Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Stephane Viau | 1654 | 49.85% | 4 | 11.76% |
Rob Clark | 525 | 15.82% | 10 | 29.41% |
Hai Li | 479 | 14.44% | 4 | 11.76% |
Archit Taneja | 470 | 14.17% | 11 | 32.35% |
Jilai Wang | 178 | 5.36% | 1 | 2.94% |
Mamta Shukla | 8 | 0.24% | 1 | 2.94% |
Thomas Gleixner | 2 | 0.06% | 1 | 2.94% |
Dmitry Eremin-Solenikov | 1 | 0.03% | 1 | 2.94% |
Daniel Vetter | 1 | 0.03% | 1 | 2.94% |
Total | 3318 | 34 |
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2014-2015 The Linux Foundation. All rights reserved. */ #include "mdp5_kms.h" #include "mdp5_ctl.h" /* * CTL - MDP Control Pool Manager * * Controls are shared between all display interfaces. * * They are intended to be used for data path configuration. * The top level register programming describes the complete data path for * a specific data path ID - REG_MDP5_CTL_*(<id>, ...) * * Hardware capabilities determine the number of concurrent data paths * * In certain use cases (high-resolution dual pipe), one single CTL can be * shared across multiple CRTCs. */ #define CTL_STAT_BUSY 0x1 #define CTL_STAT_BOOKED 0x2 struct mdp5_ctl { struct mdp5_ctl_manager *ctlm; u32 id; /* CTL status bitmask */ u32 status; bool encoder_enabled; /* pending flush_mask bits */ u32 flush_mask; /* REG_MDP5_CTL_*(<id>) registers access info + lock: */ spinlock_t hw_lock; u32 reg_offset; /* when do CTL registers need to be flushed? (mask of trigger bits) */ u32 pending_ctl_trigger; bool cursor_on; /* True if the current CTL has FLUSH bits pending for single FLUSH. */ bool flush_pending; struct mdp5_ctl *pair; /* Paired CTL to be flushed together */ }; struct mdp5_ctl_manager { struct drm_device *dev; /* number of CTL / Layer Mixers in this hw config: */ u32 nlm; u32 nctl; /* to filter out non-present bits in the current hardware config */ u32 flush_hw_mask; /* status for single FLUSH */ bool single_flush_supported; u32 single_flush_pending_mask; /* pool of CTLs + lock to protect resource allocation (ctls[i].busy) */ spinlock_t pool_lock; struct mdp5_ctl ctls[MAX_CTL]; }; static inline struct mdp5_kms *get_kms(struct mdp5_ctl_manager *ctl_mgr) { struct msm_drm_private *priv = ctl_mgr->dev->dev_private; return to_mdp5_kms(to_mdp_kms(priv->kms)); } static inline void ctl_write(struct mdp5_ctl *ctl, u32 reg, u32 data) { struct mdp5_kms *mdp5_kms = get_kms(ctl->ctlm); (void)ctl->reg_offset; /* TODO use this instead of mdp5_write */ mdp5_write(mdp5_kms, reg, data); } static inline u32 ctl_read(struct mdp5_ctl *ctl, u32 reg) { struct mdp5_kms *mdp5_kms = get_kms(ctl->ctlm); (void)ctl->reg_offset; /* TODO use this instead of mdp5_write */ return mdp5_read(mdp5_kms, reg); } static void set_display_intf(struct mdp5_kms *mdp5_kms, struct mdp5_interface *intf) { unsigned long flags; u32 intf_sel; spin_lock_irqsave(&mdp5_kms->resource_lock, flags); intf_sel = mdp5_read(mdp5_kms, REG_MDP5_DISP_INTF_SEL); switch (intf->num) { case 0: intf_sel &= ~MDP5_DISP_INTF_SEL_INTF0__MASK; intf_sel |= MDP5_DISP_INTF_SEL_INTF0(intf->type); break; case 1: intf_sel &= ~MDP5_DISP_INTF_SEL_INTF1__MASK; intf_sel |= MDP5_DISP_INTF_SEL_INTF1(intf->type); break; case 2: intf_sel &= ~MDP5_DISP_INTF_SEL_INTF2__MASK; intf_sel |= MDP5_DISP_INTF_SEL_INTF2(intf->type); break; case 3: intf_sel &= ~MDP5_DISP_INTF_SEL_INTF3__MASK; intf_sel |= MDP5_DISP_INTF_SEL_INTF3(intf->type); break; default: BUG(); break; } mdp5_write(mdp5_kms, REG_MDP5_DISP_INTF_SEL, intf_sel); spin_unlock_irqrestore(&mdp5_kms->resource_lock, flags); } static void set_ctl_op(struct mdp5_ctl *ctl, struct mdp5_pipeline *pipeline) { unsigned long flags; struct mdp5_interface *intf = pipeline->intf; u32 ctl_op = 0; if (!mdp5_cfg_intf_is_virtual(intf->type)) ctl_op |= MDP5_CTL_OP_INTF_NUM(INTF0 + intf->num); switch (intf->type) { case INTF_DSI: if (intf->mode == MDP5_INTF_DSI_MODE_COMMAND) ctl_op |= MDP5_CTL_OP_CMD_MODE; break; case INTF_WB: if (intf->mode == MDP5_INTF_WB_MODE_LINE) ctl_op |= MDP5_CTL_OP_MODE(MODE_WB_2_LINE); break; default: break; } if (pipeline->r_mixer) ctl_op |= MDP5_CTL_OP_PACK_3D_ENABLE | MDP5_CTL_OP_PACK_3D(1); spin_lock_irqsave(&ctl->hw_lock, flags); ctl_write(ctl, REG_MDP5_CTL_OP(ctl->id), ctl_op); spin_unlock_irqrestore(&ctl->hw_lock, flags); } int mdp5_ctl_set_pipeline(struct mdp5_ctl *ctl, struct mdp5_pipeline *pipeline) { struct mdp5_kms *mdp5_kms = get_kms(ctl->ctlm); struct mdp5_interface *intf = pipeline->intf; /* Virtual interfaces need not set a display intf (e.g.: Writeback) */ if (!mdp5_cfg_intf_is_virtual(intf->type)) set_display_intf(mdp5_kms, intf); set_ctl_op(ctl, pipeline); return 0; } static bool start_signal_needed(struct mdp5_ctl *ctl, struct mdp5_pipeline *pipeline) { struct mdp5_interface *intf = pipeline->intf; if (!ctl->encoder_enabled) return false; switch (intf->type) { case INTF_WB: return true; case INTF_DSI: return intf->mode == MDP5_INTF_DSI_MODE_COMMAND; default: return false; } } /* * send_start_signal() - Overlay Processor Start Signal * * For a given control operation (display pipeline), a START signal needs to be * executed in order to kick off operation and activate all layers. * e.g.: DSI command mode, Writeback */ static void send_start_signal(struct mdp5_ctl *ctl) { unsigned long flags; spin_lock_irqsave(&ctl->hw_lock, flags); ctl_write(ctl, REG_MDP5_CTL_START(ctl->id), 1); spin_unlock_irqrestore(&ctl->hw_lock, flags); } /** * mdp5_ctl_set_encoder_state() - set the encoder state * * @ctl: the CTL instance * @pipeline: the encoder's INTF + MIXER configuration * @enabled: true, when encoder is ready for data streaming; false, otherwise. * * Note: * This encoder state is needed to trigger START signal (data path kickoff). */ int mdp5_ctl_set_encoder_state(struct mdp5_ctl *ctl, struct mdp5_pipeline *pipeline, bool enabled) { struct mdp5_interface *intf = pipeline->intf; if (WARN_ON(!ctl)) return -EINVAL; ctl->encoder_enabled = enabled; DBG("intf_%d: %s", intf->num, enabled ? "on" : "off"); if (start_signal_needed(ctl, pipeline)) { send_start_signal(ctl); } return 0; } /* * Note: * CTL registers need to be flushed after calling this function * (call mdp5_ctl_commit() with mdp_ctl_flush_mask_ctl() mask) */ int mdp5_ctl_set_cursor(struct mdp5_ctl *ctl, struct mdp5_pipeline *pipeline, int cursor_id, bool enable) { struct mdp5_ctl_manager *ctl_mgr = ctl->ctlm; unsigned long flags; u32 blend_cfg; struct mdp5_hw_mixer *mixer = pipeline->mixer; if (WARN_ON(!mixer)) { DRM_DEV_ERROR(ctl_mgr->dev->dev, "CTL %d cannot find LM", ctl->id); return -EINVAL; } if (pipeline->r_mixer) { DRM_DEV_ERROR(ctl_mgr->dev->dev, "unsupported configuration"); return -EINVAL; } spin_lock_irqsave(&ctl->hw_lock, flags); blend_cfg = ctl_read(ctl, REG_MDP5_CTL_LAYER_REG(ctl->id, mixer->lm)); if (enable) blend_cfg |= MDP5_CTL_LAYER_REG_CURSOR_OUT; else blend_cfg &= ~MDP5_CTL_LAYER_REG_CURSOR_OUT; ctl_write(ctl, REG_MDP5_CTL_LAYER_REG(ctl->id, mixer->lm), blend_cfg); ctl->cursor_on = enable; spin_unlock_irqrestore(&ctl->hw_lock, flags); ctl->pending_ctl_trigger = mdp_ctl_flush_mask_cursor(cursor_id); return 0; } static u32 mdp_ctl_blend_mask(enum mdp5_pipe pipe, enum mdp_mixer_stage_id stage) { switch (pipe) { case SSPP_VIG0: return MDP5_CTL_LAYER_REG_VIG0(stage); case SSPP_VIG1: return MDP5_CTL_LAYER_REG_VIG1(stage); case SSPP_VIG2: return MDP5_CTL_LAYER_REG_VIG2(stage); case SSPP_RGB0: return MDP5_CTL_LAYER_REG_RGB0(stage); case SSPP_RGB1: return MDP5_CTL_LAYER_REG_RGB1(stage); case SSPP_RGB2: return MDP5_CTL_LAYER_REG_RGB2(stage); case SSPP_DMA0: return MDP5_CTL_LAYER_REG_DMA0(stage); case SSPP_DMA1: return MDP5_CTL_LAYER_REG_DMA1(stage); case SSPP_VIG3: return MDP5_CTL_LAYER_REG_VIG3(stage); case SSPP_RGB3: return MDP5_CTL_LAYER_REG_RGB3(stage); case SSPP_CURSOR0: case SSPP_CURSOR1: default: return 0; } } static u32 mdp_ctl_blend_ext_mask(enum mdp5_pipe pipe, enum mdp_mixer_stage_id stage) { if (stage < STAGE6 && (pipe != SSPP_CURSOR0 && pipe != SSPP_CURSOR1)) return 0; switch (pipe) { case SSPP_VIG0: return MDP5_CTL_LAYER_EXT_REG_VIG0_BIT3; case SSPP_VIG1: return MDP5_CTL_LAYER_EXT_REG_VIG1_BIT3; case SSPP_VIG2: return MDP5_CTL_LAYER_EXT_REG_VIG2_BIT3; case SSPP_RGB0: return MDP5_CTL_LAYER_EXT_REG_RGB0_BIT3; case SSPP_RGB1: return MDP5_CTL_LAYER_EXT_REG_RGB1_BIT3; case SSPP_RGB2: return MDP5_CTL_LAYER_EXT_REG_RGB2_BIT3; case SSPP_DMA0: return MDP5_CTL_LAYER_EXT_REG_DMA0_BIT3; case SSPP_DMA1: return MDP5_CTL_LAYER_EXT_REG_DMA1_BIT3; case SSPP_VIG3: return MDP5_CTL_LAYER_EXT_REG_VIG3_BIT3; case SSPP_RGB3: return MDP5_CTL_LAYER_EXT_REG_RGB3_BIT3; case SSPP_CURSOR0: return MDP5_CTL_LAYER_EXT_REG_CURSOR0(stage); case SSPP_CURSOR1: return