Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Jani Nikula | 2029 | 34.73% | 26 | 9.49% |
Ville Syrjälä | 1290 | 22.08% | 59 | 21.53% |
Paulo Zanoni | 587 | 10.05% | 18 | 6.57% |
Chris Wilson | 402 | 6.88% | 19 | 6.93% |
Daniel Vetter | 272 | 4.66% | 29 | 10.58% |
Imre Deak | 122 | 2.09% | 10 | 3.65% |
Mika Kuoppala | 113 | 1.93% | 4 | 1.46% |
Jesse Barnes | 105 | 1.80% | 7 | 2.55% |
Tvrtko A. Ursulin | 100 | 1.71% | 15 | 5.47% |
Andi Shyti | 86 | 1.47% | 4 | 1.46% |
Ben Widawsky | 82 | 1.40% | 5 | 1.82% |
Mika Kahola | 61 | 1.04% | 1 | 0.36% |
Lucas De Marchi | 56 | 0.96% | 5 | 1.82% |
Thomas Gleixner | 52 | 0.89% | 1 | 0.36% |
Joonas Lahtinen | 42 | 0.72% | 1 | 0.36% |
Wambui Karuga | 41 | 0.70% | 1 | 0.36% |
Dhinakaran Pandiyan | 34 | 0.58% | 3 | 1.09% |
Adam Jackson | 34 | 0.58% | 2 | 0.73% |
Daniele Ceraolo Spurio | 33 | 0.56% | 8 | 2.92% |
Michał Winiarski | 32 | 0.55% | 1 | 0.36% |
Dave Airlie | 30 | 0.51% | 4 | 1.46% |
Thomas Zimmermann | 19 | 0.33% | 2 | 0.73% |
Egbert Eich | 18 | 0.31% | 4 | 1.46% |
Sagar Arun Kamble | 17 | 0.29% | 2 | 0.73% |
Keith Packard | 17 | 0.29% | 4 | 1.46% |
Shashank Sharma | 15 | 0.26% | 1 | 0.36% |
Deepak S | 14 | 0.24% | 3 | 1.09% |
Oscar Mateo | 13 | 0.22% | 3 | 1.09% |
Zhenyu Wang | 11 | 0.19% | 1 | 0.36% |
Shuang He | 10 | 0.17% | 1 | 0.36% |
Gustavo Sousa | 10 | 0.17% | 1 | 0.36% |
Matt Roper | 10 | 0.17% | 3 | 1.09% |
Andrzej Hajda | 9 | 0.15% | 1 | 0.36% |
Shubhangi Shrivastava | 9 | 0.15% | 1 | 0.36% |
Tejas Upadhyay | 8 | 0.14% | 1 | 0.36% |
Damien Lespiau | 7 | 0.12% | 3 | 1.09% |
Joe Perches | 7 | 0.12% | 1 | 0.36% |
Anusha Srivatsa | 6 | 0.10% | 1 | 0.36% |
Rodrigo Vivi | 6 | 0.10% | 3 | 1.09% |
Sujaritha Sundaresan | 5 | 0.09% | 1 | 0.36% |
Pankaj Bharadiya | 5 | 0.09% | 1 | 0.36% |
Eric Anholt | 3 | 0.05% | 1 | 0.36% |
Jerome Anand | 3 | 0.05% | 1 | 0.36% |
Xiong Zhang | 3 | 0.05% | 1 | 0.36% |
Zou Nan hai | 3 | 0.05% | 1 | 0.36% |
Akash Goel | 2 | 0.03% | 1 | 0.36% |
Anshuman Gupta | 2 | 0.03% | 1 | 0.36% |
Ben Gamari | 2 | 0.03% | 1 | 0.36% |
Vandita Kulkarni | 1 | 0.02% | 1 | 0.36% |
Bo Liu | 1 | 0.02% | 1 | 0.36% |
José Roberto de Souza | 1 | 0.02% | 1 | 0.36% |
Rafael Barbalho | 1 | 0.02% | 1 | 0.36% |
Sonika Jindal | 1 | 0.02% | 1 | 0.36% |
Xiang, Haihao | 1 | 0.02% | 1 | 0.36% |
Total | 5843 | 274 |
/* i915_irq.c -- IRQ support for the I915 -*- linux-c -*- */ /* * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/slab.h> #include <linux/sysrq.h> #include <drm/drm_drv.h> #include "display/intel_display_irq.h" #include "display/intel_display_types.h" #include "display/intel_hotplug.h" #include "display/intel_hotplug_irq.h" #include "display/intel_lpe_audio.h" #include "display/intel_psr_regs.h" #include "gt/intel_breadcrumbs.h" #include "gt/intel_gt.h" #include "gt/intel_gt_irq.h" #include "gt/intel_gt_pm_irq.h" #include "gt/intel_gt_regs.h" #include "gt/intel_rps.h" #include "i915_driver.h" #include "i915_drv.h" #include "i915_irq.h" #include "i915_reg.h" /** * DOC: interrupt handling * * These functions provide the basic support for enabling and disabling the * interrupt handling support. There's a lot more functionality in i915_irq.c * and related files, but that will be described in separate chapters. */ /* * Interrupt statistic for PMU. Increments the counter only if the * interrupt originated from the GPU so interrupts from a device which * shares the interrupt line are not accounted. */ static inline void pmu_irq_stats(struct drm_i915_private *i915, irqreturn_t res) { if (unlikely(res != IRQ_HANDLED)) return; /* * A clever compiler translates that into INC. A not so clever one * should at least prevent store tearing. */ WRITE_ONCE(i915->pmu.irq_count, i915->pmu.irq_count + 1); } void gen3_irq_reset(struct intel_uncore *uncore, i915_reg_t imr, i915_reg_t iir, i915_reg_t ier) { intel_uncore_write(uncore, imr, 0xffffffff); intel_uncore_posting_read(uncore, imr); intel_uncore_write(uncore, ier, 0); /* IIR can theoretically queue up two events. Be paranoid. */ intel_uncore_write(uncore, iir, 0xffffffff); intel_uncore_posting_read(uncore, iir); intel_uncore_write(uncore, iir, 0xffffffff); intel_uncore_posting_read(uncore, iir); } static void gen2_irq_reset(struct intel_uncore *uncore) { intel_uncore_write16(uncore, GEN2_IMR, 0xffff); intel_uncore_posting_read16(uncore, GEN2_IMR); intel_uncore_write16(uncore, GEN2_IER, 0); /* IIR can theoretically queue up two events. Be paranoid. */ intel_uncore_write16(uncore, GEN2_IIR, 0xffff); intel_uncore_posting_read16(uncore, GEN2_IIR); intel_uncore_write16(uncore, GEN2_IIR, 0xffff); intel_uncore_posting_read16(uncore, GEN2_IIR); } /* * We should clear IMR at preinstall/uninstall, and just check at postinstall. */ void gen3_assert_iir_is_zero(struct intel_uncore *uncore, i915_reg_t reg) { u32 val = intel_uncore_read(uncore, reg); if (val == 0) return; drm_WARN(&uncore->i915->drm, 1, "Interrupt register 0x%x is not zero: 0x%08x\n", i915_mmio_reg_offset(reg), val); intel_uncore_write(uncore, reg, 0xffffffff); intel_uncore_posting_read(uncore, reg); intel_uncore_write(uncore, reg, 0xffffffff); intel_uncore_posting_read(uncore, reg); } static void gen2_assert_iir_is_zero(struct intel_uncore *uncore) { u16 val = intel_uncore_read16(uncore, GEN2_IIR); if (val == 0) return; drm_WARN(&uncore->i915->drm, 1, "Interrupt register 0x%x is not zero: 0x%08x\n", i915_mmio_reg_offset(GEN2_IIR), val); intel_uncore_write16(uncore, GEN2_IIR, 0xffff); intel_uncore_posting_read16(uncore, GEN2_IIR); intel_uncore_write16(uncore, GEN2_IIR, 0xffff); intel_uncore_posting_read16(uncore, GEN2_IIR); } void gen3_irq_init(struct intel_uncore *uncore, i915_reg_t imr, u32 imr_val, i915_reg_t ier, u32 ier_val, i915_reg_t iir) { gen3_assert_iir_is_zero(uncore, iir); intel_uncore_write(uncore, ier, ier_val); intel_uncore_write(uncore, imr, imr_val); intel_uncore_posting_read(uncore, imr); } static void gen2_irq_init(struct intel_uncore *uncore, u32 imr_val, u32 ier_val) { gen2_assert_iir_is_zero(uncore); intel_uncore_write16(uncore, GEN2_IER, ier_val); intel_uncore_write16(uncore, GEN2_IMR, imr_val); intel_uncore_posting_read16(uncore, GEN2_IMR); } /** * ivb_parity_work - Workqueue called when a parity error interrupt * occurred. * @work: workqueue struct * * Doesn't actually do anything except notify userspace. As a consequence of * this event, userspace should try to remap the bad rows since statistically * it is likely the same row is more likely to go bad again. */ static void ivb_parity_work(struct work_struct *work) { struct drm_i915_private *dev_priv = container_of(work, typeof(*dev_priv), l3_parity.error_work); struct intel_gt *gt = to_gt(dev_priv); u32 error_status, row, bank, subbank; char *parity_event[6]; u32 misccpctl; u8 slice = 0; /* We must turn off DOP level clock gating to access the L3 registers. * In order to prevent a get/put style interface, acquire struct mutex * any time we access those registers. */ mutex_lock(&dev_priv->drm.struct_mutex); /* If we've screwed up tracking, just let the interrupt fire again */ if (drm_WARN_ON(&dev_priv->drm, !dev_priv->l3_parity.which_slice)) goto out; misccpctl = intel_uncore_rmw(&dev_priv->uncore, GEN7_MISCCPCTL, GEN7_DOP_CLOCK_GATE_ENABLE, 0); intel_uncore_posting_read(&dev_priv->uncore, GEN7_MISCCPCTL); while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) { i915_reg_t reg; slice--; if (drm_WARN_ON_ONCE(&dev_priv->drm, slice >= NUM_L3_SLICES(dev_priv))) break; dev_priv->l3_parity.which_slice &= ~(1<<slice); reg = GEN7_L3CDERRST1(slice); error_status = intel_uncore_read(&dev_priv->uncore, reg); row = GEN7_PARITY_ERROR_ROW(error_status); bank = GEN7_PARITY_ERROR_BANK(error_status); subbank = GEN7_PARITY_ERROR_SUBBANK(error_status); intel_uncore_write(&dev_priv->uncore, reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE); intel_uncore_posting_read(&dev_priv->uncore, reg); parity_event[0] = I915_L3_PARITY_UEVENT "=1"; parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row); parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank); parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank); parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice); parity_event[5] = NULL; kobject_uevent_env(&dev_priv->drm.primary->kdev->kobj, KOBJ_CHANGE, parity_event); drm_dbg(&dev_priv->drm, "Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n", slice, row, bank, subbank); kfree(parity_event[4]); kfree(parity_event[3]); kfree(parity_event[2]); kfree(parity_event[1]); } intel_uncore_write(&dev_priv->uncore, GEN7_MISCCPCTL, misccpctl); out: drm_WARN_ON(&dev_priv->drm, dev_priv->l3_parity.which_slice); spin_lock_irq(gt->irq_lock); gen5_gt_enable_irq(gt, GT_PARITY_ERROR(dev_priv)); spin_unlock_irq(gt->irq_lock); mutex_unlock(&dev_priv->drm.struct_mutex); } static irqreturn_t valleyview_irq_handler(int irq, void *arg) { struct drm_i915_private *dev_priv = arg; irqreturn_t ret = IRQ_NONE; if (!intel_irqs_enabled(dev_priv)) return IRQ_NONE; /* IRQs are synced during runtime_suspend, we don't require a wakeref */ disable_rpm_wakeref_asserts(&dev_priv->runtime_pm); do { u32 iir, gt_iir, pm_iir; u32 pipe_stats[I915_MAX_PIPES] = {}; u32 hotplug_status = 0; u32 ier = 0; gt_iir = intel_uncore_read(&dev_priv->uncore, GTIIR); pm_iir = intel_uncore_read(&dev_priv->uncore, GEN6_PMIIR); iir = intel_uncore_read(&dev_priv->uncore, VLV_IIR); if (gt_iir == 0 && pm_iir == 0 && iir == 0) break; ret = IRQ_HANDLED; /* * Theory on interrupt generation, based on empirical evidence: * * x = ((VLV_IIR & VLV_IER) || * (((GT_IIR & GT_IER) || (GEN6_PMIIR & GEN6_PMIER)) && * (VLV_MASTER_IER & MASTER_INTERRUPT_ENABLE))); * * A CPU interrupt will only be raised when 'x' has a 0->1 edge. * Hence we clear MASTER_INTERRUPT_ENABLE and VLV_IER to * guarantee the CPU interrupt will be raised again even if we * don't end up clearing all the VLV_IIR, GT_IIR, GEN6_PMIIR * bits this time around. */ intel_uncore_write(&dev_priv->uncore, VLV_MASTER_IER, 0); ier = intel_uncore_rmw(&dev_priv->uncore, VLV_IER, ~0, 0); if (gt_iir) intel_uncore_write(&dev_priv->uncore, GTIIR, gt_iir); if (pm_iir) intel_uncore_write(&dev_priv->uncore, GEN6_PMIIR, pm_iir); if (iir & I915_DISPLAY_PORT_INTERRUPT) hotplug_status = i9xx_hpd_irq_ack(dev_priv); /* Call regardless, as some status bits might not be * signalled in iir */ i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats); if (iir & (I915_LPE_PIPE_A_INTERRUPT | I915_LPE_PIPE_B_INTERRUPT)) intel_lpe_audio_irq_handler(dev_priv); /* * VLV_IIR