak 11 0.26% 5 5.75%
Dnyaneshwar Bhadane 8 0.19% 1 1.15%
Mika Kuoppala 7 0.17% 3 3.45%
Kelvin Gardiner 6 0.14% 1 1.15%
Arun Siluvery 6 0.14% 1 1.15%
Anshuman Gupta 4 0.10% 1 1.15%
Łukasz Daniluk 4 0.10% 1 1.15%
Oscar Mateo 3 0.07% 1 1.15%
Ben Widawsky 3 0.07% 1 1.15%
Jeff McGee 3 0.07% 2 2.30%
Total 4195 87


// SPDX-License-Identifier: MIT
/*
 * Copyright © 2019 Intel Corporation
 */

#include <linux/string_helpers.h>

#include "i915_drv.h"
#include "i915_perf_types.h"
#include "intel_engine_regs.h"
#include "intel_gt_regs.h"
#include "intel_sseu.h"

void intel_sseu_set_info(struct sseu_dev_info *sseu, u8 max_slices,
			 u8 max_subslices, u8 max_eus_per_subslice)
{
	sseu->max_slices = max_slices;
	sseu->max_subslices = max_subslices;
	sseu->max_eus_per_subslice = max_eus_per_subslice;
}

unsigned int
intel_sseu_subslice_total(const struct sseu_dev_info *sseu)
{
	unsigned int i, total = 0;

	if (sseu->has_xehp_dss)
		return bitmap_weight(sseu->subslice_mask.xehp,
				     XEHP_BITMAP_BITS(sseu->subslice_mask));

	for (i = 0; i < ARRAY_SIZE(sseu->subslice_mask.hsw); i++)
		total += hweight8(sseu->subslice_mask.hsw[i]);

	return total;
}

unsigned int
intel_sseu_get_hsw_subslices(const struct sseu_dev_info *sseu, u8 slice)
{
	WARN_ON(sseu->has_xehp_dss);
	if (WARN_ON(slice >= sseu->max_slices))
		return 0;

	return sseu->subslice_mask.hsw[slice];
}

static u16 sseu_get_eus(const struct sseu_dev_info *sseu, int slice,
			int subslice)
{
	if (sseu->has_xehp_dss) {
		WARN_ON(slice > 0);
		return sseu->eu_mask.xehp[subslice];
	} else {
		return sseu->eu_mask.hsw[slice][subslice];
	}
}

static void sseu_set_eus(struct sseu_dev_info *sseu, int slice, int subslice,
			 u16 eu_mask)
{
	GEM_WARN_ON(eu_mask && __fls(eu_mask) >= sseu->max_eus_per_subslice);
	if (sseu->has_xehp_dss) {
		GEM_WARN_ON(slice > 0);
		sseu->eu_mask.xehp[subslice] = eu_mask;
	} else {
		sseu->eu_mask.hsw[slice][subslice] = eu_mask;
	}
}

static u16 compute_eu_total(const struct sseu_dev_info *sseu)
{
	int s, ss, total = 0;

	for (s = 0; s < sseu->max_slices; s++)
		for (ss = 0; ss < sseu->max_subslices; ss++)
			if (sseu->has_xehp_dss)
				total += hweight16(sseu->eu_mask.xehp[ss]);
			else
				total += hweight16(sseu->eu_mask.hsw[s][ss]);

	return total;
}

/**
 * intel_sseu_copy_eumask_to_user - Copy EU mask into a userspace buffer
 * @to: Pointer to userspace buffer to copy to
 * @sseu: SSEU structure containing EU mask to copy
 *
 * Copies the EU mask to a userspace buffer in the format expected by
 * the query ioctl's topology queries.
 *
 * Returns the result of the copy_to_user() operation.
 */
int intel_sseu_copy_eumask_to_user(void __user *to,
				   const struct sseu_dev_info *sseu)
{
	u8 eu_mask[GEN_SS_MASK_SIZE * GEN_MAX_EU_STRIDE] = {};
	int eu_stride = GEN_SSEU_STRIDE(sseu->max_eus_per_subslice);
	int len = sseu->max_slices * sseu->max_subslices * eu_stride;
	int s, ss, i;

	for (s = 0; s < sseu->max_slices; s++) {
		for (ss = 0; ss < sseu->max_subslices; ss++) {
			int uapi_offset =
				s * sseu->max_subslices * eu_stride +
				ss * eu_stride;
			u16 mask = sseu_get_eus(sseu, s, ss);

