Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Daniele Ceraolo Spurio | 1724 | 89.37% | 15 | 40.54% |
Alan Previn | 113 | 5.86% | 3 | 8.11% |
Michal Wajdeczko | 29 | 1.50% | 7 | 18.92% |
Dave Airlie | 16 | 0.83% | 1 | 2.70% |
John Harrison | 15 | 0.78% | 4 | 10.81% |
Fei Yang | 10 | 0.52% | 1 | 2.70% |
Suraj Kandpal | 8 | 0.41% | 1 | 2.70% |
Fernando Pacheco | 7 | 0.36% | 1 | 2.70% |
Jonathan Cavitt | 2 | 0.10% | 1 | 2.70% |
Chris Wilson | 2 | 0.10% | 1 | 2.70% |
Anusha Srivatsa | 2 | 0.10% | 1 | 2.70% |
Maarten Lankhorst | 1 | 0.05% | 1 | 2.70% |
Total | 1929 | 37 |
// SPDX-License-Identifier: MIT /* * Copyright © 2022 Intel Corporation */ #include "gem/i915_gem_lmem.h" #include "gt/intel_engine_pm.h" #include "gt/intel_gpu_commands.h" #include "gt/intel_gt.h" #include "gt/intel_gt_print.h" #include "gt/intel_ring.h" #include "intel_gsc_binary_headers.h" #include "intel_gsc_fw.h" #include "intel_gsc_uc_heci_cmd_submit.h" #include "i915_reg.h" static bool gsc_is_in_reset(struct intel_uncore *uncore) { u32 fw_status = intel_uncore_read(uncore, HECI_FWSTS(MTL_GSC_HECI1_BASE, 1)); return REG_FIELD_GET(HECI1_FWSTS1_CURRENT_STATE, fw_status) == HECI1_FWSTS1_CURRENT_STATE_RESET; } static u32 gsc_uc_get_fw_status(struct intel_uncore *uncore, bool needs_wakeref) { intel_wakeref_t wakeref; u32 fw_status = 0; if (needs_wakeref) wakeref = intel_runtime_pm_get(uncore->rpm); fw_status = intel_uncore_read(uncore, HECI_FWSTS(MTL_GSC_HECI1_BASE, 1)); if (needs_wakeref) intel_runtime_pm_put(uncore->rpm, wakeref); return fw_status; } bool intel_gsc_uc_fw_proxy_init_done(struct intel_gsc_uc *gsc, bool needs_wakeref) { return REG_FIELD_GET(HECI1_FWSTS1_CURRENT_STATE, gsc_uc_get_fw_status(gsc_uc_to_gt(gsc)->uncore, needs_wakeref)) == HECI1_FWSTS1_PROXY_STATE_NORMAL; } int intel_gsc_uc_fw_proxy_get_status(struct intel_gsc_uc *gsc) { if (!(IS_ENABLED(CONFIG_INTEL_MEI_GSC_PROXY))) return -ENODEV; if (!intel_uc_fw_is_loadable(&gsc->fw)) return -ENODEV; if (__intel_uc_fw_status(&gsc->fw) == INTEL_UC_FIRMWARE_LOAD_FAIL) return -ENOLINK; if (!intel_gsc_uc_fw_proxy_init_done(gsc, true)) return -EAGAIN; return 0; } bool intel_gsc_uc_fw_init_done(struct intel_gsc_uc *gsc) { return gsc_uc_get_fw_status(gsc_uc_to_gt(gsc)->uncore, false) & HECI1_FWSTS1_INIT_COMPLETE; } static inline u32 cpd_entry_offset(const struct intel_gsc_cpd_entry *entry) { return entry->offset & INTEL_GSC_CPD_ENTRY_OFFSET_MASK; } int intel_gsc_fw_get_binary_info(struct intel_uc_fw *gsc_fw, const void *data, size_t size) { struct intel_gsc_uc *gsc = container_of(gsc_fw, struct intel_gsc_uc, fw); struct intel_gt *gt = gsc_uc_to_gt(gsc); const struct intel_gsc_layout_pointers *layout = data; const struct intel_gsc_bpdt_header *bpdt_header = NULL; const struct intel_gsc_bpdt_entry *bpdt_entry = NULL; const struct intel_gsc_cpd_header_v2 *cpd_header = NULL; const struct intel_gsc_cpd_entry *cpd_entry = NULL; const struct intel_gsc_manifest_header *manifest; size_t min_size = sizeof(*layout); int i; if (size < min_size) { gt_err(gt, "GSC FW too small! %zu < %zu\n", size, min_size); return -ENODATA; } /* * The GSC binary starts with the pointer layout, which contains the * locations of the various partitions of the binary. The one we're * interested in to get the version is the boot1 partition, where we can * find a BPDT header followed by entries, one