MDP5_CTL_LAYER_EXT_REG_CURSOR1(stage); default: return 0; } } static void mdp5_ctl_reset_blend_regs(struct mdp5_ctl *ctl) { unsigned long flags; struct mdp5_ctl_manager *ctl_mgr = ctl->ctlm; int i; spin_lock_irqsave(&ctl->hw_lock, flags); for (i = 0; i < ctl_mgr->nlm; i++) { ctl_write(ctl, REG_MDP5_CTL_LAYER_REG(ctl->id, i), 0x0); ctl_write(ctl, REG_MDP5_CTL_LAYER_EXT_REG(ctl->id, i), 0x0); } spin_unlock_irqrestore(&ctl->hw_lock, flags); } #define PIPE_LEFT 0 #define PIPE_RIGHT 1 int mdp5_ctl_blend(struct mdp5_ctl *ctl, struct mdp5_pipeline *pipeline, enum mdp5_pipe stage[][MAX_PIPE_STAGE], enum mdp5_pipe r_stage[][MAX_PIPE_STAGE], u32 stage_cnt, u32 ctl_blend_op_flags) { struct mdp5_hw_mixer *mixer = pipeline->mixer; struct mdp5_hw_mixer *r_mixer = pipeline->r_mixer; unsigned long flags; u32 blend_cfg = 0, blend_ext_cfg = 0; u32 r_blend_cfg = 0, r_blend_ext_cfg = 0; int i, start_stage; mdp5_ctl_reset_blend_regs(ctl); if (ctl_blend_op_flags & MDP5_CTL_BLEND_OP_FLAG_BORDER_OUT) { start_stage = STAGE0; blend_cfg |= MDP5_CTL_LAYER_REG_BORDER_COLOR; if (r_mixer) r_blend_cfg |= MDP5_CTL_LAYER_REG_BORDER_COLOR; } else { start_stage = STAGE_BASE; } for (i = start_stage; stage_cnt && i <= STAGE_MAX; i++) { blend_cfg |= mdp_ctl_blend_mask(stage[i][PIPE_LEFT], i) | mdp_ctl_blend_mask(stage[i][PIPE_RIGHT], i); blend_ext_cfg |= mdp_ctl_blend_ext_mask(stage[i][PIPE_LEFT], i) | mdp_ctl_blend_ext_mask(stage[i][PIPE_RIGHT], i); if (r_mixer) { r_blend_cfg |= mdp_ctl_blend_mask(r_stage[i][PIPE_LEFT], i) | mdp_ctl_blend_mask(r_stage[i][PIPE_RIGHT], i); r_blend_ext_cfg |= mdp_ctl_blend_ext_mask(r_stage[i][PIPE_LEFT], i) | mdp_ctl_blend_ext_mask(r_stage[i][PIPE_RIGHT], i); } } spin_lock_irqsave(&ctl->hw_lock, flags); if (ctl->cursor_on) blend_cfg |= MDP5_CTL_LAYER_REG_CURSOR_OUT; ctl_write(ctl, REG_MDP5_CTL_LAYER_REG(ctl->id, mixer->lm), blend_cfg); ctl_write(ctl, REG_MDP5_CTL_LAYER_EXT_REG(ctl->id, mixer->lm), blend_ext_cfg); if (r_mixer) { ctl_write(ctl, REG_MDP5_CTL_LAYER_REG(ctl->id, r_mixer->lm), r_blend_cfg); ctl_write(ctl, REG_MDP5_CTL_LAYER_EXT_REG(ctl->id, r_mixer->lm), r_blend_ext_cfg); } spin_unlock_irqrestore(&ctl->hw_lock, flags); ctl->pending_ctl_trigger = mdp_ctl_flush_mask_lm(mixer->lm); if (r_mixer) ctl->pending_ctl_trigger |= mdp_ctl_flush_mask_lm(r_mixer->lm); DBG("lm%d: blend config = 0x%08x. ext_cfg = 0x%08x", mixer->lm, blend_cfg, blend_ext_cfg); if (r_mixer) DBG("lm%d: blend config = 0x%08x. ext_cfg = 0x%08x", r_mixer->lm, r_blend_cfg, r_blend_ext_cfg); return 0; } u32 mdp_ctl_flush_mask_encoder(struct mdp5_interface *intf) { if (intf->type == INTF_WB) return MDP5_CTL_FLUSH_WB; switch (intf->num) { case 0: return MDP5_CTL_FLUSH_TIMING_0; case 1: return MDP5_CTL_FLUSH_TIMING_1; case 2: return MDP5_CTL_FLUSH_TIMING_2; case 3: return MDP5_CTL_FLUSH_TIMING_3; default: return 0; } } u32 mdp_ctl_flush_mask_cursor(int cursor_id) { switch (cursor_id) { case 0: return MDP5_CTL_FLUSH_CURSOR_0; case 1: return MDP5_CTL_FLUSH_CURSOR_1; default: return 0; } } u32 mdp_ctl_flush_mask_pipe(enum mdp5_pipe pipe) { switch (pipe) { case SSPP_VIG0: return MDP5_CTL_FLUSH_VIG0; case SSPP_VIG1: return MDP5_CTL_FLUSH_VIG1; case SSPP_VIG2: return MDP5_CTL_FLUSH_VIG2; case SSPP_RGB0: return MDP5_CTL_FLUSH_RGB0; case SSPP_RGB1: return MDP5_CTL_FLUSH_RGB1; case SSPP_RGB2: return MDP5_CTL_FLUSH_RGB2; case SSPP_DMA0: return MDP5_CTL_FLUSH_DMA0; case SSPP_DMA1: return MDP5_CTL_FLUSH_DMA1; case SSPP_VIG3: return MDP5_CTL_FLUSH_VIG3; case SSPP_RGB3: return MDP5_CTL_FLUSH_RGB3; case SSPP_CURSOR0: return MDP5_CTL_FLUSH_CURSOR_0; case SSPP_CURSOR1: return MDP5_CTL_FLUSH_CURSOR_1; default: return 0; } } u32 mdp_ctl_flush_mask_lm(int lm) { switch (lm) { case 0: return MDP5_CTL_FLUSH_LM0; case 1: return MDP5_CTL_FLUSH_LM1; case 2: return MDP5_CTL_FLUSH_LM2; case 3: return MDP5_CTL_FLUSH_LM3; case 4: return MDP5_CTL_FLUSH_LM4; case 5: return MDP5_CTL_FLUSH_LM5; default: return 0; } } static u32 fix_sw_flush(struct mdp5_ctl *ctl, struct mdp5_pipeline *pipeline, u32 flush_mask) { struct mdp5_ctl_manager *ctl_mgr = ctl->ctlm; u32 sw_mask = 0; #define BIT_NEEDS_SW_FIX(bit) \ (!(ctl_mgr->flush_hw_mask & bit) && (flush_mask & bit)) /* for some targets, cursor bit is the same as LM bit */ if (BIT_NEEDS_SW_FIX(MDP5_CTL_FLUSH_CURSOR_0)) sw_mask |= mdp_ctl_flush_mask_lm(pipeline->mixer->lm); return sw_mask; } static void fix_for_single_flush(struct mdp5_ctl *ctl, u32 *flush_mask, u32 *flush_id) { struct mdp5_ctl_manager *ctl_mgr = ctl->ctlm; if (ctl->pair) { DBG("CTL %d FLUSH pending mask %x", ctl->id, *flush_mask); ctl->flush_pending = true; ctl_mgr->single_flush_pending_mask |= (*flush_mask); *flush_mask = 0; if (ctl->pair->flush_pending) { *flush_id = min_t(u32, ctl->id, ctl->pair->id); *flush_mask = ctl_mgr->single_flush_pending_mask; ctl->flush_pending = false; ctl->pair->flush_pending = false; ctl_mgr->single_flush_pending_mask = 0; DBG("Single FLUSH mask %x,ID %d", *flush_mask, *flush_id); } } } /** * mdp5_ctl_commit() - Register Flush * * @ctl: the CTL instance * @pipeline: the encoder's INTF + MIXER configuration * @flush_mask: bitmask of display controller hw blocks to flush * @start: if true, immediately update flush registers and set START * bit, otherwise accumulate flush_mask bits until we are * ready to START * * The flush register is used to indicate several registers are all * programmed, and are safe to update to the back copy of the double * buffered registers. * * Some registers FLUSH bits are shared when the hardware does not have * dedicated bits for them; handling these is the job of fix_sw_flush(). * * CTL registers need to be flushed in some circumstances; if that is the * case, some trigger bits will be present in both flush mask and * ctl->pending_ctl_trigger. * * Return