			for (i = 0; i < eu_stride; i++)
				eu_mask[uapi_offset + i] =
					(mask >> (BITS_PER_BYTE * i)) & 0xff;
		}
	}

	return copy_to_user(to, eu_mask, len);
}

/**
 * intel_sseu_copy_ssmask_to_user - Copy subslice mask into a userspace buffer
 * @to: Pointer to userspace buffer to copy to
 * @sseu: SSEU structure containing subslice mask to copy
 *
 * Copies the subslice mask to a userspace buffer in the format expected by
 * the query ioctl's topology queries.
 *
 * Returns the result of the copy_to_user() operation.
 */
int intel_sseu_copy_ssmask_to_user(void __user *to,
				   const struct sseu_dev_info *sseu)
{
	u8 ss_mask[GEN_SS_MASK_SIZE] = {};
	int ss_stride = GEN_SSEU_STRIDE(sseu->max_subslices);
	int len = sseu->max_slices * ss_stride;
	int s, ss, i;

	for (s = 0; s < sseu->max_slices; s++) {
		for (ss = 0; ss < sseu->max_subslices; ss++) {
			i = s * ss_stride * BITS_PER_BYTE + ss;

			if (!intel_sseu_has_subslice(sseu, s, ss))
				continue;

			ss_mask[i / BITS_PER_BYTE] |= BIT(i % BITS_PER_BYTE);
		}
	}

	return copy_to_user(to, ss_mask, len);
}

static void gen11_compute_sseu_info(struct sseu_dev_info *sseu,
				    u32 ss_en, u16 eu_en)
{
	u32 valid_ss_mask = GENMASK(sseu->max_subslices - 1, 0);
	int ss;

	sseu->slice_mask |= BIT(0);
	sseu->subslice_mask.hsw[0] = ss_en & valid_ss_mask;

	for (ss = 0; ss < sseu->max_subslices; ss++)
		if (intel_sseu_has_subslice(sseu, 0, ss))
			sseu_set_eus(sseu, 0, ss, eu_en);

	sseu->eu_per_subslice = hweight16(eu_en);
	sseu->eu_total = compute_eu_total(sseu);
}

static void xehp_compute_sseu_info(struct sseu_dev_info *sseu,
				   u16 eu_en)
{
	int ss;

	sseu->slice_mask |= BIT(0);

	bitmap_or(sseu->subslice_mask.xehp,
		  sseu->compute_subslice_mask.xehp,
		  sseu->geometry_subslice_mask.xehp,
		  XEHP_BITMAP_BITS(sseu->subslice_mask));

	for (ss = 0; ss < sseu->max_subslices; ss++)
		if (intel_sseu_has_subslice(sseu, 0, ss))
			sseu_set_eus(sseu, 0, ss, eu_en);

	sseu->eu_per_subslice = hweight16(eu_en);
	sseu->eu_total = compute_eu_total(sseu);
}

static void
xehp_load_dss_mask(struct intel_uncore *uncore,
		   intel_sseu_ss_mask_t *ssmask,
		   int numregs,
		   ...)
{
	va_list argp;
	u32 fuse_val[I915_MAX_SS_FUSE_REGS] = {};
	int i;

	if (WARN_ON(numregs > I915_MAX_SS_FUSE_REGS))
		numregs = I915_MAX_SS_FUSE_REGS;

	va_start(argp, numregs);
	for (i = 0; i < numregs; i++)
		fuse_val[i] = intel_uncore_read(uncore, va_arg(argp, i915_reg_t));
	va_end(argp);

	bitmap_from_arr32(ssmask->xehp, fuse_val, numregs * 32);
}

static void xehp_sseu_info_init(struct intel_gt *gt)
{
	struct sseu_dev_info *sseu = &gt->info.sseu;
	struct intel_uncore *uncore = gt->uncore;
	u16 eu_en = 0;
	u8 eu_en_fuse;
	int num_compute_regs, num_geometry_regs;
	int eu;

	if (IS_PONTEVECCHIO(gt->i915)) {
		num_geometry_regs = 0;
		num_compute_regs = 2;
	} else {
		num_geometry_regs = 1;
		num_compute_regs = 1;
	}

