Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Daniele Ceraolo Spurio | 1650 | 97.35% | 9 | 50.00% |
John Harrison | 16 | 0.94% | 1 | 5.56% |
Andi Shyti | 7 | 0.41% | 1 | 5.56% |
Michal Wajdeczko | 5 | 0.29% | 2 | 11.11% |
Tvrtko A. Ursulin | 5 | 0.29% | 1 | 5.56% |
Suraj Kandpal | 5 | 0.29% | 1 | 5.56% |
Dave Airlie | 3 | 0.18% | 1 | 5.56% |
Jani Nikula | 2 | 0.12% | 1 | 5.56% |
Arkadiusz Hiler | 2 | 0.12% | 1 | 5.56% |
Total | 1695 | 18 |
// SPDX-License-Identifier: MIT /* * Copyright © 2023 Intel Corporation */ #include <linux/component.h> #include <drm/i915_component.h> #include <drm/i915_gsc_proxy_mei_interface.h> #include "gt/intel_gt.h" #include "gt/intel_gt_print.h" #include "intel_gsc_proxy.h" #include "intel_gsc_uc.h" #include "intel_gsc_uc_heci_cmd_submit.h" #include "i915_drv.h" #include "i915_reg.h" /* * GSC proxy: * The GSC uC needs to communicate with the CSME to perform certain operations. * Since the GSC can't perform this communication directly on platforms where it * is integrated in GT, i915 needs to transfer the messages from GSC to CSME * and back. i915 must manually start the proxy flow after the GSC is loaded to * signal to GSC that we're ready to handle its messages and allow it to query * its init data from CSME; GSC will then trigger an HECI2 interrupt if it needs * to send messages to CSME again. * The proxy flow is as follow: * 1 - i915 submits a request to GSC asking for the message to CSME * 2 - GSC replies with the proxy header + payload for CSME * 3 - i915 sends the reply from GSC as-is to CSME via the mei proxy component * 4 - CSME replies with the proxy header + payload for GSC * 5 - i915 submits a request to GSC with the reply from CSME * 6 - GSC replies either with a new header + payload (same as step 2, so we * restart from there) or with an end message. */ /* * The component should load quite quickly in most cases, but it could take * a bit. Using a very big timeout just to cover the worst case scenario */ #define GSC_PROXY_INIT_TIMEOUT_MS 20000 /* the protocol supports up to 32K in each direction */ #define GSC_PROXY_BUFFER_SIZE SZ_32K #define GSC_PROXY_CHANNEL_SIZE (GSC_PROXY_BUFFER_SIZE * 2) #define GSC_PROXY_MAX_MSG_SIZE (GSC_PROXY_BUFFER_SIZE - sizeof(struct intel_gsc_mtl_header)) /* FW-defined proxy header */ struct intel_gsc_proxy_header { /* * hdr: * Bits 0-7: type of the proxy message (see enum intel_gsc_proxy_type) * Bits 8-15: rsvd * Bits 16-31: length in bytes of the payload following the proxy header */ u32 hdr; #define GSC_PROXY_TYPE GENMASK(7, 0) #define GSC_PROXY_PAYLOAD_LENGTH GENMASK(31, 16) u32 source; /* Source of the Proxy message */ u32 destination; /* Destination of the Proxy message */ #define GSC_PROXY_ADDRESSING_KMD 0x10000 #define GSC_PROXY_ADDRESSING_GSC 0x20000 #define GSC_PROXY_ADDRESSING_CSME 0x30000 u32 status; /* Command status */ } __packed; /* FW-defined proxy types */ enum intel_gsc_proxy_type { GSC_PROXY_MSG_TYPE_PROXY_INVALID = 0, GSC_PROXY_MSG_TYPE_PROXY_QUERY = 1, GSC_PROXY_MSG_TYPE_PROXY_PAYLOAD = 2, GSC_PROXY_MSG_TYPE_PROXY_END = 3, GSC_PROXY_MSG_TYPE_PROXY_NOTIFICATION = 4, }; struct gsc_proxy_msg { struct intel_gsc_mtl_header header; struct intel_gsc_proxy_header proxy_header; } __packed; static int proxy_send_to_csme(struct intel_gsc_uc *gsc) { struct intel_gt *gt = gsc_uc_to_gt(gsc); struct i915_gsc_proxy_component *comp = gsc->proxy.component; struct intel_gsc_mtl_header *hdr; void *in = gsc->proxy.to_csme; void *out = gsc->proxy.to_gsc; u32 in_size; int ret; /* CSME msg only includes the proxy */ hdr = in; in += sizeof(struct intel_gsc_mtl_header); out += sizeof(struct intel_gsc_mtl_header); in_size = hdr->message_size - sizeof(struct intel_gsc_mtl_header); /* the message must contain at least the proxy header */ if (in_size < sizeof(struct intel_gsc_proxy_header) || in_size > GSC_PROXY_MAX_MSG_SIZE) { gt_err(gt, "Invalid