is single buffered, and reflects the level * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last. */ if (iir) intel_uncore_write(&dev_priv->uncore, VLV_IIR, iir); intel_uncore_write(&dev_priv->uncore, VLV_IER, ier); intel_uncore_write(&dev_priv->uncore, VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE); if (gt_iir) gen6_gt_irq_handler(to_gt(dev_priv), gt_iir); if (pm_iir) gen6_rps_irq_handler(&to_gt(dev_priv)->rps, pm_iir); if (hotplug_status) i9xx_hpd_irq_handler(dev_priv, hotplug_status); valleyview_pipestat_irq_handler(dev_priv, pipe_stats); } while (0); pmu_irq_stats(dev_priv, ret); enable_rpm_wakeref_asserts(&dev_priv->runtime_pm); return ret; } static irqreturn_t cherryview_irq_handler(int irq, void *arg) { struct drm_i915_private *dev_priv = arg; irqreturn_t ret = IRQ_NONE; if (!intel_irqs_enabled(dev_priv)) return IRQ_NONE; /* IRQs are synced during runtime_suspend, we don't require a wakeref */ disable_rpm_wakeref_asserts(&dev_priv->runtime_pm); do { u32 master_ctl, iir; u32 pipe_stats[I915_MAX_PIPES] = {}; u32 hotplug_status = 0; u32 ier = 0; master_ctl = intel_uncore_read(&dev_priv->uncore, GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL; iir = intel_uncore_read(&dev_priv->uncore, VLV_IIR); if (master_ctl == 0 && iir == 0) break; ret = IRQ_HANDLED; /* * Theory on interrupt generation, based on empirical evidence: * * x = ((VLV_IIR & VLV_IER) || * ((GEN8_MASTER_IRQ & ~GEN8_MASTER_IRQ_CONTROL) && * (GEN8_MASTER_IRQ & GEN8_MASTER_IRQ_CONTROL))); * * A CPU interrupt will only be raised when 'x' has a 0->1 edge. * Hence we clear GEN8_MASTER_IRQ_CONTROL and VLV_IER to * guarantee the CPU interrupt will be raised again even if we * don't end up clearing all the VLV_IIR and GEN8_MASTER_IRQ_CONTROL * bits this time around. */ intel_uncore_write(&dev_priv->uncore, GEN8_MASTER_IRQ, 0); ier = intel_uncore_rmw(&dev_priv->uncore, VLV_IER, ~0, 0); gen8_gt_irq_handler(to_gt(dev_priv), master_ctl); if (iir & I915_DISPLAY_PORT_INTERRUPT) hotplug_status = i9xx_hpd_irq_ack(dev_priv); /* Call regardless, as some status bits might not be * signalled in iir */ i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats); if (iir & (I915_LPE_PIPE_A_INTERRUPT | I915_LPE_PIPE_B_INTERRUPT | I915_LPE_PIPE_C_INTERRUPT)) intel_lpe_audio_irq_handler(dev_priv); /* * VLV_IIR is single buffered, and reflects the level * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last. */ if (iir) intel_uncore_write(&dev_priv->uncore, VLV_IIR, iir); intel_uncore_write(&dev_priv->uncore, VLV_IER, ier); intel_uncore_write(&dev_priv->uncore, GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL); if (hotplug_status) i9xx_hpd_irq_handler(dev_priv, hotplug_status); valleyview_pipestat_irq_handler(dev_priv, pipe_stats); } while (0); pmu_irq_stats(dev_priv, ret); enable_rpm_wakeref_asserts(&dev_priv->runtime_pm); return ret; } /* * To handle irqs with the minimum potential races with fresh interrupts, we: * 1 - Disable Master Interrupt Control. * 2 - Find the source(s) of the interrupt. * 3 - Clear the Interrupt Identity bits (IIR). * 4 - Process the interrupt(s) that had bits set in the IIRs. * 5 - Re-enable Master Interrupt Control. */ static irqreturn_t ilk_irq_handler(int irq, void *arg) { struct drm_i915_private *i915 = arg; void __iomem * const regs = intel_uncore_regs(&i915->uncore); u32 de_iir, gt_iir, de_ier, sde_ier = 0; irqreturn_t ret = IRQ_NONE; if (unlikely(!intel_irqs_enabled(i915))) return IRQ_NONE; /* IRQs are synced during runtime_suspend, we don't require a wakeref */ disable_rpm_wakeref_asserts(&i915->runtime_pm); /* disable master interrupt before clearing iir */ de_ier = raw_reg_read(regs, DEIER); raw_reg_write(regs, DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL); /* Disable south interrupts. We'll only write to SDEIIR once, so further * interrupts will will be stored on its back queue, and then we'll be * able to process them after we restore SDEIER (as soon as we restore * it, we'll get an interrupt if SDEIIR still has something to process * due to its back queue). */ if (!HAS_PCH_NOP(i915)) { sde_ier = raw_reg_read(regs, SDEIER); raw_reg_write(regs, SDEIER, 0); } /* Find, clear, then process each source of interrupt */ gt_iir = raw_reg_read(regs, GTIIR); if (gt_iir) { raw_reg_write(regs, GTIIR, gt_iir); if (GRAPHICS_VER(i915) >= 6) gen6_gt_irq_handler(to_gt(i915), gt_iir); else gen5_gt_irq_handler(to_gt(i915), gt_iir); ret = IRQ_HANDLED; } de_iir = raw_reg_read(regs, DEIIR); if (de_iir) { raw_reg_write(regs, DEIIR, de_iir); if (DISPLAY_VER(i915) >= 7) ivb_display_irq_handler(i915, de_iir); else ilk_display_irq_handler(i915, de_iir); ret = IRQ_HANDLED; } if (GRAPHICS_VER(i915) >= 6) { u32 pm_iir = raw_reg_read(regs, GEN6_PMIIR); if (pm_iir) { raw_reg_write(regs, GEN6_PMIIR, pm_iir); gen6_rps_irq_handler(&to_gt(i915)->rps, pm_iir); ret = IRQ_HANDLED; } } raw_reg_write(regs, DEIER, de_ier); if (sde_ier) raw_reg_write(regs, SDEIER, sde_ier); pmu_irq_stats(i915, ret); /* IRQs are synced during runtime_suspend, we don't require a wakeref */ enable_rpm_wakeref_asserts(&i915->runtime_pm); return ret; } static inline u32 gen8_master_intr_disable(void __iomem * const