	/*
	 * The concept of slice has been removed in Xe_HP.  To be compatible
	 * with prior generations, assume a single slice across the entire
	 * device. Then calculate out the DSS for each workload type within
	 * that software slice.
	 */
	intel_sseu_set_info(sseu, 1,
			    32 * max(num_geometry_regs, num_compute_regs),
			    HAS_ONE_EU_PER_FUSE_BIT(gt->i915) ? 8 : 16);
	sseu->has_xehp_dss = 1;

	xehp_load_dss_mask(uncore, &sseu->geometry_subslice_mask,
			   num_geometry_regs,
			   GEN12_GT_GEOMETRY_DSS_ENABLE);
	xehp_load_dss_mask(uncore, &sseu->compute_subslice_mask,
			   num_compute_regs,
			   GEN12_GT_COMPUTE_DSS_ENABLE,
			   XEHPC_GT_COMPUTE_DSS_ENABLE_EXT);

	eu_en_fuse = intel_uncore_read(uncore, XEHP_EU_ENABLE) & XEHP_EU_ENA_MASK;

	if (HAS_ONE_EU_PER_FUSE_BIT(gt->i915))
		eu_en = eu_en_fuse;
	else
		for (eu = 0; eu < sseu->max_eus_per_subslice / 2; eu++)
			if (eu_en_fuse & BIT(eu))
				eu_en |= BIT(eu * 2) | BIT(eu * 2 + 1);

	xehp_compute_sseu_info(sseu, eu_en);
}

static void gen12_sseu_info_init(struct intel_gt *gt)
{
	struct sseu_dev_info *sseu = &gt->info.sseu;
	struct intel_uncore *uncore = gt->uncore;
	u32 g_dss_en;
	u16 eu_en = 0;
	u8 eu_en_fuse;
	u8 s_en;
	int eu;

	/*
	 * Gen12 has Dual-Subslices, which behave similarly to 2 gen11 SS.
	 * Instead of splitting these, provide userspace with an array
	 * of DSS to more closely represent the hardware resource.
	 */
	intel_sseu_set_info(sseu, 1, 6, 16);

	/*
	 * Although gen12 architecture supported multiple slices, TGL, RKL,
	 * DG1, and ADL only had a single slice.
	 */
	s_en = intel_uncore_read(uncore, GEN11_GT_SLICE_ENABLE) &
		GEN11_GT_S_ENA_MASK;
	drm_WARN_ON(&gt->i915->drm, s_en != 0x1);

	g_dss_en = intel_uncore_read(uncore, GEN12_GT_GEOMETRY_DSS_ENABLE);

	/* one bit per pair of EUs */
	eu_en_fuse = ~(intel_uncore_read(uncore, GEN11_EU_DISABLE) &
		       GEN11_EU_DIS_MASK);

	for (eu = 0; eu < sseu->max_eus_per_subslice / 2; eu++)
		if (eu_en_fuse & BIT(eu))
			eu_en |= BIT(eu * 2) | BIT(eu * 2 + 1);

	gen11_compute_sseu_info(sseu, g_dss_en, eu_en);

	/* TGL only supports slice-level power gating */
	sseu->has_slice_pg = 1;
}

static void gen11_sseu_info_init(struct intel_gt *gt)
{
	struct sseu_dev_info *sseu = &gt->info.sseu;
	struct intel_uncore *uncore = gt->uncore;
	u32 ss_en;
	u8 eu_en;
	u8 s_en;

	if (IS_JASPERLAKE(gt->i915) || IS_ELKHARTLAKE(gt->i915))
		intel_sseu_set_info(sseu, 1, 4, 8);
	else
		intel_sseu_set_info(sseu, 1, 8, 8);

	/*
	 * Although gen11 architecture supported multiple slices, ICL and
	 * EHL/JSL only had a single slice in practice.
	 */
	s_en = intel_uncore_read(uncore, GEN11_GT_SLICE_ENABLE) &
		GEN11_GT_S_ENA_MASK;
	drm_WARN_ON(&gt->i915->drm, s_en != 0x1);

	ss_en = ~intel_uncore_read(uncore, GEN11_GT_SUBSLICE_DISABLE);

	eu_en = ~(intel_uncore_read(uncore, GEN11_EU_DISABLE) &
		  GEN11_EU_DIS_MASK);

	gen11_compute_sseu_info(sseu, ss_en, eu_en);

