Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Dmitry Eremin-Solenikov | 2271 | 44.70% | 20 | 43.48% |
Archit Taneja | 2263 | 44.54% | 4 | 8.70% |
Hai Li | 261 | 5.14% | 8 | 17.39% |
Jonathan Marek | 84 | 1.65% | 1 | 2.17% |
Marijn Suijten | 81 | 1.59% | 5 | 10.87% |
Doug Anderson | 57 | 1.12% | 1 | 2.17% |
Konrad Dybcio | 28 | 0.55% | 1 | 2.17% |
Loic Poulain | 13 | 0.26% | 1 | 2.17% |
Vladimir Lypak | 11 | 0.22% | 1 | 2.17% |
Mamta Shukla | 4 | 0.08% | 1 | 2.17% |
Rob Clark | 3 | 0.06% | 1 | 2.17% |
Fabian Frederick | 3 | 0.06% | 1 | 2.17% |
Thomas Gleixner | 2 | 0.04% | 1 | 2.17% |
Total | 5081 | 46 |
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2016, The Linux Foundation. All rights reserved. */ #include <linux/clk.h> #include <linux/clk-provider.h> #include <linux/delay.h> #include "dsi_phy.h" #include "dsi.xml.h" #include "dsi_phy_14nm.xml.h" #define PHY_14NM_CKLN_IDX 4 /* * DSI PLL 14nm - clock diagram (eg: DSI0): * * dsi0n1_postdiv_clk * | * | * +----+ | +----+ * dsi0vco_clk ---| n1 |--o--| /8 |-- dsi0pllbyte * +----+ | +----+ * | dsi0n1_postdivby2_clk * | +----+ | * o---| /2 |--o--|\ * | +----+ | \ +----+ * | | |--| n2 |-- dsi0pll * o--------------| / +----+ * |/ */ #define POLL_MAX_READS 15 #define POLL_TIMEOUT_US 1000 #define VCO_REF_CLK_RATE 19200000 #define VCO_MIN_RATE 1300000000UL #define VCO_MAX_RATE 2600000000UL struct dsi_pll_config { u64 vco_current_rate; u32 ssc_en; /* SSC enable/disable */ /* fixed params */ u32 plllock_cnt; u32 ssc_center; u32 ssc_adj_period; u32 ssc_spread; u32 ssc_freq; /* calculated */ u32 dec_start; u32 div_frac_start; u32 ssc_period; u32 ssc_step_size; u32 plllock_cmp; u32 pll_vco_div_ref; u32 pll_vco_count; u32 pll_kvco_div_ref; u32 pll_kvco_count; }; struct pll_14nm_cached_state { unsigned long vco_rate; u8 n2postdiv; u8 n1postdiv; }; struct dsi_pll_14nm { struct clk_hw clk_hw; struct msm_dsi_phy *phy; /* protects REG_DSI_14nm_PHY_CMN_CLK_CFG0 register */ spinlock_t postdiv_lock; struct pll_14nm_cached_state cached_state; struct dsi_pll_14nm *slave; }; #define to_pll_14nm(x) container_of(x, struct dsi_pll_14nm, clk_hw) /* * Private struct for N1/N2 post-divider clocks. These clocks are similar to * the generic clk_divider class of clocks. The only difference is that it * also sets the slave DSI PLL's post-dividers if in bonded DSI mode */ struct dsi_pll_14nm_postdiv { struct clk_hw hw; /* divider params */ u8 shift; u8 width; u8 flags; /* same flags as used by clk_divider struct */ struct dsi_pll_14nm *pll; }; #define to_pll_14nm_postdiv(_hw) container_of(_hw, struct dsi_pll_14nm_postdiv, hw) /* * Global list of private DSI PLL struct pointers. We need this for bonded DSI * mode, where the master PLL's clk_ops needs access the slave's private data */ static struct dsi_pll_14nm *pll_14nm_list[DSI_MAX]; static bool pll_14nm_poll_for_ready(struct dsi_pll_14nm *pll_14nm, u32 nb_tries, u32 timeout_us) { bool pll_locked = false, pll_ready = false; void __iomem *base = pll_14nm->phy->pll_base; u32 tries, val; tries = nb_tries; while (tries--) { val = dsi_phy_read(base + REG_DSI_14nm_PHY_PLL_RESET_SM_READY_STATUS); pll_locked = !!(val & BIT(5)); if (pll_locked) break; udelay(timeout_us); } if (!pll_locked) goto out; tries = nb_tries; while (tries--) { val = dsi_phy_read(base + REG_DSI_14nm_PHY_PLL_RESET_SM_READY_STATUS); pll_ready = !!