of which points to the * RBE sub-section of the partition. From here, we can parse the CPD * header and the following entries to find the manifest location * (entry identified by the "RBEP.man" name), from which we can finally * extract the version. * * -------------------------------------------------- * [ intel_gsc_layout_pointers ] * [ ... ] * [ boot1.offset >---------------------------]------o * [ ... ] | * -------------------------------------------------- | * | * -------------------------------------------------- | * [ intel_gsc_bpdt_header ]<-----o * -------------------------------------------------- * [ intel_gsc_bpdt_entry[] ] * [ entry1 ] * [ ... ] * [ entryX ] * [ type == GSC_RBE ] * [ offset >-----------------------------]------o * [ ... ] | * -------------------------------------------------- | * | * -------------------------------------------------- | * [ intel_gsc_cpd_header_v2 ]<-----o * -------------------------------------------------- * [ intel_gsc_cpd_entry[] ] * [ entry1 ] * [ ... ] * [ entryX ] * [ "RBEP.man" ] * [ ... ] * [ offset >----------------------------]------o * [ ... ] | * -------------------------------------------------- | * | * -------------------------------------------------- | * [ intel_gsc_manifest_header ]<-----o * [ ... ] * [ intel_gsc_version fw_version ] * [ ... ] * -------------------------------------------------- */ min_size = layout->boot1.offset + layout->boot1.size; if (size < min_size) { gt_err(gt, "GSC FW too small for boot section! %zu < %zu\n", size, min_size); return -ENODATA; } min_size = sizeof(*bpdt_header); if (layout->boot1.size < min_size) { gt_err(gt, "GSC FW boot section too small for BPDT header: %u < %zu\n", layout->boot1.size, min_size); return -ENODATA; } bpdt_header = data + layout->boot1.offset; if (bpdt_header->signature != INTEL_GSC_BPDT_HEADER_SIGNATURE) { gt_err(gt, "invalid signature for BPDT header: 0x%08x!\n", bpdt_header->signature); return -EINVAL; } min_size += sizeof(*bpdt_entry) * bpdt_header->descriptor_count; if (layout->boot1.size < min_size) { gt_err(gt, "GSC FW boot section too small for BPDT entries: %u < %zu\n", layout->boot1.size, min_size); return -ENODATA; } bpdt_entry = (void *)bpdt_header + sizeof(*bpdt_header); for (i = 0; i < bpdt_header->descriptor_count; i++, bpdt_entry++) { if ((bpdt_entry->type & INTEL_GSC_BPDT_ENTRY_TYPE_MASK) != INTEL_GSC_BPDT_ENTRY_TYPE_GSC_RBE) continue; cpd_header = (void *)bpdt_header + bpdt_entry->sub_partition_offset; min_size = bpdt_entry->sub_partition_offset + sizeof(*cpd_header); break; } if (!cpd_header) { gt_err(gt, "couldn't find CPD header in GSC binary!\n"); return -ENODATA; } if (layout->boot1.size < min_size) { gt_err(gt, "GSC FW boot section too small for CPD header: %u < %zu\n", layout->boot1.size, min_size); return -ENODATA; } if (cpd_header->header_marker != INTEL_GSC_CPD_HEADER_MARKER) { gt_err(gt, "invalid marker for CPD header in GSC bin: 0x%08x!