	/* ICL has no power gating restrictions. */
	sseu->has_slice_pg = 1;
	sseu->has_subslice_pg = 1;
	sseu->has_eu_pg = 1;
}

static void cherryview_sseu_info_init(struct intel_gt *gt)
{
	struct sseu_dev_info *sseu = &gt->info.sseu;
	u32 fuse;

	fuse = intel_uncore_read(gt->uncore, CHV_FUSE_GT);

	sseu->slice_mask = BIT(0);
	intel_sseu_set_info(sseu, 1, 2, 8);

	if (!(fuse & CHV_FGT_DISABLE_SS0)) {
		u8 disabled_mask =
			((fuse & CHV_FGT_EU_DIS_SS0_R0_MASK) >>
			 CHV_FGT_EU_DIS_SS0_R0_SHIFT) |
			(((fuse & CHV_FGT_EU_DIS_SS0_R1_MASK) >>
			  CHV_FGT_EU_DIS_SS0_R1_SHIFT) << 4);

		sseu->subslice_mask.hsw[0] |= BIT(0);
		sseu_set_eus(sseu, 0, 0, ~disabled_mask & 0xFF);
	}

	if (!(fuse & CHV_FGT_DISABLE_SS1)) {
		u8 disabled_mask =
			((fuse & CHV_FGT_EU_DIS_SS1_R0_MASK) >>
			 CHV_FGT_EU_DIS_SS1_R0_SHIFT) |
			(((fuse & CHV_FGT_EU_DIS_SS1_R1_MASK) >>
			  CHV_FGT_EU_DIS_SS1_R1_SHIFT) << 4);

		sseu->subslice_mask.hsw[0] |= BIT(1);
		sseu_set_eus(sseu, 0, 1, ~disabled_mask & 0xFF);
	}

	sseu->eu_total = compute_eu_total(sseu);

	/*
	 * CHV expected to always have a uniform distribution of EU
	 * across subslices.
	 */
	sseu->eu_per_subslice = intel_sseu_subslice_total(sseu) ?
		sseu->eu_total /
		intel_sseu_subslice_total(sseu) :
		0;
	/*
	 * CHV supports subslice power gating on devices with more than
	 * one subslice, and supports EU power gating on devices with
	 * more than one EU pair per subslice.
	 */
	sseu->has_slice_pg = 0;
	sseu->has_subslice_pg = intel_sseu_subslice_total(sseu) > 1;
	sseu->has_eu_pg = (sseu->eu_per_subslice > 2);
}

static void gen9_sseu_info_init(struct intel_gt *gt)
{
	struct drm_i915_private *i915 = gt->i915;
	struct sseu_dev_info *sseu = &gt->info.sseu;
	struct intel_uncore *uncore = gt->uncore;
	u32 fuse2, eu_disable, subslice_mask;
	const u8 eu_mask = 0xff;
	int s, ss;

	fuse2 = intel_uncore_read(uncore, GEN8_FUSE2);
	sseu->slice_mask = (fuse2 & GEN8_F2_S_ENA_MASK) >> GEN8_F2_S_ENA_SHIFT;

	/* BXT has a single slice and at most 3 subslices. */
	intel_sseu_set_info(sseu, IS_GEN9_LP(i915) ? 1 : 3,
			    IS_GEN9_LP(i915) ? 3 : 4, 8);

	/*
	 * The subslice disable field is global, i.e. it applies
	 * to each of the enabled slices.
	 */
	subslice_mask = (1 << sseu->max_subslices) - 1;
	subslice_mask &= ~((fuse2 & GEN9_F2_SS_DIS_MASK) >>
			   GEN9_F2_SS_DIS_SHIFT);

	/*
	 * Iterate through enabled slices and subslices to
	 * count the total enabled EU.
	 */
	for (s = 0; s < sseu->max_slices; s++) {
		if (!(sseu->slice_mask & BIT(s)))
			/* skip disabled slice */
			continue;

		sseu->subslice_mask.hsw[s] = subslice_mask;

		eu_disable = intel_uncore_read(uncore, GEN9_EU_DISABLE(s));
		for (ss = 0; ss < sseu->max_subslices; ss++) {
			int eu_per_ss;
			u8 eu_disabled_mask;

			if (!intel_sseu_has_subslice(sseu, s, ss))
				/* skip disabled subslice */
				continue;

			eu_disabled_mask = (eu_disable >> (ss * 8)) & eu_mask;

			sseu_set_eus(sseu, s, ss, ~eu_disabled_mask & eu_mask);

			eu_per_ss = sseu->max_eus_per_subslice -
				hweight8(eu_disabled_mask);

			/*
			 * Record which subslice(s) has(have) 7 EUs. we
			 * can tune the hash used to spread work among
			 * subslices if they are unbalanced.
			 */
			if (eu_per_ss == 7)
				sseu->subslice_7eu[s] |= BIT(ss);
		}
	}

	sseu->eu_total = compute_eu_total(sseu);