CSME message size: %u\n", in_size); return -EINVAL; } ret = comp->ops->send(comp->mei_dev, in, in_size); if (ret < 0) { gt_err(gt, "Failed to send CSME message\n"); return ret; } ret = comp->ops->recv(comp->mei_dev, out, GSC_PROXY_MAX_MSG_SIZE); if (ret < 0) { gt_err(gt, "Failed to receive CSME message\n"); return ret; } return ret; } static int proxy_send_to_gsc(struct intel_gsc_uc *gsc) { struct intel_gt *gt = gsc_uc_to_gt(gsc); u32 *marker = gsc->proxy.to_csme; /* first dw of the reply header */ u64 addr_in = i915_ggtt_offset(gsc->proxy.vma); u64 addr_out = addr_in + GSC_PROXY_BUFFER_SIZE; u32 size = ((struct gsc_proxy_msg *)gsc->proxy.to_gsc)->header.message_size; int err; /* the message must contain at least the gsc and proxy headers */ if (size < sizeof(struct gsc_proxy_msg) || size > GSC_PROXY_BUFFER_SIZE) { gt_err(gt, "Invalid GSC proxy message size: %u\n", size); return -EINVAL; } /* clear the message marker */ *marker = 0; /* make sure the marker write is flushed */ wmb(); /* send the request */ err = intel_gsc_uc_heci_cmd_submit_packet(gsc, addr_in, size, addr_out, GSC_PROXY_BUFFER_SIZE); if (!err) { /* wait for the reply to show up */ err = wait_for(*marker != 0, 300); if (err) gt_err(gt, "Failed to get a proxy reply from gsc\n"); } return err; } static int validate_proxy_header(struct intel_gsc_proxy_header *header, u32 source, u32 dest) { u32 type = FIELD_GET(GSC_PROXY_TYPE, header->hdr); u32 length = FIELD_GET(GSC_PROXY_PAYLOAD_LENGTH, header->hdr); int ret = 0; if (header->destination != dest || header->source != source) { ret = -ENOEXEC; goto fail; } switch (type) { case GSC_PROXY_MSG_TYPE_PROXY_PAYLOAD: if (length > 0) break; fallthrough; case GSC_PROXY_MSG_TYPE_PROXY_INVALID: ret = -EIO; goto fail; default: break; } fail: return ret; } static int proxy_query(struct intel_gsc_uc *gsc) { struct intel_gt *gt = gsc_uc_to_gt(gsc); struct gsc_proxy_msg *to_gsc = gsc->proxy.to_gsc; struct gsc_proxy_msg *to_csme = gsc->proxy.to_csme; int ret; intel_gsc_uc_heci_cmd_emit_mtl_header(&to_gsc->header, HECI_MEADDRESS_PROXY, sizeof(struct gsc_proxy_msg), 0); to_gsc->proxy_header.hdr = FIELD_PREP(GSC_PROXY_TYPE, GSC_PROXY_MSG_TYPE_PROXY_QUERY) | FIELD_PREP(GSC_PROXY_PAYLOAD_LENGTH, 0); to_gsc->proxy_header.source = GSC_PROXY_ADDRESSING_KMD; to_gsc->proxy_header.destination = GSC_PROXY_ADDRESSING_GSC; to_gsc->proxy_header.status = 0; while (1) { /* clear the GSC response header space */ memset(gsc->proxy.to_csme, 0, sizeof(struct gsc_proxy_msg)); /* send proxy message to GSC */ ret = proxy_send_to_gsc(gsc); if (ret) { gt_err(gt, "failed to send proxy message to GSC! %d\n", ret); goto proxy_error; } /* stop if this was the last message */ if (FIELD_GET(GSC_PROXY_TYPE, to_csme->proxy_header.hdr) == GSC_PROXY_MSG_TYPE_PROXY_END) break; /* make sure the GSC-to-CSME proxy header is sane */ ret = validate_proxy_header(&to_csme->proxy_header, GSC_PROXY_ADDRESSING_GSC, GSC_PROXY_ADDRESSING_CSME); if (ret) { gt_err(gt, "invalid GSC to CSME proxy header! %d\n", ret); goto proxy_error; } /* send the GSC message to the CSME */ ret = proxy_send_to_csme(gsc); if (ret < 0) { gt_err(gt, "failed to send proxy message to CSME! %d\n", ret); goto proxy_error; } /* update the GSC message size with the returned value from CSME */ to_gsc->header.message_size = ret + sizeof(struct intel_gsc_mtl_header); /* make sure the CSME-to-GSC proxy header is sane */ ret = validate_proxy_header(&to_gsc->proxy_header, GSC_PROXY_ADDRESSING_CSME, GSC_PROXY_ADDRESSING_GSC); if (ret) { gt_err(gt, "invalid CSME to GSC proxy header! %d\n", ret); goto proxy_error; } } proxy_error: return ret < 0 ? ret : 0; } int intel_gsc_proxy_request_handler(struct intel_gsc_uc *gsc) { struct intel_gt *gt = gsc_uc_to_gt(gsc); int err; if (!gsc->proxy.component_added) return -ENODEV; assert_rpm_wakelock_held(gt->uncore->rpm); /* when GSC is loaded, we can queue this before the component is bound */ err = wait_for(gsc->proxy.component, GSC_PROXY_INIT_TIMEOUT_MS); if (err) { gt_err(gt, "GSC proxy component didn't bind within the expected timeout\n"); return -EIO; } mutex_lock(&gsc->proxy.mutex); if (!gsc->proxy.component) { gt_err(gt, "GSC proxy worker called without the component being bound!