Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Jeykumar Sankaran | 1653 | 76.71% | 1 | 4.55% |
Kalyan Thota | 238 | 11.04% | 1 | 4.55% |
Dmitry Eremin-Solenikov | 127 | 5.89% | 9 | 40.91% |
Jordan Crouse | 53 | 2.46% | 2 | 9.09% |
Rob Clark | 37 | 1.72% | 2 | 9.09% |
Jayant Shekhar | 27 | 1.25% | 2 | 9.09% |
Stephen Boyd | 11 | 0.51% | 1 | 4.55% |
Rajendra Nayak | 3 | 0.14% | 1 | 4.55% |
Archit Taneja | 2 | 0.09% | 1 | 4.55% |
Thomas Gleixner | 2 | 0.09% | 1 | 4.55% |
Lee Jones | 2 | 0.09% | 1 | 4.55% |
Total | 2155 | 22 |
// SPDX-License-Identifier: GPL-2.0-only /* Copyright (c) 2016-2018, The Linux Foundation. All rights reserved. */ #define pr_fmt(fmt) "[drm:%s:%d] " fmt, __func__, __LINE__ #include <linux/debugfs.h> #include <linux/errno.h> #include <linux/mutex.h> #include <linux/pm_opp.h> #include <linux/sort.h> #include <linux/clk.h> #include <linux/bitmap.h> #include "dpu_kms.h" #include "dpu_trace.h" #include "dpu_crtc.h" #include "dpu_core_perf.h" /** * enum dpu_perf_mode - performance tuning mode * @DPU_PERF_MODE_NORMAL: performance controlled by user mode client * @DPU_PERF_MODE_MINIMUM: performance bounded by minimum setting * @DPU_PERF_MODE_FIXED: performance bounded by fixed setting * @DPU_PERF_MODE_MAX: maximum value, used for error checking */ enum dpu_perf_mode { DPU_PERF_MODE_NORMAL, DPU_PERF_MODE_MINIMUM, DPU_PERF_MODE_FIXED, DPU_PERF_MODE_MAX }; /** * _dpu_core_perf_calc_bw() - to calculate BW per crtc * @perf_cfg: performance configuration * @crtc: pointer to a crtc * Return: returns aggregated BW for all planes in crtc. */ static u64 _dpu_core_perf_calc_bw(const struct dpu_perf_cfg *perf_cfg, struct drm_crtc *crtc) { struct drm_plane *plane; struct dpu_plane_state *pstate; u64 crtc_plane_bw = 0; u32 bw_factor; drm_atomic_crtc_for_each_plane(plane, crtc) { pstate = to_dpu_plane_state(plane->state); if (!pstate) continue; crtc_plane_bw += pstate->plane_fetch_bw; } bw_factor = perf_cfg->bw_inefficiency_factor; if (bw_factor) { crtc_plane_bw *= bw_factor; do_div(crtc_plane_bw, 100); } return crtc_plane_bw; } /** * _dpu_core_perf_calc_clk() - to calculate clock per crtc * @perf_cfg: performance configuration * @crtc: pointer to a crtc * @state: pointer to a crtc state * Return: returns max clk for all planes in crtc. */ static u64 _dpu_core_perf_calc_clk(const struct dpu_perf_cfg *perf_cfg, struct drm_crtc *crtc, struct drm_crtc_state *state) { struct drm_plane *plane; struct dpu_plane_state *pstate; struct drm_display_mode *mode; u64 crtc_clk; u32 clk_factor; mode = &state->adjusted_mode; crtc_clk = mode->vtotal * mode->hdisplay * drm_mode_vrefresh(mode); drm_atomic_crtc_for_each_plane(plane, crtc) { pstate = to_dpu_plane_state(plane->state); if (!pstate) continue; crtc_clk = max(pstate->plane_clk, crtc_clk); } clk_factor = perf_cfg->clk_inefficiency_factor; if (clk_factor) { crtc_clk *= clk_factor; do_div(crtc_clk, 100); } return crtc_clk; } static struct dpu_kms *_dpu_crtc_get_kms(struct drm_crtc *crtc) { struct msm_drm_private *priv; priv = crtc->dev->dev_private; return to_dpu_kms(priv->kms); } static void _dpu_core_perf_calc_crtc(const struct dpu_core_perf *core_perf, struct drm_crtc *crtc, struct drm_crtc_state *state, struct dpu_core_perf_params *perf) { const struct