regs) { raw_reg_write(regs, GEN8_MASTER_IRQ, 0); /* * Now with master disabled, get a sample of level indications * for this interrupt. Indications will be cleared on related acks. * New indications can and will light up during processing, * and will generate new interrupt after enabling master. */ return raw_reg_read(regs, GEN8_MASTER_IRQ); } static inline void gen8_master_intr_enable(void __iomem * const regs) { raw_reg_write(regs, GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL); } static irqreturn_t gen8_irq_handler(int irq, void *arg) { struct drm_i915_private *dev_priv = arg; void __iomem * const regs = intel_uncore_regs(&dev_priv->uncore); u32 master_ctl; if (!intel_irqs_enabled(dev_priv)) return IRQ_NONE; master_ctl = gen8_master_intr_disable(regs); if (!master_ctl) { gen8_master_intr_enable(regs); return IRQ_NONE; } /* Find, queue (onto bottom-halves), then clear each source */ gen8_gt_irq_handler(to_gt(dev_priv), master_ctl); /* IRQs are synced during runtime_suspend, we don't require a wakeref */ if (master_ctl & ~GEN8_GT_IRQS) { disable_rpm_wakeref_asserts(&dev_priv->runtime_pm); gen8_de_irq_handler(dev_priv, master_ctl); enable_rpm_wakeref_asserts(&dev_priv->runtime_pm); } gen8_master_intr_enable(regs); pmu_irq_stats(dev_priv, IRQ_HANDLED); return IRQ_HANDLED; } static inline u32 gen11_master_intr_disable(void __iomem * const regs) { raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, 0); /* * Now with master disabled, get a sample of level indications * for this interrupt. Indications will be cleared on related acks. * New indications can and will light up during processing, * and will generate new interrupt after enabling master. */ return raw_reg_read(regs, GEN11_GFX_MSTR_IRQ); } static inline void gen11_master_intr_enable(void __iomem * const regs) { raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, GEN11_MASTER_IRQ); } static irqreturn_t gen11_irq_handler(int irq, void *arg) { struct drm_i915_private *i915 = arg; void __iomem * const regs = intel_uncore_regs(&i915->uncore); struct intel_gt *gt = to_gt(i915); u32 master_ctl; u32 gu_misc_iir; if (!intel_irqs_enabled(i915)) return IRQ_NONE; master_ctl = gen11_master_intr_disable(regs); if (!master_ctl) { gen11_master_intr_enable(regs); return IRQ_NONE; } /* Find, queue (onto bottom-halves), then clear each source */ gen11_gt_irq_handler(gt, master_ctl); /* IRQs are synced during runtime_suspend, we don't require a wakeref */ if (master_ctl & GEN11_DISPLAY_IRQ) gen11_display_irq_handler(i915); gu_misc_iir = gen11_gu_misc_irq_ack(i915, master_ctl); gen11_master_intr_enable(regs); gen11_gu_misc_irq_handler(i915, gu_misc_iir); pmu_irq_stats(i915, IRQ_HANDLED); return IRQ_HANDLED; } static inline u32 dg1_master_intr_disable(void __iomem * const regs) { u32 val; /* First disable interrupts */ raw_reg_write(regs, DG1_MSTR_TILE_INTR, 0); /* Get the indication levels and ack the master unit */ val = raw_reg_read(regs, DG1_MSTR_TILE_INTR); if (unlikely(!val)) return 0; raw_reg_write(regs, DG1_MSTR_TILE_INTR, val); return val; } static inline void dg1_master_intr_enable(void __iomem * const regs) { raw_reg_write(regs, DG1_MSTR_TILE_INTR, DG1_MSTR_IRQ); } static irqreturn_t dg1_irq_handler(int irq, void *arg) { struct drm_i915_private * const i915 = arg; struct intel_gt *gt = to_gt(i915); void __iomem * const regs = intel_uncore_regs(gt->uncore); u32 master_tile_ctl, master_ctl; u32 gu_misc_iir; if (!intel_irqs_enabled(i915)) return IRQ_NONE; master_tile_ctl = dg1_master_intr_disable(regs); if (!master_tile_ctl) { dg1_master_intr_enable(regs); return IRQ_NONE; } /* FIXME: we only support tile 0 for now. */ if (master_tile_ctl & DG1_MSTR_TILE(0)) { master_ctl = raw_reg_read(regs, GEN11_GFX_MSTR_IRQ); raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, master_ctl); } else { drm_err(&i915->drm, "Tile not supported: 0x%08x\n", master_tile_ctl); dg1_master_intr_enable(regs); return IRQ_NONE; } gen11_gt_irq_handler(gt, master_ctl); if (master_ctl & GEN11_DISPLAY_IRQ) gen11_display_irq_handler(i915); gu_misc_iir = gen11_gu_misc_irq_ack(i915, master_ctl); dg1_master_intr_enable(regs); gen11_gu_misc_irq_handler(i915, gu_misc_iir); pmu_irq_stats(i915, IRQ_HANDLED); return IRQ_HANDLED; } static void ibx_irq_reset(struct drm_i915_private *dev_priv) { struct intel_uncore *uncore = &dev_priv->uncore; if (HAS_PCH_NOP(dev_priv)) return; GEN3_IRQ_RESET(uncore, SDE); if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv)) intel_uncore_write(&dev_priv->uncore, SERR_INT, 0xffffffff); } /* drm_dma.h hooks */ static void ilk_irq_reset(struct drm_i915_private *dev_priv) { struct intel_uncore *uncore = &dev_priv->uncore; GEN3_IRQ_RESET(uncore, DE); dev_priv->irq_mask = ~0u; if (GRAPHICS_VER(dev_priv) == 7) intel_uncore_write(uncore, GEN7_ERR_INT, 0xffffffff); if (IS_HASWELL(dev_priv)) { intel_uncore_write(uncore, EDP_PSR_IMR, 0xffffffff); intel_uncore_write(uncore, EDP_PSR_IIR, 0xffffffff); } gen5_gt_irq_reset(to_gt(dev_priv)); ibx_irq_reset(dev_priv); } static void valleyview_irq_reset(struct drm_i915_private *dev_priv) { intel_uncore_write(&dev_priv->uncore, VLV_MASTER_IER, 0); intel_uncore_posting_read(&dev_priv->uncore, VLV_MASTER_IER); gen5_gt_irq_reset(to_gt(dev_priv)); spin_lock_irq(&dev_priv->irq_lock); if (dev_priv->display_irqs_enabled) vlv_display_irq_reset(dev_priv); spin_unlock_irq(&dev_priv->irq_lock); } static void gen8_irq_reset(struct drm_i915_private *dev_priv) { struct intel_uncore *uncore = &dev_priv->uncore; gen8_master_intr_disable(intel_uncore_regs(uncore)); gen8_gt_irq_reset(to_gt(dev_priv)); gen8_display_irq_reset(dev_priv); GEN3_IRQ_RESET(uncore, GEN8_PCU_); if (HAS_PCH_SPLIT(dev_priv)) ibx_irq_reset(dev_priv); } static void gen11_irq_reset(struct drm_i915_private *dev_priv) { struct intel_gt *gt = to_gt(dev_priv); struct intel_uncore *uncore = gt->uncore; gen11_master_intr_disable(intel_uncore_regs(&dev_priv->uncore)); gen11_gt_irq_reset(gt); gen11_display_irq_reset(dev_priv); GEN3_IRQ_RESET(uncore, GEN11_GU_MISC_); GEN3_IRQ_RESET(uncore, GEN8_PCU_); } static void dg1_irq_reset(struct drm_i915_private *dev_priv) { struct intel_uncore *uncore = &dev_priv->uncore; struct intel_gt *gt; unsigned int i; dg1_master_intr_disable(intel_uncore_regs(&dev_priv->uncore)); for_each_gt(gt, dev_priv, i) gen11_gt_irq_reset(gt); gen11_display_irq_reset(dev_priv); GEN3_IRQ_RESET(uncore, GEN11_GU_MISC_); GEN3_IRQ_RESET(uncore, GEN8_PCU_); intel_uncore_write(uncore, GEN11_GFX_MSTR_IRQ, ~0); } static void cherryview_irq_reset(struct drm_i915_private *dev_priv) { struct intel_uncore *uncore = &dev_priv->uncore; intel_uncore_write(uncore, GEN8_MASTER_IRQ, 0); intel_uncore_posting_read(&dev_priv->uncore, GEN8_MASTER_IRQ); gen8_gt_irq_reset(to_gt(dev_priv)); GEN3_IRQ_RESET(uncore, GEN8_PCU_); spin_lock_irq(&dev_priv->irq_lock); if (dev_priv->display_irqs_enabled) vlv_display_irq_reset(dev_priv); spin_unlock_irq(&dev_priv->irq_lock); } static void ilk_irq_postinstall(struct drm_i915_private *dev_priv) { gen5_gt_irq_postinstall(to_gt(dev_priv)); ilk_de_irq_postinstall(dev_priv); } static void valleyview_irq_postinstall(struct drm_i915_private *dev_priv) { gen5_gt_irq_postinstall(to_gt(dev_priv)); spin_lock_irq(&dev_priv->irq_lock); if (dev_priv->display_irqs_enabled) vlv_display_irq_postinstall(dev_priv); spin_unlock_irq(&dev_priv->irq_lock); intel_uncore_write(&dev_priv->uncore, VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE); intel_uncore_posting_read(&dev_priv->uncore, VLV_MASTER_IER); } static void gen8_irq_postinstall(struct drm_i915_private *dev_priv) { gen8_gt_irq_postinstall(to_gt(dev_priv)); gen8_de_irq_postinstall(dev_priv); gen8_master_intr_enable(intel_uncore_regs(&dev_priv->uncore)); } static void gen11_irq_postinstall(struct drm_i915_private *dev_priv) { struct intel_gt *gt = to_gt(dev_priv); struct intel_uncore *uncore = gt->uncore; u32 gu_misc_masked = GEN11_GU_MISC_GSE; gen11_gt_irq_postinstall(gt); gen11_de_irq_postinstall(dev_priv); GEN3_IRQ_INIT(uncore, GEN11_GU_MISC_, ~gu_misc_masked, gu_misc_masked); gen11_master_intr_enable(intel_uncore_regs(uncore)); intel_uncore_posting_read(&dev_priv->uncore, GEN11_GFX_MSTR_IRQ); } static void dg1_irq_postinstall(struct drm_i915_private *dev_priv) { struct intel_uncore *uncore = &dev_priv->uncore; u32 gu_misc_masked = GEN11_GU_MISC_GSE; struct intel_gt *gt; unsigned int i; for_each_gt(gt, dev_priv, i) gen11_gt_irq_postinstall(gt); GEN3_IRQ_INIT(uncore, GEN11_GU_MISC_, ~gu_misc_masked, gu_misc_masked); dg1_de_irq_postinstall(dev_priv); dg1_master_intr_enable(intel_uncore_regs(uncore)); intel_uncore_posting_read(uncore, DG1_MSTR_TILE_INTR); } static void cherryview_irq_postinstall(struct drm_i915_private *dev_priv) { gen8_gt_irq_postinstall(to_gt(dev_priv)); spin_lock_irq(&dev_priv->irq_lock); if (dev_priv->display_irqs_enabled) vlv_display_irq_postinstall(dev_priv); spin_unlock_irq(&dev_priv->irq_lock); intel_uncore_write(&dev_priv->uncore, GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL); intel_uncore_posting_read(&dev_priv->uncore, GEN8_MASTER_IRQ); } static void i8xx_irq_reset(struct drm_i915_private *dev_priv) { struct intel_uncore *uncore = &dev_priv->uncore; i9xx_pipestat_irq_reset(dev_priv); gen2_irq_reset(uncore); dev_priv->irq_mask = ~0u; } static u32 i9xx_error_mask(struct drm_i915_private *i915) { /* * On gen2/3 FBC generates (seemingly spurious) * display INVALID_GTT/INVALID_GTT_PTE table errors. * * Also gen3 bspec has this to say: * "DISPA_INVALID_GTT_PTE " [DevNapa] : Reserved. This bit does not reflect the page " table error for the display plane A." * * Unfortunately we can't mask off individual PGTBL_ER bits, * so we just have to mask off all page table errors via EMR. */ if (HAS_FBC(i915)) return ~I915_ERROR_MEMORY_REFRESH; else return ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH); } static void i8xx_irq_postinstall(struct drm_i915_private *dev_priv) { struct intel_uncore *uncore = &dev_priv->uncore; u16 enable_mask; intel_uncore_write16(uncore, EMR, i9xx_error_mask(dev_priv)); /* Unmask the interrupts that we always want on. */ dev_priv->irq_mask = ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT | I915_DISPLAY_PIPE_B_EVENT_INTERRUPT | I915_MASTER_ERROR_INTERRUPT); enable_mask = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT | I915_DISPLAY_PIPE_B_EVENT_INTERRUPT | I915_MASTER_ERROR_INTERRUPT | I915_USER_INTERRUPT; gen2_irq_init(uncore, dev_priv->irq_mask, enable_mask); /* Interrupt