(val & BIT(0)); if (pll_ready) break; udelay(timeout_us); } out: DBG("DSI PLL is %slocked, %sready", pll_locked ? "" : "*not* ", pll_ready ? "" : "*not* "); return pll_locked && pll_ready; } static void dsi_pll_14nm_config_init(struct dsi_pll_config *pconf) { /* fixed input */ pconf->plllock_cnt = 1; /* * SSC is enabled by default. We might need DT props for configuring * some SSC params like PPM and center/down spread etc. */ pconf->ssc_en = 1; pconf->ssc_center = 0; /* down spread by default */ pconf->ssc_spread = 5; /* PPM / 1000 */ pconf->ssc_freq = 31500; /* default recommended */ pconf->ssc_adj_period = 37; } #define CEIL(x, y) (((x) + ((y) - 1)) / (y)) static void pll_14nm_ssc_calc(struct dsi_pll_14nm *pll, struct dsi_pll_config *pconf) { u32 period, ssc_period; u32 ref, rem; u64 step_size; DBG("vco=%lld ref=%d", pconf->vco_current_rate, VCO_REF_CLK_RATE); ssc_period = pconf->ssc_freq / 500; period = (u32)VCO_REF_CLK_RATE / 1000; ssc_period = CEIL(period, ssc_period); ssc_period -= 1; pconf->ssc_period = ssc_period; DBG("ssc freq=%d spread=%d period=%d", pconf->ssc_freq, pconf->ssc_spread, pconf->ssc_period); step_size = (u32)pconf->vco_current_rate; ref = VCO_REF_CLK_RATE; ref /= 1000; step_size = div_u64(step_size, ref); step_size <<= 20; step_size = div_u64(step_size, 1000); step_size *= pconf->ssc_spread; step_size = div_u64(step_size, 1000); step_size *= (pconf->ssc_adj_period + 1); rem = 0; step_size = div_u64_rem(step_size, ssc_period + 1, &rem); if (rem) step_size++; DBG("step_size=%lld", step_size); step_size &= 0x0ffff; /* take lower 16 bits */ pconf->ssc_step_size = step_size; } static void pll_14nm_dec_frac_calc(struct dsi_pll_14nm *pll, struct dsi_pll_config *pconf) { u64 multiplier = BIT(20); u64 dec_start_multiple, dec_start, pll_comp_val; u32 duration, div_frac_start; u64 vco_clk_rate = pconf->vco_current_rate; u64 fref = VCO_REF_CLK_RATE; DBG("vco_clk_rate=%lld ref_clk_rate=%lld", vco_clk_rate, fref); dec_start_multiple = div_u64(vco_clk_rate * multiplier, fref); dec_start = div_u64_rem(dec_start_multiple, multiplier, &div_frac_start); pconf->dec_start = (u32)dec_start; pconf->div_frac_start = div_frac_start; if (pconf->plllock_cnt == 0) duration = 1024; else if (pconf->plllock_cnt == 1) duration = 256; else if (pconf->plllock_cnt == 2) duration = 128; else duration = 32; pll_comp_val = duration * dec_start_multiple; pll_comp_val = div_u64(pll_comp_val, multiplier); do_div(pll_comp_val, 10); pconf->plllock_cmp = (u32)pll_comp_val; } static u32 pll_14nm_kvco_slop(u32 vrate) { u32 slop = 0; if (vrate > VCO_MIN_RATE && vrate <= 1800000000UL) slop = 600; else if (vrate > 1800000000UL && vrate < 2300000000UL) slop = 400; else if (vrate > 2300000000UL && vrate < VCO_MAX_RATE) slop = 280; return slop; } static void pll_14nm_calc_vco_count(struct dsi_pll_14nm *pll, struct dsi_pll_config *pconf) { u64 vco_clk_rate = pconf->vco_current_rate; u64 fref = VCO_REF_CLK_RATE; u32 vco_measure_time = 5; u32 kvco_measure_time = 5; u64 data; u32 cnt; data = fref * vco_measure_time; do_div(data, 1000000); data &= 0x03ff; /* 10 bits */ data -= 2; pconf->pll_vco_div_ref = data; data = div_u64(vco_clk_rate, 1000000); /* unit is Mhz */ data *= vco_measure_time; do_div(data, 10); pconf->pll_vco_count = data; data = fref * kvco_measure_time; do_div(data, 1000000); data &= 0x03ff; /* 10 bits */ data -= 1; pconf->pll_kvco_div_ref = data; cnt = pll_14nm_kvco_slop(vco_clk_rate); cnt *= 2; cnt /= 100; cnt *= kvco_measure_time; pconf->pll_kvco_count = cnt; } static void pll_db_commit_ssc(struct dsi_pll_14nm *pll, struct dsi_pll_config *pconf) { void __iomem *base = pll->phy->pll_base; u8 