dpu_perf_cfg *perf_cfg = core_perf->perf_cfg; if (!perf_cfg || !crtc || !state || !perf) { DPU_ERROR("invalid parameters\n"); return; } memset(perf, 0, sizeof(struct dpu_core_perf_params)); if (core_perf->perf_tune.mode == DPU_PERF_MODE_MINIMUM) { perf->bw_ctl = 0; perf->max_per_pipe_ib = 0; perf->core_clk_rate = 0; } else if (core_perf->perf_tune.mode == DPU_PERF_MODE_FIXED) { perf->bw_ctl = core_perf->fix_core_ab_vote; perf->max_per_pipe_ib = core_perf->fix_core_ib_vote; perf->core_clk_rate = core_perf->fix_core_clk_rate; } else { perf->bw_ctl = _dpu_core_perf_calc_bw(perf_cfg, crtc); perf->max_per_pipe_ib = perf_cfg->min_dram_ib; perf->core_clk_rate = _dpu_core_perf_calc_clk(perf_cfg, crtc, state); } DRM_DEBUG_ATOMIC( "crtc=%d clk_rate=%llu core_ib=%llu core_ab=%llu\n", crtc->base.id, perf->core_clk_rate, perf->max_per_pipe_ib, perf->bw_ctl); } int dpu_core_perf_crtc_check(struct drm_crtc *crtc, struct drm_crtc_state *state) { u32 bw, threshold; u64 bw_sum_of_intfs = 0; enum dpu_crtc_client_type curr_client_type; struct dpu_crtc_state *dpu_cstate; struct drm_crtc *tmp_crtc; struct dpu_kms *kms; if (!crtc || !state) { DPU_ERROR("invalid crtc\n"); return -EINVAL; } kms = _dpu_crtc_get_kms(crtc); /* we only need bandwidth check on real-time clients (interfaces) */ if (dpu_crtc_get_client_type(crtc) == NRT_CLIENT) return 0; dpu_cstate = to_dpu_crtc_state(state); /* obtain new values */ _dpu_core_perf_calc_crtc(&kms->perf, crtc, state, &dpu_cstate->new_perf); bw_sum_of_intfs = dpu_cstate->new_perf.bw_ctl; curr_client_type = dpu_crtc_get_client_type(crtc); drm_for_each_crtc(tmp_crtc, crtc->dev) { if (tmp_crtc->enabled && dpu_crtc_get_client_type(tmp_crtc) == curr_client_type && tmp_crtc != crtc) { struct dpu_crtc_state *tmp_cstate = to_dpu_crtc_state(tmp_crtc->state); DRM_DEBUG_ATOMIC("crtc:%d bw:%llu ctrl:%d\n", tmp_crtc->base.id, tmp_cstate->new_perf.bw_ctl, tmp_cstate->bw_control); bw_sum_of_intfs += tmp_cstate->new_perf.bw_ctl; } /* convert bandwidth to kb */ bw = DIV_ROUND_UP_ULL(bw_sum_of_intfs, 1000); DRM_DEBUG_ATOMIC("calculated bandwidth=%uk\n", bw); threshold = kms->perf.perf_cfg->max_bw_high; DRM_DEBUG_ATOMIC("final threshold bw limit = %d\n", threshold); if (!threshold) { DPU_ERROR("no bandwidth limits specified\n"); return -E2BIG; } else if (bw > threshold) { DPU_ERROR("exceeds bandwidth: %ukb > %ukb\n", bw, threshold); return -E2BIG; } } return 0; } static int _dpu_core_perf_crtc_update_bus(struct dpu_kms *kms, struct drm_crtc *crtc) { struct dpu_core_perf_params perf = { 0 }; enum dpu_crtc_client_type curr_client_type = dpu_crtc_get_client_type(crtc); struct drm_crtc *tmp_crtc; struct dpu_crtc_state *dpu_cstate; int i, ret = 0; u64 avg_bw; if (!kms->num_paths) return 0; drm_for_each_crtc(tmp_crtc, crtc->dev) { if (tmp_crtc->enabled && curr_client_type == dpu_crtc_get_client_type(tmp_crtc)) { dpu_cstate = to_dpu_crtc_state(tmp_crtc->state); perf.max_per_pipe_ib = max(perf.max_per_pipe_ib, dpu_cstate->new_perf.max_per_pipe_ib); perf.bw_ctl += dpu_cstate->new_perf.bw_ctl; DRM_DEBUG_ATOMIC("crtc=%d bw=%llu paths:%d\n", tmp_crtc->base.id, dpu_cstate->new_perf.bw_ctl, kms->num_paths); } } avg_bw = perf.bw_ctl; do_div(avg_bw, (kms->num_paths * 1000)); /*Bps_to_icc*/ for (i = 0; i < kms->num_paths; i++) icc_set_bw(kms->path[i], avg_bw, perf.max_per_pipe_ib); return ret; } /** * dpu_core_perf_crtc_release_bw() - request zero bandwidth * @crtc: pointer to a crtc * * Function checks a state variable for the crtc, if all pending commit * requests are done, meaning no more bandwidth is needed, release * bandwidth request. */ void dpu_core_perf_crtc_release_bw(struct drm_crtc *crtc) { struct dpu_crtc *dpu_crtc; struct dpu_kms *kms; if (!crtc) { DPU_ERROR("invalid crtc\n"); return; } kms = _dpu_crtc_get_kms(crtc); dpu_crtc = to_dpu_crtc(crtc); if (atomic_dec_return(&kms->bandwidth_ref) > 0) return; /* Release the bandwidth */ if (kms->perf.enable_bw_release) { trace_dpu_cmd_release_bw(crtc->base.id); DRM_DEBUG_ATOMIC("Release BW crtc=%d\n", crtc->base.id); dpu_crtc->cur_perf.bw_ctl = 0; _dpu_core_perf_crtc_update_bus(kms, crtc); } } static u64 _dpu_core_perf_get_core_clk_rate(struct dpu_kms *kms) { u64 clk_rate; struct drm_crtc *crtc; struct dpu_crtc_state *dpu_cstate; if (kms->perf.perf_tune.mode == DPU_PERF_MODE_FIXED) return kms->perf.fix_core_clk_rate; if (kms->perf.perf_tune.mode == DPU_PERF_MODE_MINIMUM) return kms->perf.max_core_clk_rate; clk_rate = 0; drm_for_each_crtc(crtc, kms->dev) { if (crtc->enabled) { dpu_cstate = to_dpu_crtc_state(crtc->state); clk_rate = max(dpu_cstate->new_perf.core_clk_rate, clk_rate); } } return clk_rate; } int dpu_core_perf_crtc_update(struct drm_crtc *crtc, int params_changed) { struct dpu_core_perf_params *new, *old; bool update_bus = false, update_clk = false; u64 clk_rate = 0; struct dpu_crtc *dpu_crtc; struct dpu_crtc_state *dpu_cstate; struct dpu_kms *kms; int ret; if (!crtc) { DPU_ERROR("invalid crtc\n"); return -EINVAL; } kms = _dpu_crtc_get_kms(crtc); dpu_crtc = to_dpu_crtc(crtc); dpu_cstate = to_dpu_crtc_state(crtc->state); DRM_DEBUG_ATOMIC("crtc:%d enabled:%d core_clk:%llu\n", crtc->base.id, crtc->enabled, kms->perf.core_clk_rate); old = &dpu_crtc->cur_perf; new = &dpu_cstate->new_perf; if (crtc->enabled) { /* * cases for bus bandwidth update. * 1. new bandwidth vote - "ab or ib vote" is higher * than current vote for update request. * 2. new bandwidth vote - "ab or ib vote" is lower * than current vote at end of commit or stop. */ if ((params_changed && ((new->bw_ctl > old->bw_ctl) || (new->max_per_pipe_ib > old->max_per_pipe_ib))) || (!params_changed && ((new->bw_ctl < old->bw_ctl) || (new->max_per_pipe_ib < old->max_per_pipe_ib)))) { DRM_DEBUG_ATOMIC("crtc=%d p=%d new_bw=%llu,old_bw=%llu\n", crtc->base.id, params_changed, new->bw_ctl, old->bw_ctl); old->bw_ctl = new->bw_ctl; old->max_per_pipe_ib = new->max_per_pipe_ib; update_bus = true; } if ((params_changed && new->core_clk_rate > old->core_clk_rate) || (!params_changed && new->core_clk_rate < old->core_clk_rate)) { old->core_clk_rate = new->core_clk_rate; update_clk = true; } } else { DRM_DEBUG_ATOMIC("crtc=%d disable\n", crtc->base.id); memset(old, 0, sizeof(*old)); update_bus = true; update_clk = true; } trace_dpu_perf_crtc_update(crtc->base.id, new->bw_ctl, new->core_clk_rate, !crtc->enabled, update_bus, update_clk); if (update_bus) { ret = _dpu_core_perf_crtc_update_bus(kms, crtc); if (ret) { DPU_ERROR("crtc-%d: failed to update bus bw vote\n", crtc->base.id); return ret; } } /* * Update