setup is already guaranteed to be single-threaded, this is * just to make the assert_spin_locked check happy. */ spin_lock_irq(&dev_priv->irq_lock); i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS); i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS); spin_unlock_irq(&dev_priv->irq_lock); } static void i8xx_error_irq_ack(struct drm_i915_private *i915, u16 *eir, u16 *eir_stuck) { struct intel_uncore *uncore = &i915->uncore; u16 emr; *eir = intel_uncore_read16(uncore, EIR); intel_uncore_write16(uncore, EIR, *eir); *eir_stuck = intel_uncore_read16(uncore, EIR); if (*eir_stuck == 0) return; /* * Toggle all EMR bits to make sure we get an edge * in the ISR master error bit if we don't clear * all the EIR bits. Otherwise the edge triggered * IIR on i965/g4x wouldn't notice that an interrupt * is still pending. Also some EIR bits can't be * cleared except by handling the underlying error * (or by a GPU reset) so we mask any bit that * remains set. */ emr = intel_uncore_read16(uncore, EMR); intel_uncore_write16(uncore, EMR, 0xffff); intel_uncore_write16(uncore, EMR, emr | *eir_stuck); } static void i8xx_error_irq_handler(struct drm_i915_private *dev_priv, u16 eir, u16 eir_stuck) { drm_dbg(&dev_priv->drm, "Master Error: EIR 0x%04x\n", eir); if (eir_stuck) drm_dbg(&dev_priv->drm, "EIR stuck: 0x%04x, masked\n", eir_stuck); drm_dbg(&dev_priv->drm, "PGTBL_ER: 0x%08x\n", intel_uncore_read(&dev_priv->uncore, PGTBL_ER)); } static void i9xx_error_irq_ack(struct drm_i915_private *dev_priv, u32 *eir, u32 *eir_stuck) { u32 emr; *eir = intel_uncore_read(&dev_priv->uncore, EIR); intel_uncore_write(&dev_priv->uncore, EIR, *eir); *eir_stuck = intel_uncore_read(&dev_priv->uncore, EIR); if (*eir_stuck == 0) return; /* * Toggle all EMR bits to make sure we get an edge * in the ISR master error bit if we don't clear * all the EIR bits. Otherwise the edge triggered * IIR on i965/g4x wouldn't notice that an interrupt * is still pending. Also some EIR bits can't be * cleared except by handling the underlying error * (or by a GPU reset) so we mask any bit that * remains set. */ emr = intel_uncore_read(&dev_priv->uncore, EMR); intel_uncore_write(&dev_priv->uncore, EMR, 0xffffffff); intel_uncore_write(&dev_priv->uncore, EMR, emr | *eir_stuck); } static void i9xx_error_irq_handler(struct drm_i915_private *dev_priv, u32 eir, u32 eir_stuck) { drm_dbg(&dev_priv->drm, "Master Error, EIR 0x%08x\n", eir); if (eir_stuck) drm_dbg(&dev_priv->drm, "EIR stuck: 0x%08x, masked\n", eir_stuck); drm_dbg(&dev_priv->drm, "PGTBL_ER: 0x%08x\n", intel_uncore_read(&dev_priv->uncore, PGTBL_ER)); } static irqreturn_t i8xx_irq_handler(int irq, void *arg) { struct drm_i915_private *dev_priv = arg; irqreturn_t ret = IRQ_NONE; if (!intel_irqs_enabled(dev_priv)) return IRQ_NONE; /* IRQs are synced during runtime_suspend, we don't require a wakeref */ disable_rpm_wakeref_asserts(&dev_priv->runtime_pm); do { u32 pipe_stats[I915_MAX_PIPES] = {}; u16 eir = 0, eir_stuck = 0; u16 iir; iir = intel_uncore_read16(&dev_priv->uncore, GEN2_IIR); if (iir == 0) break; ret = IRQ_HANDLED; /* Call regardless, as some status bits might not be * signalled in iir */ i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats); if (iir & I915_MASTER_ERROR_INTERRUPT) i8xx_error_irq_ack(dev_priv, &eir, &eir_stuck); intel_uncore_write16(&dev_priv->uncore, GEN2_IIR, iir); if (iir & I915_USER_INTERRUPT) intel_engine_cs_irq(to_gt(dev_priv)->engine[RCS0], iir); if (iir & I915_MASTER_ERROR_INTERRUPT) i8xx_error_irq_handler(dev_priv, eir, eir_stuck); i8xx_pipestat_irq_handler(dev_priv, iir, pipe_stats); } while (0); pmu_irq_stats(dev_priv, ret); enable_rpm_wakeref_asserts(&dev_priv->runtime_pm); return ret; } static void i915_irq_reset(struct drm_i915_private *dev_priv) { struct intel_uncore *uncore = &dev_priv->uncore; if (I915_HAS_HOTPLUG(dev_priv)) { i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0); intel_uncore_rmw(&dev_priv->uncore, PORT_HOTPLUG_STAT, 0, 0); } i9xx_pipestat_irq_reset(dev_priv); GEN3_IRQ_RESET(uncore, GEN2_); dev_priv->irq_mask = ~0u; } static void i915_irq_postinstall(struct drm_i915_private *dev_priv) { struct intel_uncore *uncore = &dev_priv->uncore; u32 enable_mask; intel_uncore_write(uncore, EMR, i9xx_error_mask(dev_priv)); /* Unmask the interrupts that we always want on. */ dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT | I915_DISPLAY_PIPE_A_EVENT_INTERRUPT | I915_DISPLAY_PIPE_B_EVENT_INTERRUPT | I915_MASTER_ERROR_INTERRUPT); enable_mask = I915_ASLE_INTERRUPT | I915_DISPLAY_PIPE_A_EVENT_INTERRUPT | I915_DISPLAY_PIPE_B_EVENT_INTERRUPT | I915_MASTER_ERROR_INTERRUPT | I915_USER_INTERRUPT; if (I915_HAS_HOTPLUG(dev_priv)) { /* Enable in IER... */ enable_mask |= I915_DISPLAY_PORT_INTERRUPT; /* and unmask in IMR */ dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT; } GEN3_IRQ_INIT(uncore, GEN2_, dev_priv->irq_mask, enable_mask); /* Interrupt setup is already guaranteed to be single-threaded, this is * just to make the assert_spin_locked check happy. */ spin_lock_irq(&dev_priv->irq_lock); i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS); i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS); spin_unlock_irq(&dev_priv->irq_lock); i915_enable_asle_pipestat(dev_priv); } static