	/*
	 * SKL is expected to always have a uniform distribution
	 * of EU across subslices with the exception that any one
	 * EU in any one subslice may be fused off for die
	 * recovery. BXT is expected to be perfectly uniform in EU
	 * distribution.
	 */
	sseu->eu_per_subslice =
		intel_sseu_subslice_total(sseu) ?
		DIV_ROUND_UP(sseu->eu_total, intel_sseu_subslice_total(sseu)) :
		0;

	/*
	 * SKL+ supports slice power gating on devices with more than
	 * one slice, and supports EU power gating on devices with
	 * more than one EU pair per subslice. BXT+ supports subslice
	 * power gating on devices with more than one subslice, and
	 * supports EU power gating on devices with more than one EU
	 * pair per subslice.
	 */
	sseu->has_slice_pg =
		!IS_GEN9_LP(i915) && hweight8(sseu->slice_mask) > 1;
	sseu->has_subslice_pg =
		IS_GEN9_LP(i915) && intel_sseu_subslice_total(sseu) > 1;
	sseu->has_eu_pg = sseu->eu_per_subslice > 2;

	if (IS_GEN9_LP(i915)) {
#define IS_SS_DISABLED(ss)	(!(sseu->subslice_mask.hsw[0] & BIT(ss)))
		RUNTIME_INFO(i915)->has_pooled_eu = hweight8(sseu->subslice_mask.hsw[0]) == 3;

		sseu->min_eu_in_pool = 0;
		if (HAS_POOLED_EU(i915)) {
			if (IS_SS_DISABLED(2) || IS_SS_DISABLED(0))
				sseu->min_eu_in_pool = 3;
			else if (IS_SS_DISABLED(1))
				sseu->min_eu_in_pool = 6;
			else
				sseu->min_eu_in_pool = 9;
		}
#undef IS_SS_DISABLED
	}
}

static void bdw_sseu_info_init(struct intel_gt *gt)
{
	struct sseu_dev_info *sseu = &gt->info.sseu;
	struct intel_uncore *uncore = gt->uncore;
	int s, ss;
	u32 fuse2, subslice_mask, eu_disable[3]; /* s_max */
	u32 eu_disable0, eu_disable1, eu_disable2;

	fuse2 = intel_uncore_read(uncore, GEN8_FUSE2);
	sseu->slice_mask = (fuse2 & GEN8_F2_S_ENA_MASK) >> GEN8_F2_S_ENA_SHIFT;
	intel_sseu_set_info(sseu, 3, 3, 8);

	/*
	 * The subslice disable field is global, i.e. it applies
	 * to each of the enabled slices.
	 */
	subslice_mask = GENMASK(sseu->max_subslices - 1, 0);
	subslice_mask &= ~((fuse2 & GEN8_F2_SS_DIS_MASK) >>
			   GEN8_F2_SS_DIS_SHIFT);
	eu_disable0 = intel_uncore_read(uncore, GEN8_EU_DISABLE0);
	eu_disable1 = intel_uncore_read(uncore, GEN8_EU_DISABLE1);
	eu_disable2 = intel_uncore_read(uncore, GEN8_EU_DISABLE2);
	eu_disable[0] = eu_disable0 & GEN8_EU_DIS0_S0_MASK;
	eu_disable[1] = (eu_disable0 >> GEN8_EU_DIS0_S1_SHIFT) |
		((eu_disable1 & GEN8_EU_DIS1_S1_MASK) <<
		 (32 - GEN8_EU_DIS0_S1_SHIFT));
	eu_disable[2] = (eu_disable1 >> GEN8_EU_DIS1_S2_SHIFT) |
		((eu_disable2 & GEN8_EU_DIS2_S2_MASK) <<
		 (32 - GEN8_EU_DIS1_S2_SHIFT));

	/*
	 * Iterate through enabled slices and subslices to
	 * count the total enabled EU.
	 */
	for (s = 0; s < sseu->max_slices; s++) {
		if (!(sseu->slice_mask & BIT(s)))
			/* skip disabled slice */
			continue;

		sseu->subslice_mask.hsw[s] = subslice_mask;

		for (ss = 0; ss < sseu->max_subslices; ss++) {
			u8 eu_disabled_mask;
			u32 n_disabled;

			if (!intel_sseu_has_subslice(sseu, s, ss))
				/* skip disabled subslice */
				continue;

			eu_disabled_mask =
				eu_disable[s] >> (ss * sseu->max_eus_per_subslice);

			sseu_set_eus(sseu, s, ss, ~eu_disabled_mask & 0xFF);

			n_disabled = hweight8(eu_disabled_mask);