the clock after bandwidth vote to ensure * bandwidth is available before clock rate is increased. */ if (update_clk) { clk_rate = _dpu_core_perf_get_core_clk_rate(kms); DRM_DEBUG_ATOMIC("clk:%llu\n", clk_rate); trace_dpu_core_perf_update_clk(kms->dev, !crtc->enabled, clk_rate); clk_rate = min(clk_rate, kms->perf.max_core_clk_rate); ret = dev_pm_opp_set_rate(&kms->pdev->dev, clk_rate); if (ret) { DPU_ERROR("failed to set core clock rate %llu\n", clk_rate); return ret; } kms->perf.core_clk_rate = clk_rate; DRM_DEBUG_ATOMIC("update clk rate = %lld HZ\n", clk_rate); } return 0; } #ifdef CONFIG_DEBUG_FS static ssize_t _dpu_core_perf_mode_write(struct file *file, const char __user *user_buf, size_t count, loff_t *ppos) { struct dpu_core_perf *perf = file->private_data; u32 perf_mode = 0; int ret; ret = kstrtouint_from_user(user_buf, count, 0, &perf_mode); if (ret) return ret; if (perf_mode >= DPU_PERF_MODE_MAX) return -EINVAL; if (perf_mode == DPU_PERF_MODE_FIXED) { DRM_INFO("fix performance mode\n"); } else if (perf_mode == DPU_PERF_MODE_MINIMUM) { /* run the driver with max clk and BW vote */ DRM_INFO("minimum performance mode\n"); } else if (perf_mode == DPU_PERF_MODE_NORMAL) { /* reset the perf tune params to 0 */ DRM_INFO("normal performance mode\n"); } perf->perf_tune.mode = perf_mode; return count; } static ssize_t _dpu_core_perf_mode_read(struct file *file, char __user *buff, size_t count, loff_t *ppos) { struct dpu_core_perf *perf = file->private_data; int len; char buf[128]; len = scnprintf(buf, sizeof(buf), "mode %d\n", perf->perf_tune.mode); return simple_read_from_buffer(buff, count, ppos, buf, len); } static const struct file_operations dpu_core_perf_mode_fops = { .open = simple_open, .read = _dpu_core_perf_mode_read, .write = _dpu_core_perf_mode_write, }; int dpu_core_perf_debugfs_init(struct dpu_kms *dpu_kms, struct dentry *parent) { struct dpu_core_perf *perf = &dpu_kms->perf; struct dentry *entry; entry = debugfs_create_dir("core_perf", parent); debugfs_create_u64("max_core_clk_rate", 0600, entry, &perf->max_core_clk_rate); debugfs_create_u64("core_clk_rate", 0600, entry, &perf->core_clk_rate); debugfs_create_u32("enable_bw_release", 0600, entry, (u32 *)&perf->enable_bw_release); debugfs_create_u32("threshold_low", 0600, entry, (u32 *)&perf->perf_cfg->max_bw_low); debugfs_create_u32("threshold_high", 0600, entry, (u32 *)&perf->perf_cfg->max_bw_high); debugfs_create_u32("min_core_ib", 0600, entry, (u32 *)&perf->perf_cfg->min_core_ib); debugfs_create_u32("min_llcc_ib", 0600, entry, (u32 *)&perf->perf_cfg->min_llcc_ib); debugfs_create_u32("min_dram_ib", 0600, entry, (u32 *)&perf->perf_cfg->min_dram_ib); debugfs_create_file("perf_mode", 0600, entry, (u32 *)perf, &dpu_core_perf_mode_fops); debugfs_create_u64("fix_core_clk_rate", 0600, entry, &perf->fix_core_clk_rate); debugfs_create_u64("fix_core_ib_vote", 0600, entry, &perf->fix_core_ib_vote); debugfs_create_u64("fix_core_ab_vote", 0600, entry, &perf->fix_core_ab_vote); return 0; } #endif int dpu_core_perf_init(struct dpu_core_perf *perf, const struct dpu_perf_cfg *perf_cfg, unsigned long max_core_clk_rate) { perf->perf_cfg = perf_cfg; perf->max_core_clk_rate = max_core_clk_rate; return 0; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1