\n"); err = -EIO; } else { /* * write the status bit to clear it and allow new proxy * interrupts to be generated while we handle the current * request, but be sure not to write the reset bit */ intel_uncore_rmw(gt->uncore, HECI_H_CSR(MTL_GSC_HECI2_BASE), HECI_H_CSR_RST, HECI_H_CSR_IS); err = proxy_query(gsc); } mutex_unlock(&gsc->proxy.mutex); return err; } void intel_gsc_proxy_irq_handler(struct intel_gsc_uc *gsc, u32 iir) { struct intel_gt *gt = gsc_uc_to_gt(gsc); if (unlikely(!iir)) return; lockdep_assert_held(gt->irq_lock); if (!gsc->proxy.component) { gt_err(gt, "GSC proxy irq received without the component being bound!\n"); return; } gsc->gsc_work_actions |= GSC_ACTION_SW_PROXY; queue_work(gsc->wq, &gsc->work); } static int i915_gsc_proxy_component_bind(struct device *i915_kdev, struct device *mei_kdev, void *data) { struct drm_i915_private *i915 = kdev_to_i915(i915_kdev); struct intel_gt *gt = i915->media_gt; struct intel_gsc_uc *gsc = >->uc.gsc; intel_wakeref_t wakeref; /* enable HECI2 IRQs */ with_intel_runtime_pm(&i915->runtime_pm, wakeref) intel_uncore_rmw(gt->uncore, HECI_H_CSR(MTL_GSC_HECI2_BASE), HECI_H_CSR_RST, HECI_H_CSR_IE); mutex_lock(&gsc->proxy.mutex); gsc->proxy.component = data; gsc->proxy.component->mei_dev = mei_kdev; mutex_unlock(&gsc->proxy.mutex); return 0; } static void i915_gsc_proxy_component_unbind(struct device *i915_kdev, struct device *mei_kdev, void *data) { struct drm_i915_private *i915 = kdev_to_i915(i915_kdev); struct intel_gt *gt = i915->media_gt; struct intel_gsc_uc *gsc = >->uc.gsc; intel_wakeref_t wakeref; mutex_lock(&gsc->proxy.mutex); gsc->proxy.component = NULL; mutex_unlock(&gsc->proxy.mutex); /* disable HECI2 IRQs */ with_intel_runtime_pm(&i915->runtime_pm, wakeref) intel_uncore_rmw(gt->uncore, HECI_H_CSR(MTL_GSC_HECI2_BASE), HECI_H_CSR_IE | HECI_H_CSR_RST, 0); } static const struct component_ops i915_gsc_proxy_component_ops = { .bind = i915_gsc_proxy_component_bind, .unbind = i915_gsc_proxy_component_unbind, }; static int proxy_channel_alloc(struct intel_gsc_uc *gsc) { struct intel_gt *gt = gsc_uc_to_gt(gsc); struct i915_vma *vma; void *vaddr; int err; err = intel_guc_allocate_and_map_vma(>->uc.guc, GSC_PROXY_CHANNEL_SIZE, &vma, &vaddr); if (err) return err; gsc->proxy.vma = vma; gsc->proxy.to_gsc = vaddr; gsc->proxy.to_csme = vaddr + GSC_PROXY_BUFFER_SIZE; return 0; } static void proxy_channel_free(struct intel_gsc_uc *gsc) { if (!gsc->proxy.vma) return; gsc->proxy.to_gsc = NULL; gsc->proxy.to_csme = NULL; i915_vma_unpin_and_release(&gsc->proxy.vma, I915_VMA_RELEASE_MAP); } void intel_gsc_proxy_fini(struct intel_gsc_uc *gsc) { struct intel_gt *gt = gsc_uc_to_gt(gsc); struct drm_i915_private *i915 = gt->i915; if (fetch_and_zero(&gsc->proxy.component_added)) component_del(i915->drm.dev, &i915_gsc_proxy_component_ops); proxy_channel_free(gsc); } int intel_gsc_proxy_init(struct intel_gsc_uc *gsc) { int err; struct intel_gt *gt = gsc_uc_to_gt(gsc); struct drm_i915_private *i915 = gt->i915; mutex_init(&gsc->proxy.mutex); if (!IS_ENABLED(CONFIG_INTEL_MEI_GSC_PROXY)) { gt_info(gt, "can't init GSC proxy due to missing mei component\n"); return -ENODEV; } err = proxy_channel_alloc(gsc); if (err) return err; err = component_add_typed(i915->drm.dev, &i915_gsc_proxy_component_ops, I915_COMPONENT_GSC_PROXY); if (err < 0) { gt_err(gt, "Failed to add GSC_PROXY component (%d)\n", err); goto out_free; } gsc->proxy.component_added = true; return 0; out_free: proxy_channel_free(gsc); return err; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1