			/*
			 * Record which subslices have 7 EUs.
			 */
			if (sseu->max_eus_per_subslice - n_disabled == 7)
				sseu->subslice_7eu[s] |= 1 << ss;
		}
	}

	sseu->eu_total = compute_eu_total(sseu);

	/*
	 * BDW is expected to always have a uniform distribution of EU across
	 * subslices with the exception that any one EU in any one subslice may
	 * be fused off for die recovery.
	 */
	sseu->eu_per_subslice =
		intel_sseu_subslice_total(sseu) ?
		DIV_ROUND_UP(sseu->eu_total, intel_sseu_subslice_total(sseu)) :
		0;

	/*
	 * BDW supports slice power gating on devices with more than
	 * one slice.
	 */
	sseu->has_slice_pg = hweight8(sseu->slice_mask) > 1;
	sseu->has_subslice_pg = 0;
	sseu->has_eu_pg = 0;
}

static void hsw_sseu_info_init(struct intel_gt *gt)
{
	struct drm_i915_private *i915 = gt->i915;
	struct sseu_dev_info *sseu = &gt->info.sseu;
	u32 fuse1;
	u8 subslice_mask = 0;
	int s, ss;

	/*
	 * There isn't a register to tell us how many slices/subslices. We
	 * work off the PCI-ids here.
	 */
	switch (INTEL_INFO(i915)->gt) {
	default:
		MISSING_CASE(INTEL_INFO(i915)->gt);
		fallthrough;
	case 1:
		sseu->slice_mask = BIT(0);
		subslice_mask = BIT(0);
		break;
	case 2:
		sseu->slice_mask = BIT(0);
		subslice_mask = BIT(0) | BIT(1);
		break;
	case 3:
		sseu->slice_mask = BIT(0) | BIT(1);
		subslice_mask = BIT(0) | BIT(1);
		break;
	}

	fuse1 = intel_uncore_read(gt->uncore, HSW_PAVP_FUSE1);
	switch (REG_FIELD_GET(HSW_F1_EU_DIS_MASK, fuse1)) {
	default:
		MISSING_CASE(REG_FIELD_GET(HSW_F1_EU_DIS_MASK, fuse1));
		fallthrough;
	case HSW_F1_EU_DIS_10EUS:
		sseu->eu_per_subslice = 10;
		break;
	case HSW_F1_EU_DIS_8EUS:
		sseu->eu_per_subslice = 8;
		break;
	case HSW_F1_EU_DIS_6EUS:
		sseu->eu_per_subslice = 6;
		break;
	}

	intel_sseu_set_info(sseu, hweight8(sseu->slice_mask),
			    hweight8(subslice_mask),
			    sseu->eu_per_subslice);

	for (s = 0; s < sseu->max_slices; s++) {
		sseu->subslice_mask.hsw[s] = subslice_mask;

		for (ss = 0; ss < sseu->max_subslices; ss++) {
			sseu_set_eus(sseu, s, ss,
				     (1UL << sseu->eu_per_subslice) - 1);
		}
	}

	sseu->eu_total = compute_eu_total(sseu);

	/* No powergating for you. */
	sseu->has_slice_pg = 0;
	sseu->has_subslice_pg = 0;
	sseu->has_eu_pg = 0;
}

void intel_sseu_info_init(struct intel_gt *gt)
{
	struct drm_i915_private *i915 = gt->i915;

	if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50))
		xehp_sseu_info_init(gt);
	else if (GRAPHICS_VER(i915) >= 12)
		gen12_sseu_info_init(gt);
	else if (GRAPHICS_VER(i915) >= 11)
		gen11_sseu_info_init(gt);
	else if (GRAPHICS_VER(i915) >= 9)
		gen9_sseu_info_init(gt);
	else if (IS_BROADWELL(i915))
		bdw_sseu_info_init(gt);
	else if (IS_CHERRYVIEW(i915))
		cherryview_sseu_info_init(gt);
	else if (IS_HASWELL(i915))
		hsw_sseu_info_init(gt);
}

u32 intel_sseu_make_rpcs(struct intel_gt *gt,
			 const struct intel_sseu *req_sseu)
{
	struct drm_i915_private *i915 = gt->i915;
	const struct sseu_dev_info *sseu = &gt->info.sseu;
	bool subslice_pg = sseu->has_subslice_pg;
	u8 slices, subslices;
	u32 rpcs = 0;

	/*
	 * No explicit RPCS request is needed to ensure full
	 * slice/subslice/EU enablement prior to Gen9.
	 */
	if (GRAPHICS_VER(i915) < 9)
		return 0;