irqreturn_t i915_irq_handler(int irq, void *arg) { struct drm_i915_private *dev_priv = arg; irqreturn_t ret = IRQ_NONE; if (!intel_irqs_enabled(dev_priv)) return IRQ_NONE; /* IRQs are synced during runtime_suspend, we don't require a wakeref */ disable_rpm_wakeref_asserts(&dev_priv->runtime_pm); do { u32 pipe_stats[I915_MAX_PIPES] = {}; u32 eir = 0, eir_stuck = 0; u32 hotplug_status = 0; u32 iir; iir = intel_uncore_read(&dev_priv->uncore, GEN2_IIR); if (iir == 0) break; ret = IRQ_HANDLED; if (I915_HAS_HOTPLUG(dev_priv) && iir & I915_DISPLAY_PORT_INTERRUPT) hotplug_status = i9xx_hpd_irq_ack(dev_priv); /* Call regardless, as some status bits might not be * signalled in iir */ i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats); if (iir & I915_MASTER_ERROR_INTERRUPT) i9xx_error_irq_ack(dev_priv, &eir, &eir_stuck); intel_uncore_write(&dev_priv->uncore, GEN2_IIR, iir); if (iir & I915_USER_INTERRUPT) intel_engine_cs_irq(to_gt(dev_priv)->engine[RCS0], iir); if (iir & I915_MASTER_ERROR_INTERRUPT) i9xx_error_irq_handler(dev_priv, eir, eir_stuck); if (hotplug_status) i9xx_hpd_irq_handler(dev_priv, hotplug_status); i915_pipestat_irq_handler(dev_priv, iir, pipe_stats); } while (0); pmu_irq_stats(dev_priv, ret); enable_rpm_wakeref_asserts(&dev_priv->runtime_pm); return ret; } static void i965_irq_reset(struct drm_i915_private *dev_priv) { struct intel_uncore *uncore = &dev_priv->uncore; i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0); intel_uncore_rmw(uncore, PORT_HOTPLUG_STAT, 0, 0); i9xx_pipestat_irq_reset(dev_priv); GEN3_IRQ_RESET(uncore, GEN2_); dev_priv->irq_mask = ~0u; } static u32 i965_error_mask(struct drm_i915_private *i915) { /* * Enable some error detection, note the instruction error mask * bit is reserved, so we leave it masked. * * i965 FBC no longer generates spurious GTT errors, * so we can always enable the page table errors. */ if (IS_G4X(i915)) return ~(GM45_ERROR_PAGE_TABLE | GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV | I915_ERROR_MEMORY_REFRESH); else return ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH); } static void i965_irq_postinstall(struct drm_i915_private *dev_priv) { struct intel_uncore *uncore = &dev_priv->uncore; u32 enable_mask; intel_uncore_write(uncore, EMR, i965_error_mask(dev_priv)); /* Unmask the interrupts that we always want on. */ dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT | I915_DISPLAY_PORT_INTERRUPT | I915_DISPLAY_PIPE_A_EVENT_INTERRUPT | I915_DISPLAY_PIPE_B_EVENT_INTERRUPT | I915_MASTER_ERROR_INTERRUPT); enable_mask = I915_ASLE_INTERRUPT | I915_DISPLAY_PORT_INTERRUPT | I915_DISPLAY_PIPE_A_EVENT_INTERRUPT | I915_DISPLAY_PIPE_B_EVENT_INTERRUPT | I915_MASTER_ERROR_INTERRUPT | I915_USER_INTERRUPT; if (IS_G4X(dev_priv)) enable_mask |= I915_BSD_USER_INTERRUPT; GEN3_IRQ_INIT(uncore, GEN2_, dev_priv->irq_mask, enable_mask); /* Interrupt setup is already guaranteed to be single-threaded, this is * just to make the assert_spin_locked check happy. */ spin_lock_irq(&dev_priv->irq_lock); i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS); i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS); i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS); spin_unlock_irq(&dev_priv->irq_lock); i915_enable_asle_pipestat(dev_priv); } static irqreturn_t i965_irq_handler(int irq, void *arg) { struct drm_i915_private *dev_priv = arg; irqreturn_t ret = IRQ_NONE; if (!intel_irqs_enabled(dev_priv)) return IRQ_NONE; /* IRQs are synced during runtime_suspend, we don't require a wakeref */ disable_rpm_wakeref_asserts(&dev_priv->runtime_pm); do { u32 pipe_stats[I915_MAX_PIPES] = {}; u32 eir = 0, eir_stuck = 0; u32 hotplug_status = 0; u32 iir; iir = intel_uncore_read(&dev_priv->uncore, GEN2_IIR); if (iir == 0) break; ret = IRQ_HANDLED; if (iir & I915_DISPLAY_PORT_INTERRUPT) hotplug_status = i9xx_hpd_irq_ack(dev_priv); /* Call regardless, as some status bits might not be * signalled in iir */ i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats); if (iir & I915_MASTER_ERROR_INTERRUPT) i9xx_error_irq_ack(dev_priv, &eir, &eir_stuck); intel_uncore_write(&dev_priv->uncore, GEN2_IIR, iir); if (iir & I915_USER_INTERRUPT) intel_engine_cs_irq(to_gt(dev_priv)->engine[RCS0], iir); if (iir & I915_BSD_USER_INTERRUPT) intel_engine_cs_irq(to_gt(dev_priv)->engine[VCS0], iir >> 25); if (iir & I915_MASTER_ERROR_INTERRUPT) i9xx_error_irq_handler(dev_priv, eir, eir_stuck); if (hotplug_status) i9xx_hpd_irq_handler(dev_priv, hotplug_status); i965_pipestat_irq_handler(dev_priv, iir, pipe_stats); } while (0); pmu_irq_stats(dev_priv, IRQ_HANDLED); enable_rpm_wakeref_asserts(&dev_priv->runtime_pm); return ret; } /** * intel_irq_init - initializes irq support * @dev_priv: i915 device instance * * This function initializes all the irq support including work items, timers * and all the vtables. It does not setup the interrupt itself though. */ void intel_irq_init(struct drm_i915_private *dev_priv) { int i; INIT_WORK(&dev_priv->l3_parity.error_work, ivb_parity_work); for (i = 0; i < MAX_L3_SLICES; ++i) dev_priv->l3_parity.remap_info[i] = NULL; /* pre-gen11 the guc irqs bits are in the upper 16 bits of the pm reg */ if (HAS_GT_UC(dev_priv) && GRAPHICS_VER(dev_priv) < 