H/W flushed bit mask. */ u32 mdp5_ctl_commit(struct mdp5_ctl *ctl, struct mdp5_pipeline *pipeline, u32 flush_mask, bool start) { struct mdp5_ctl_manager *ctl_mgr = ctl->ctlm; unsigned long flags; u32 flush_id = ctl->id; u32 curr_ctl_flush_mask; VERB("flush_mask=%x, trigger=%x", flush_mask, ctl->pending_ctl_trigger); if (ctl->pending_ctl_trigger & flush_mask) { flush_mask |= MDP5_CTL_FLUSH_CTL; ctl->pending_ctl_trigger = 0; } flush_mask |= fix_sw_flush(ctl, pipeline, flush_mask); flush_mask &= ctl_mgr->flush_hw_mask; curr_ctl_flush_mask = flush_mask; fix_for_single_flush(ctl, &flush_mask, &flush_id); if (!start) { ctl->flush_mask |= flush_mask; return curr_ctl_flush_mask; } else { flush_mask |= ctl->flush_mask; ctl->flush_mask = 0; } if (flush_mask) { spin_lock_irqsave(&ctl->hw_lock, flags); ctl_write(ctl, REG_MDP5_CTL_FLUSH(flush_id), flush_mask); spin_unlock_irqrestore(&ctl->hw_lock, flags); } if (start_signal_needed(ctl, pipeline)) { send_start_signal(ctl); } return curr_ctl_flush_mask; } u32 mdp5_ctl_get_commit_status(struct mdp5_ctl *ctl) { return ctl_read(ctl, REG_MDP5_CTL_FLUSH(ctl->id)); } int mdp5_ctl_get_ctl_id(struct mdp5_ctl *ctl) { return WARN_ON(!ctl) ? -EINVAL : ctl->id; } /* * mdp5_ctl_pair() - Associate 2 booked CTLs for single FLUSH */ int mdp5_ctl_pair(struct mdp5_ctl *ctlx, struct mdp5_ctl *ctly, bool enable) { struct mdp5_ctl_manager *ctl_mgr = ctlx->ctlm; struct mdp5_kms *mdp5_kms = get_kms(ctl_mgr); /* do nothing silently if hw doesn't support */ if (!ctl_mgr->single_flush_supported) return 0; if (!enable) { ctlx->pair = NULL; ctly->pair = NULL; mdp5_write(mdp5_kms, REG_MDP5_SPARE_0, 0); return 0; } else if ((ctlx->pair != NULL) || (ctly->pair != NULL)) { DRM_DEV_ERROR(ctl_mgr->dev->dev, "CTLs already paired\n"); return -EINVAL; } else if (!(ctlx->status & ctly->status & CTL_STAT_BOOKED)) { DRM_DEV_ERROR(ctl_mgr->dev->dev, "Only pair booked CTLs\n"); return -EINVAL; } ctlx->pair = ctly; ctly->pair = ctlx; mdp5_write(mdp5_kms, REG_MDP5_SPARE_0, MDP5_SPARE_0_SPLIT_DPL_SINGLE_FLUSH_EN); return 0; } /* * mdp5_ctl_request() - CTL allocation * * Try to return booked CTL for @intf_num is 1 or 2, unbooked for other INTFs. * If no CTL is available in preferred category, allocate from the other one. * * @return fail if no CTL is available. */ struct mdp5_ctl *mdp5_ctlm_request(struct mdp5_ctl_manager *ctl_mgr, int intf_num) { struct mdp5_ctl *ctl = NULL; const u32 checkm = CTL_STAT_BUSY | CTL_STAT_BOOKED; u32 match = ((intf_num == 1) || (intf_num == 2)) ? CTL_STAT_BOOKED : 0; unsigned long flags; int c; spin_lock_irqsave(&ctl_mgr->pool_lock, flags); /* search the preferred */ for (c = 0; c < ctl_mgr->nctl; c++) if ((ctl_mgr->ctls[c].status & checkm) == match) goto found; dev_warn(ctl_mgr->dev->dev, "fall back to the other CTL category for INTF %d!