	/*
	 * If i915/perf is active, we want a stable powergating configuration
	 * on the system. Use the configuration pinned by i915/perf.
	 */
	if (gt->perf.group && gt->perf.group[PERF_GROUP_OAG].exclusive_stream)
		req_sseu = &gt->perf.sseu;

	slices = hweight8(req_sseu->slice_mask);
	subslices = hweight8(req_sseu->subslice_mask);

	/*
	 * Since the SScount bitfield in GEN8_R_PWR_CLK_STATE is only three bits
	 * wide and Icelake has up to eight subslices, specfial programming is
	 * needed in order to correctly enable all subslices.
	 *
	 * According to documentation software must consider the configuration
	 * as 2x4x8 and hardware will translate this to 1x8x8.
	 *
	 * Furthemore, even though SScount is three bits, maximum documented
	 * value for it is four. From this some rules/restrictions follow:
	 *
	 * 1.
	 * If enabled subslice count is greater than four, two whole slices must
	 * be enabled instead.
	 *
	 * 2.
	 * When more than one slice is enabled, hardware ignores the subslice
	 * count altogether.
	 *
	 * From these restrictions it follows that it is not possible to enable
	 * a count of subslices between the SScount maximum of four restriction,
	 * and the maximum available number on a particular SKU. Either all
	 * subslices are enabled, or a count between one and four on the first
	 * slice.
	 */
	if (GRAPHICS_VER(i915) == 11 &&
	    slices == 1 &&
	    subslices > min_t(u8, 4, hweight8(sseu->subslice_mask.hsw[0]) / 2)) {
		GEM_BUG_ON(subslices & 1);

		subslice_pg = false;
		slices *= 2;
	}

	/*
	 * Starting in Gen9, render power gating can leave
	 * slice/subslice/EU in a partially enabled state. We
	 * must make an explicit request through RPCS for full
	 * enablement.
	 */
	if (sseu->has_slice_pg) {
		u32 mask, val = slices;

		if (GRAPHICS_VER(i915) >= 11) {
			mask = GEN11_RPCS_S_CNT_MASK;
			val <<= GEN11_RPCS_S_CNT_SHIFT;
		} else {
			mask = GEN8_RPCS_S_CNT_MASK;
			val <<= GEN8_RPCS_S_CNT_SHIFT;
		}

		GEM_BUG_ON(val & ~mask);
		val &= mask;

		rpcs |= GEN8_RPCS_ENABLE | GEN8_RPCS_S_CNT_ENABLE | val;
	}

	if (subslice_pg) {
		u32 val = subslices;

		val <<= GEN8_RPCS_SS_CNT_SHIFT;

		GEM_BUG_ON(val & ~GEN8_RPCS_SS_CNT_MASK);
		val &= GEN8_RPCS_SS_CNT_MASK;

		rpcs |= GEN8_RPCS_ENABLE | GEN8_RPCS_SS_CNT_ENABLE | val;
	}

	if (sseu->has_eu_pg) {
		u32 val;

		val = req_sseu->min_eus_per_subslice << GEN8_RPCS_EU_MIN_SHIFT;
		GEM_BUG_ON(val & ~GEN8_RPCS_EU_MIN_MASK);
		val &= GEN8_RPCS_EU_MIN_MASK;

		rpcs |= val;

		val = req_sseu->max_eus_per_subslice << GEN8_RPCS_EU_MAX_SHIFT;
		GEM_BUG_ON(val & ~GEN8_RPCS_EU_MAX_MASK);
		val &= GEN8_RPCS_EU_MAX_MASK;

		rpcs |= val;

		rpcs |= GEN8_RPCS_ENABLE;
	}

	return rpcs;
}

void intel_sseu_dump(const struct sseu_dev_info *sseu, struct drm_printer *p)
{
	int s;

	if (sseu->has_xehp_dss) {
		drm_printf(p, "subslice total: %u\n",
			   intel_sseu_subslice_total(sseu));
		drm_printf(p, "geometry dss mask=%*pb\n",
			   XEHP_BITMAP_BITS(sseu->geometry_subslice_mask),
			   sseu->geometry_subslice_mask.xehp);
		drm_printf(p, "compute dss mask=%*pb\n",
			   XEHP_BITMAP_BITS(sseu->compute_subslice_mask),
			   sseu->compute_subslice_mask.xehp);
	} else {
		drm_printf(p, "slice total: %u, mask=%04x\n",
			   hweight8(sseu->slice_mask), sseu->slice_mask);
		drm_printf(p, "subslice total: %u\n",
			   intel_sseu_subslice_total(sseu));