\n", cpd_header->header_marker); return -EINVAL; } min_size += sizeof(*cpd_entry) * cpd_header->num_of_entries; if (layout->boot1.size < min_size) { gt_err(gt, "GSC FW boot section too small for CPD entries: %u < %zu\n", layout->boot1.size, min_size); return -ENODATA; } cpd_entry = (void *)cpd_header + cpd_header->header_length; for (i = 0; i < cpd_header->num_of_entries; i++, cpd_entry++) { if (strcmp(cpd_entry->name, "RBEP.man") == 0) { manifest = (void *)cpd_header + cpd_entry_offset(cpd_entry); intel_uc_fw_version_from_gsc_manifest(&gsc->release, manifest); gsc->security_version = manifest->security_version; break; } } return 0; } static int emit_gsc_fw_load(struct i915_request *rq, struct intel_gsc_uc *gsc) { u32 offset = i915_ggtt_offset(gsc->local); u32 *cs; cs = intel_ring_begin(rq, 4); if (IS_ERR(cs)) return PTR_ERR(cs); *cs++ = GSC_FW_LOAD; *cs++ = lower_32_bits(offset); *cs++ = upper_32_bits(offset); *cs++ = (gsc->local->size / SZ_4K) | HECI1_FW_LIMIT_VALID; intel_ring_advance(rq, cs); return 0; } static int gsc_fw_load(struct intel_gsc_uc *gsc) { struct intel_context *ce = gsc->ce; struct i915_request *rq; int err; if (!ce) return -ENODEV; rq = i915_request_create(ce); if (IS_ERR(rq)) return PTR_ERR(rq); if (ce->engine->emit_init_breadcrumb) { err = ce->engine->emit_init_breadcrumb(rq); if (err) goto out_rq; } err = emit_gsc_fw_load(rq, gsc); if (err) goto out_rq; err = ce->engine->emit_flush(rq, 0); out_rq: i915_request_get(rq); if (unlikely(err)) i915_request_set_error_once(rq, err); i915_request_add(rq); if (!err && i915_request_wait(rq, 0, msecs_to_jiffies(500)) < 0) err = -ETIME; i915_request_put(rq); if (err) gt_err(gsc_uc_to_gt(gsc), "Request submission for GSC load failed %pe\n", ERR_PTR(err)); return err; } static int gsc_fw_load_prepare(struct intel_gsc_uc *gsc) { struct intel_gt *gt = gsc_uc_to_gt(gsc); void *src; if (!gsc->local) return -ENODEV; if (gsc->local->size < gsc->fw.size) return -ENOSPC; src = i915_gem_object_pin_map_unlocked(gsc->fw.obj, intel_gt_coherent_map_type(gt, gsc->fw.obj, true)); if (IS_ERR(src)) return PTR_ERR(src); memcpy_toio(gsc->local_vaddr, src, gsc->fw.size); memset_io(gsc->local_vaddr + gsc->fw.size, 0, gsc->local->size - gsc->fw.size); intel_guc_write_barrier(>->uc.guc); i915_gem_object_unpin_map(gsc->fw.obj); return 0; } static int gsc_fw_wait(struct intel_gt *gt) { return intel_wait_for_register(gt->uncore, HECI_FWSTS(MTL_GSC_HECI1_BASE, 1), HECI1_FWSTS1_INIT_COMPLETE, HECI1_FWSTS1_INIT_COMPLETE, 500); } struct intel_gsc_mkhi_header { u8 group_id; #define MKHI_GROUP_ID_GFX_SRV 0x30 u8 command; #define MKHI_GFX_SRV_GET_HOST_COMPATIBILITY_VERSION (0x42) u8 reserved; u8 result; } __packed; struct mtl_gsc_ver_msg_in { struct intel_gsc_mtl_header header; struct intel_gsc_mkhi_header mkhi; } __packed; struct mtl_gsc_ver_msg_out { struct intel_gsc_mtl_header header; struct intel_gsc_mkhi_header mkhi; u16 proj_major; u16 compat_major; u16 compat_minor; u16 reserved[5]; } __packed; #define GSC_VER_PKT_SZ SZ_4K static int gsc_fw_query_compatibility_version(struct intel_gsc_uc *gsc) { struct intel_gt *gt = gsc_uc_to_gt(gsc); struct mtl_gsc_ver_msg_in *msg_in; struct mtl_gsc_ver_msg_out *msg_out; struct i915_vma *vma; u64 offset; void *vaddr; int err; err = intel_guc_allocate_and_map_vma(>->uc.guc, GSC_VER_PKT_SZ * 2, &vma, &vaddr); if (err) { gt_err(gt, "failed to allocate vma for GSC version query\n"); return err; } offset = i915_ggtt_offset(vma); msg_in = vaddr; msg_out = vaddr + GSC_VER_PKT_SZ; intel_gsc_uc_heci_cmd_emit_mtl_header(&msg_in->header, HECI_MEADDRESS_MKHI, sizeof(*msg_in), 0); msg_in->mkhi.group_id = MKHI_GROUP_ID_GFX_SRV; msg_in->mkhi.command = MKHI_GFX_SRV_GET_HOST_COMPATIBILITY_VERSION; err = intel_gsc_uc_heci_cmd_submit_packet(>->uc.gsc, offset, sizeof(*msg_in), offset + GSC_VER_PKT_SZ, GSC_VER_PKT_SZ); if (err) { gt_err(gt, "failed to submit GSC request for compatibility version: %d\n", err); goto out_vma; } if (msg_out->header.message_size != sizeof(*msg_out)) { gt_err(gt, "invalid GSC reply length %u [expected %zu], s=0x%x, f=0x%x, r=0x%x\n", msg_out->header.message_size, sizeof(*msg_out), msg_out->header.status, msg_out->header.flags, msg_out->mkhi.result); err = -EPROTO; goto out_vma; } gsc->fw.file_selected.ver.major = msg_out->compat_major; gsc->fw.file_selected.ver.minor = msg_out->compat_minor; out_vma: i915_vma_unpin_and_release(&vma, I915_VMA_RELEASE_MAP); return err; } int intel_gsc_uc_fw_upload(struct intel_gsc_uc *gsc) { struct intel_gt *gt = gsc_uc_to_gt(gsc); struct intel_uc_fw *gsc_fw = &gsc->fw; int err; /* check current fw status */ if (intel_gsc_uc_fw_init_done(gsc)) { if (GEM_WARN_ON(!intel_uc_fw_is_loaded(gsc_fw))) intel_uc_fw_change_status(gsc_fw, INTEL_UC_FIRMWARE_TRANSFERRED); return -EEXIST; } if (!intel_uc_fw_is_loadable(gsc_fw)) return -ENOEXEC; /* FW blob is ok, so clean the status */ intel_uc_fw_sanitize(&gsc->fw); if (!gsc_is_in_reset(gt->uncore)) return -EIO; err = gsc_fw_load_prepare(gsc); if (err) goto fail; /* * GSC is only killed by an FLR, so we need to trigger one on unload to * make sure we stop it. This is because we assign a chunk of memory to * the GSC as part of the FW load , so we need to make sure it stops * using it when we release it to the system on driver unload. Note that * this is not a problem of the unload per-se, because the GSC will not * touch that memory unless there are requests for it coming from the * driver; therefore, no accesses will happen while i915 is not loaded, * but if we re-load the driver then the GSC might wake up and try to * access that old memory location again. * Given that an FLR is a very disruptive action (see the FLR function * for details), we want to do it as the last action before releasing * the access to the MMIO bar, which means we need to do it as part of * the primary uncore cleanup. * An alternative approach to the FLR would be to use a memory location * that survives driver unload, like e.g. stolen memory, and keep the * GSC loaded across reloads. However, this requires us to make sure we * preserve that memory location on unload and then determine and * reserve its offset on each subsequent load, which is not trivial, so * it is easier to just kill everything and start fresh. */ intel_uncore_set_flr_on_fini(>->i915->uncore); err = gsc_fw_load(gsc); if (err) goto fail; err = gsc_fw_wait(gt); if (err) goto fail; err = gsc_fw_query_compatibility_version(gsc); if (err) goto fail; /* we only support compatibility version 1.0 at the moment */ err = intel_uc_check_file_version(gsc_fw, NULL); if (err) goto fail; /* FW is not fully operational until we enable SW proxy */ intel_uc_fw_change_status(gsc_fw, INTEL_UC_FIRMWARE_TRANSFERRED); gt_info(gt, "Loaded GSC firmware %s (cv%u.%u, r%u.%u.%u.%u, svn %u)\n", gsc_fw->file_selected.path, gsc_fw->file_selected.ver.major, gsc_fw->file_selected.ver.minor, gsc->release.major, gsc->release.minor, gsc->release.patch, gsc->release.build, gsc->security_version); return 0; fail: return intel_uc_fw_mark_load_failed(gsc_fw, err); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1