\n", intf_num); match ^= CTL_STAT_BOOKED; for (c = 0; c < ctl_mgr->nctl; c++) if ((ctl_mgr->ctls[c].status & checkm) == match) goto found; DRM_DEV_ERROR(ctl_mgr->dev->dev, "No more CTL available!"); goto unlock; found: ctl = &ctl_mgr->ctls[c]; ctl->status |= CTL_STAT_BUSY; ctl->pending_ctl_trigger = 0; DBG("CTL %d allocated", ctl->id); unlock: spin_unlock_irqrestore(&ctl_mgr->pool_lock, flags); return ctl; } void mdp5_ctlm_hw_reset(struct mdp5_ctl_manager *ctl_mgr) { unsigned long flags; int c; for (c = 0; c < ctl_mgr->nctl; c++) { struct mdp5_ctl *ctl = &ctl_mgr->ctls[c]; spin_lock_irqsave(&ctl->hw_lock, flags); ctl_write(ctl, REG_MDP5_CTL_OP(ctl->id), 0); spin_unlock_irqrestore(&ctl->hw_lock, flags); } } void mdp5_ctlm_destroy(struct mdp5_ctl_manager *ctl_mgr) { kfree(ctl_mgr); } struct mdp5_ctl_manager *mdp5_ctlm_init(struct drm_device *dev, void __iomem *mmio_base, struct mdp5_cfg_handler *cfg_hnd) { struct mdp5_ctl_manager *ctl_mgr; const struct mdp5_cfg_hw *hw_cfg = mdp5_cfg_get_hw_config(cfg_hnd); int rev = mdp5_cfg_get_hw_rev(cfg_hnd); unsigned dsi_cnt = 0; const struct mdp5_ctl_block *ctl_cfg = &hw_cfg->ctl; unsigned long flags; int c, ret; ctl_mgr = kzalloc(sizeof(*ctl_mgr), GFP_KERNEL); if (!ctl_mgr) { DRM_DEV_ERROR(dev->dev, "failed to allocate CTL manager\n"); ret = -ENOMEM; goto fail; } if (WARN_ON(ctl_cfg->count > MAX_CTL)) { DRM_DEV_ERROR(dev->dev, "Increase static pool size to at least %d\n", ctl_cfg->count); ret = -ENOSPC; goto fail; } /* initialize the CTL manager: */ ctl_mgr->dev = dev; ctl_mgr->nlm = hw_cfg->lm.count; ctl_mgr->nctl = ctl_cfg->count; ctl_mgr->flush_hw_mask = ctl_cfg->flush_hw_mask; spin_lock_init(&ctl_mgr->pool_lock); /* initialize each CTL of the pool: */ spin_lock_irqsave(&ctl_mgr->pool_lock, flags); for (c = 0; c < ctl_mgr->nctl; c++) { struct mdp5_ctl *ctl = &ctl_mgr->ctls[c]; if (WARN_ON(!ctl_cfg->base[c])) { DRM_DEV_ERROR(dev->dev, "CTL_%d: base is null!\n", c); ret = -EINVAL; spin_unlock_irqrestore(&ctl_mgr->pool_lock, flags); goto fail; } ctl->ctlm = ctl_mgr; ctl->id = c; ctl->reg_offset = ctl_cfg->base[c]; ctl->status = 0; spin_lock_init(&ctl->hw_lock); } /* * In bonded DSI case, CTL0 and CTL1 are always assigned to two DSI * interfaces to support single FLUSH feature (Flush CTL0 and CTL1 when * only write into CTL0's FLUSH register) to keep two DSI pipes in sync. * Single FLUSH is supported from hw rev v3.0. */ for (c = 0; c < ARRAY_SIZE(hw_cfg->intf.connect); c++) if (hw_cfg->intf.connect[c] == INTF_DSI) dsi_cnt++; if ((rev >= 3) && (dsi_cnt > 1)) { ctl_mgr->single_flush_supported = true; /* Reserve CTL0/1 for INTF1/2 */ ctl_mgr->ctls[0].status |= CTL_STAT_BOOKED; ctl_mgr->ctls[1].status |= CTL_STAT_BOOKED; } spin_unlock_irqrestore(&ctl_mgr->pool_lock, flags); DBG("Pool of %d CTLs created.", ctl_mgr->nctl); return ctl_mgr; fail: if (ctl_mgr) mdp5_ctlm_destroy(ctl_mgr); return ERR_PTR(ret); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1