		for (s = 0; s < sseu->max_slices; s++) {
			u8 ss_mask = sseu->subslice_mask.hsw[s];

			drm_printf(p, "slice%d: %u subslices, mask=%08x\n",
				   s, hweight8(ss_mask), ss_mask);
		}
	}

	drm_printf(p, "EU total: %u\n", sseu->eu_total);
	drm_printf(p, "EU per subslice: %u\n", sseu->eu_per_subslice);
	drm_printf(p, "has slice power gating: %s\n",
		   str_yes_no(sseu->has_slice_pg));
	drm_printf(p, "has subslice power gating: %s\n",
		   str_yes_no(sseu->has_subslice_pg));
	drm_printf(p, "has EU power gating: %s\n",
		   str_yes_no(sseu->has_eu_pg));
}

static void sseu_print_hsw_topology(const struct sseu_dev_info *sseu,
				    struct drm_printer *p)
{
	int s, ss;

	for (s = 0; s < sseu->max_slices; s++) {
		u8 ss_mask = sseu->subslice_mask.hsw[s];

		drm_printf(p, "slice%d: %u subslice(s) (0x%08x):\n",
			   s, hweight8(ss_mask), ss_mask);

		for (ss = 0; ss < sseu->max_subslices; ss++) {
			u16 enabled_eus = sseu_get_eus(sseu, s, ss);

			drm_printf(p, "\tsubslice%d: %u EUs (0x%hx)\n",
				   ss, hweight16(enabled_eus), enabled_eus);
		}
	}
}

static void sseu_print_xehp_topology(const struct sseu_dev_info *sseu,
				     struct drm_printer *p)
{
	int dss;

	for (dss = 0; dss < sseu->max_subslices; dss++) {
		u16 enabled_eus = sseu_get_eus(sseu, 0, dss);

		drm_printf(p, "DSS_%02d: G:%3s C:%3s, %2u EUs (0x%04hx)\n", dss,
			   str_yes_no(test_bit(dss, sseu->geometry_subslice_mask.xehp)),
			   str_yes_no(test_bit(dss, sseu->compute_subslice_mask.xehp)),
			   hweight16(enabled_eus), enabled_eus);
	}
}

void intel_sseu_print_topology(struct drm_i915_private *i915,
			       const struct sseu_dev_info *sseu,
			       struct drm_printer *p)
{
	if (sseu->max_slices == 0) {
		drm_printf(p, "Unavailable\n");
	} else if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50)) {
		sseu_print_xehp_topology(sseu, p);
	} else {
		sseu_print_hsw_topology(sseu, p);
	}
}

void intel_sseu_print_ss_info(const char *type,
			      const struct sseu_dev_info *sseu,
			      struct seq_file *m)
{
	int s;

	if (sseu->has_xehp_dss) {
		seq_printf(m, "  %s Geometry DSS: %u\n", type,
			   bitmap_weight(sseu->geometry_subslice_mask.xehp,
					 XEHP_BITMAP_BITS(sseu->geometry_subslice_mask)));
		seq_printf(m, "  %s Compute DSS: %u\n", type,
			   bitmap_weight(sseu->compute_subslice_mask.xehp,
					 XEHP_BITMAP_BITS(sseu->compute_subslice_mask)));
	} else {
		for (s = 0; s < fls(sseu->slice_mask); s++)
			seq_printf(m, "  %s Slice%i subslices: %u\n", type,
				   s, hweight8(sseu->subslice_mask.hsw[s]));
	}
}

u16 intel_slicemask_from_xehp_dssmask(intel_sseu_ss_mask_t dss_mask,
				      int dss_per_slice)
{
	intel_sseu_ss_mask_t per_slice_mask = {};
	unsigned long slice_mask = 0;
	int i;

	WARN_ON(DIV_ROUND_UP(XEHP_BITMAP_BITS(dss_mask), dss_per_slice) >
		8 * sizeof(slice_mask));

	bitmap_fill(per_slice_mask.xehp, dss_per_slice);
	for (i = 0; !bitmap_empty(dss_mask.xehp, XEHP_BITMAP_BITS(dss_mask)); i++) {
		if (bitmap_intersects(dss_mask.xehp, per_slice_mask.xehp, dss_per_slice))
			slice_mask |= BIT(i);

		bitmap_shift_right(dss_mask.xehp, dss_mask.xehp, dss_per_slice,
				   XEHP_BITMAP_BITS(dss_mask));
	}

	return slice_mask;
}