11) to_gt(dev_priv)->pm_guc_events = GUC_INTR_GUC2HOST << 16; } /** * intel_irq_fini - deinitializes IRQ support * @i915: i915 device instance * * This function deinitializes all the IRQ support. */ void intel_irq_fini(struct drm_i915_private *i915) { int i; for (i = 0; i < MAX_L3_SLICES; ++i) kfree(i915->l3_parity.remap_info[i]); } static irq_handler_t intel_irq_handler(struct drm_i915_private *dev_priv) { if (HAS_GMCH(dev_priv)) { if (IS_CHERRYVIEW(dev_priv)) return cherryview_irq_handler; else if (IS_VALLEYVIEW(dev_priv)) return valleyview_irq_handler; else if (GRAPHICS_VER(dev_priv) == 4) return i965_irq_handler; else if (GRAPHICS_VER(dev_priv) == 3) return i915_irq_handler; else return i8xx_irq_handler; } else { if (GRAPHICS_VER_FULL(dev_priv) >= IP_VER(12, 10)) return dg1_irq_handler; else if (GRAPHICS_VER(dev_priv) >= 11) return gen11_irq_handler; else if (GRAPHICS_VER(dev_priv) >= 8) return gen8_irq_handler; else return ilk_irq_handler; } } static void intel_irq_reset(struct drm_i915_private *dev_priv) { if (HAS_GMCH(dev_priv)) { if (IS_CHERRYVIEW(dev_priv)) cherryview_irq_reset(dev_priv); else if (IS_VALLEYVIEW(dev_priv)) valleyview_irq_reset(dev_priv); else if (GRAPHICS_VER(dev_priv) == 4) i965_irq_reset(dev_priv); else if (GRAPHICS_VER(dev_priv) == 3) i915_irq_reset(dev_priv); else i8xx_irq_reset(dev_priv); } else { if (GRAPHICS_VER_FULL(dev_priv) >= IP_VER(12, 10)) dg1_irq_reset(dev_priv); else if (GRAPHICS_VER(dev_priv) >= 11) gen11_irq_reset(dev_priv); else if (GRAPHICS_VER(dev_priv) >= 8) gen8_irq_reset(dev_priv); else ilk_irq_reset(dev_priv); } } static void intel_irq_postinstall(struct drm_i915_private *dev_priv) { if (HAS_GMCH(dev_priv)) { if (IS_CHERRYVIEW(dev_priv)) cherryview_irq_postinstall(dev_priv); else if (IS_VALLEYVIEW(dev_priv)) valleyview_irq_postinstall(dev_priv); else if (GRAPHICS_VER(dev_priv) == 4) i965_irq_postinstall(dev_priv); else if (GRAPHICS_VER(dev_priv) == 3) i915_irq_postinstall(dev_priv); else i8xx_irq_postinstall(dev_priv); } else { if (GRAPHICS_VER_FULL(dev_priv) >= IP_VER(12, 10)) dg1_irq_postinstall(dev_priv); else if (GRAPHICS_VER(dev_priv) >= 11) gen11_irq_postinstall(dev_priv); else if (GRAPHICS_VER(dev_priv) >= 8) gen8_irq_postinstall(dev_priv); else ilk_irq_postinstall(dev_priv); } } /** * intel_irq_install - enables the hardware interrupt * @dev_priv: i915 device instance * * This function enables the hardware interrupt handling, but leaves the hotplug * handling still disabled. It is called after intel_irq_init(). * * In the driver load and resume code we need working interrupts in a few places * but don't want to deal with the hassle of concurrent probe and hotplug * workers. Hence the split into this two-stage approach. */ int intel_irq_install(struct drm_i915_private *dev_priv) { int irq = to_pci_dev(dev_priv->drm.dev)->irq; int ret; /* * We enable some interrupt sources in our postinstall hooks, so mark * interrupts as enabled _before_ actually enabling them to avoid * special cases in our ordering checks. */ dev_priv->runtime_pm.irqs_enabled = true; dev_priv->irq_enabled = true; intel_irq_reset(dev_priv); ret = request_irq(irq, intel_irq_handler(dev_priv), IRQF_SHARED, DRIVER_NAME, dev_priv); if (ret < 0) { dev_priv->irq_enabled = false; return ret; } intel_irq_postinstall(dev_priv); return ret; } /** * intel_irq_uninstall - finilizes all irq handling * @dev_priv: i915 device instance * * This stops interrupt and hotplug handling and unregisters and frees all * resources acquired in the init functions. */ void intel_irq_uninstall(struct drm_i915_private *dev_priv) { int irq = to_pci_dev(dev_priv->drm.dev)->irq; /* * FIXME we can get called twice during driver probe * error handling as well as during driver remove due to * intel_display_driver_remove() calling us out of sequence. * Would be nice if it didn't do that... */ if (!dev_priv->irq_enabled) return; dev_priv->irq_enabled = false; intel_irq_reset(dev_priv); free_irq(irq, dev_priv); intel_hpd_cancel_work(dev_priv); dev_priv->runtime_pm.irqs_enabled = false; } /** * intel_runtime_pm_disable_interrupts - runtime interrupt disabling * @dev_priv: i915 device instance * * This function is used to disable interrupts at runtime, both in the runtime * pm and the system suspend/resume code. */ void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv) { intel_irq_reset(dev_priv); dev_priv->runtime_pm.irqs_enabled = false; intel_synchronize_irq(dev_priv); } /** * intel_runtime_pm_enable_interrupts - runtime interrupt enabling * @dev_priv: i915 device instance * * This function is used to enable interrupts at runtime, both in the runtime * pm and the system suspend/resume code. */ void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv) { dev_priv->runtime_pm.irqs_enabled = true; intel_irq_reset(dev_priv); intel_irq_postinstall(dev_priv); } bool intel_irqs_enabled(struct drm_i915_private *dev_priv) { return dev_priv->runtime_pm.irqs_enabled; } void intel_synchronize_irq(struct drm_i915_private *i915) { synchronize_irq(to_pci_dev(i915->drm.dev)->irq); } void intel_synchronize_hardirq(struct drm_i915_private *i915) { synchronize_hardirq(to_pci_dev(i915->drm.dev)->irq); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1