data; data = pconf->ssc_adj_period; data &= 0x0ff; dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_SSC_ADJ_PER1, data); data = (pconf->ssc_adj_period >> 8); data &= 0x03; dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_SSC_ADJ_PER2, data); data = pconf->ssc_period; data &= 0x0ff; dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_SSC_PER1, data); data = (pconf->ssc_period >> 8); data &= 0x0ff; dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_SSC_PER2, data); data = pconf->ssc_step_size; data &= 0x0ff; dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_SSC_STEP_SIZE1, data); data = (pconf->ssc_step_size >> 8); data &= 0x0ff; dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_SSC_STEP_SIZE2, data); data = (pconf->ssc_center & 0x01); data <<= 1; data |= 0x01; /* enable */ dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_SSC_EN_CENTER, data); wmb(); /* make sure register committed */ } static void pll_db_commit_common(struct dsi_pll_14nm *pll, struct dsi_pll_config *pconf) { void __iomem *base = pll->phy->pll_base; u8 data; /* confgiure the non frequency dependent pll registers */ data = 0; dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_SYSCLK_EN_RESET, data); dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_TXCLK_EN, 1); dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_RESETSM_CNTRL, 48); dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_RESETSM_CNTRL2, 4 << 3); /* bandgap_timer */ dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_RESETSM_CNTRL5, 5); /* pll_wakeup_timer */ data = pconf->pll_vco_div_ref & 0xff; dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_VCO_DIV_REF1, data); data = (pconf->pll_vco_div_ref >> 8) & 0x3; dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_VCO_DIV_REF2, data); data = pconf->pll_kvco_div_ref & 0xff; dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_KVCO_DIV_REF1, data); data = (pconf->pll_kvco_div_ref >> 8) & 0x3; dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_KVCO_DIV_REF2, data); dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_PLL_MISC1, 16); dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_IE_TRIM, 4); dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_IP_TRIM, 4); dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_CP_SET_CUR, 1 << 3 | 1); dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_PLL_ICPCSET, 0 << 3 | 0); dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_PLL_ICPMSET, 0 << 3 | 0); dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_PLL_ICP_SET, 4 << 3 | 4); dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_PLL_LPF1, 1 << 4 | 11); dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_IPTAT_TRIM, 7); dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_PLL_CRCTRL, 1 << 4 | 2); } static void pll_14nm_software_reset(struct dsi_pll_14nm *pll_14nm) { void __iomem *cmn_base = pll_14nm->phy->base; /* de assert pll start and apply pll sw reset */ /* stop pll */ dsi_phy_write(cmn_base + REG_DSI_14nm_PHY_CMN_PLL_CNTRL, 0); /* pll sw reset */ dsi_phy_write_udelay(cmn_base + REG_DSI_14nm_PHY_CMN_CTRL_1, 0x20, 10); wmb(); /* make sure register committed */ dsi_phy_write(cmn_base + REG_DSI_14nm_PHY_CMN_CTRL_1, 0); wmb(); /* make sure register committed */ } static void pll_db_commit_14nm(struct dsi_pll_14nm *pll, struct dsi_pll_config *pconf) { void __iomem *base = pll->phy->pll_base; void __iomem *cmn_base = pll->phy->base; u8 data; DBG("DSI%d PLL", pll->phy->id); dsi_phy_write(cmn_base + REG_DSI_14nm_PHY_CMN_LDO_CNTRL, 0x3c); pll_db_commit_common(pll, pconf); pll_14nm_software_reset(pll); /* Use the /2 path in Mux */ dsi_phy_write(cmn_base + REG_DSI_14nm_PHY_CMN_CLK_CFG1, 1); data = 0xff; /* data, clk, pll normal operation */ dsi_phy_write(cmn_base + REG_DSI_14nm_PHY_CMN_CTRL_0, data); /* configure the frequency dependent pll registers */ data = pconf->dec_start; dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_DEC_START, data); data = pconf->div_frac_start & 0xff; dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_DIV_FRAC_START1, data); data = (pconf->div_frac_start >> 8) & 0xff; dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_DIV_FRAC_START2, data); data = (pconf->div_frac_start >> 16) & 0xf; dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_DIV_FRAC_START3, data); data = pconf->plllock_cmp & 0xff; dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_PLLLOCK_CMP1, data); data = (pconf->plllock_cmp >> 8) & 0xff; dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_PLLLOCK_CMP2, data); data = (pconf->plllock_cmp >> 16) & 0x3; dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_PLLLOCK_CMP3, data); data = pconf->plllock_cnt << 1 | 0 << 3; /* plllock_rng */ dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_PLLLOCK_CMP_EN, data); data = pconf->pll_vco_count & 0xff; dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_VCO_COUNT1, data); data = (pconf->pll_vco_count >> 8) & 0xff; dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_VCO_COUNT2, data); data = pconf->pll_kvco_count & 0xff; dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_KVCO_COUNT1, data); data = (pconf->pll_kvco_count >> 8) & 0x3; dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_KVCO_COUNT2, data); /* * High nibble configures the post divider internal to the VCO. It's * fixed to divide by 1 for now. * * 0: divided by 1 * 1: divided by 2 * 2: divided by 4 * 3: divided by 8 */ dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_PLL_LPF2_POSTDIV, 0 << 4 | 3); if (pconf->ssc_en) pll_db_commit_ssc(pll, pconf); wmb(); /* make sure register committed */ } /* * VCO clock Callbacks */ static int dsi_pll_14nm_vco_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct dsi_pll_14nm *pll_14nm = to_pll_14nm(hw); struct dsi_pll_config conf; DBG("DSI PLL%d rate=%lu, parent's=%lu", pll_14nm->phy->id, rate, parent_rate); dsi_pll_14nm_config_init(&conf); conf.vco_current_rate = rate; pll_14nm_dec_frac_calc(pll_14nm, &conf); if (conf.ssc_en) pll_14nm_ssc_calc(pll_14nm, &conf); pll_14nm_calc_vco_count(pll_14nm, &conf); /* commit the slave DSI PLL registers if we're master. Note that we * don't lock the slave PLL. We just ensure that the PLL/PHY registers * of the master and slave are identical */ if (pll_14nm->phy->usecase == MSM_DSI_PHY_MASTER) { struct dsi_pll_14nm *pll_14nm_slave = pll_14nm->slave; pll_db_commit_14nm(pll_14nm_slave, &conf); } pll_db_commit_14nm(pll_14nm, &conf); return 0; } static unsigned long dsi_pll_14nm_vco_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct dsi_pll_14nm *pll_14nm = to_pll_14nm(hw); void __iomem *base = pll_14nm->phy->pll_base; u64 vco_rate, multiplier = BIT(20); u32 div_frac_start; u32 dec_start; u64 ref_clk = parent_rate; dec_start = dsi_phy_read(base + REG_DSI_14nm_PHY_PLL_DEC_START); dec_start &= 0x0ff; DBG("dec_start = %x", dec_start); div_frac_start = (dsi_phy_read(base + REG_DSI_14nm_PHY_PLL_DIV_FRAC_START3) & 0xf) << 16; div_frac_start |= (dsi_phy_read(base + REG_DSI_14nm_PHY_PLL_DIV_FRAC_START2) & 0xff) << 8; div_frac_start |= dsi_phy_read(base + REG_DSI_14nm_PHY_PLL_DIV_FRAC_START1) & 0xff; DBG("div_frac_start = %x", div_frac_start); vco_rate = ref_clk * dec_start; vco_rate += ((ref_clk * div_frac_start) / multiplier); /* * Recalculating the rate from dec_start and frac_start doesn't end up * the rate we originally set. Convert the freq to KHz, round it up and * convert it back to MHz. */ vco_rate = DIV_ROUND_UP_ULL(vco_rate, 1000) * 1000; DBG("returning vco rate = %lu", (unsigned long)vco_rate); return (unsigned long)vco_rate; } static int dsi_pll_14nm_vco_prepare(struct clk_hw *hw) { struct dsi_pll_14nm *pll_14nm = to_pll_14nm(hw); void __iomem *base = pll_14nm->phy->pll_base; void __iomem *cmn_base = pll_14nm->phy->base; bool locked; DBG(""); if (unlikely(pll_14nm->phy->pll_on)) return 0; if (dsi_pll_14nm_vco_recalc_rate(hw, VCO_REF_CLK_RATE) == 0) dsi_pll_14nm_vco_set_rate(hw, pll_14nm->phy->cfg->min_pll_rate, VCO_REF_CLK_RATE); dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_VREF_CFG1, 0x10); dsi_phy_write(cmn_base + REG_DSI_14nm_PHY_CMN_PLL_CNTRL, 1); locked = pll_14nm_poll_for_ready(pll_14nm, POLL_MAX_READS, POLL_TIMEOUT_US); if (unlikely(!locked)) { DRM_DEV_ERROR(&pll_14nm->phy->pdev->dev, "DSI PLL lock failed\n"); return -EINVAL; } DBG("DSI PLL lock success"); pll_14nm->phy->pll_on = true; return 0; } static void dsi_pll_14nm_vco_unprepare(struct clk_hw *hw) { struct dsi_pll_14nm *pll_14nm = to_pll_14nm(hw); void __iomem *cmn_base = pll_14nm->phy->base; DBG(""); if (unlikely(!pll_14nm->phy->pll_on)) return; dsi_phy_write(cmn_base + REG_DSI_14nm_PHY_CMN_PLL_CNTRL, 0); pll_14nm->phy->pll_on = false; } static long dsi_pll_14nm_clk_round_rate(struct clk_hw *hw, unsigned long rate, unsigned long *parent_rate) { struct dsi_pll_14nm *pll_14nm = to_pll_14nm(hw); if (rate < pll_14nm->phy->cfg->min_pll_rate) return pll_14nm->phy->cfg->min_pll_rate; else if (rate > pll_14nm->phy->cfg->max_pll_rate) return pll_14nm->phy->cfg->max_pll_rate; else return rate; } static const struct clk_ops clk_ops_dsi_pll_14nm_vco = { .round_rate = dsi_pll_14nm_clk_round_rate, .set_rate = dsi_pll_14nm_vco_set_rate, .recalc_rate = dsi_pll_14nm_vco_recalc_rate, .prepare = dsi_pll_14nm_vco_prepare, .unprepare = dsi_pll_14nm_vco_unprepare, }; /* * N1 and N2 post-divider clock callbacks */ #define div_mask(width) ((1 << (width)) - 1) static unsigned long dsi_pll_14nm_postdiv_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct dsi_pll_14nm_postdiv *postdiv = to_pll_14nm_postdiv(hw); struct dsi_pll_14nm *pll_14nm = postdiv->pll; void __iomem *base = pll_14nm->phy->base; u8 shift = postdiv->shift; u8 width = postdiv->width; u32 val; DBG("DSI%d PLL parent rate=%lu", pll_14nm->phy->id, parent_rate); val = dsi_phy_read(base + REG_DSI_14nm_PHY_CMN_CLK_CFG0) >> shift; val &= div_mask(width); return divider_recalc_rate(hw, parent_rate, val, NULL, postdiv->flags, width); } static long dsi_pll_14nm_postdiv_round_rate(struct clk_hw *hw, unsigned long rate, unsigned long *prate) { struct dsi_pll_14nm_postdiv *postdiv = to_pll_14nm_postdiv(hw); struct dsi_pll_14nm *pll_14nm = postdiv->pll; DBG("DSI%d PLL parent rate=%lu", pll_14nm->phy->id, rate); return divider_round_rate(hw, rate, prate, NULL, postdiv->width, postdiv->flags); } static int dsi_pll_14nm_postdiv_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct dsi_pll_14nm_postdiv *postdiv = to_pll_14nm_postdiv(hw); struct dsi_pll_14nm *pll_14nm = postdiv->pll; void __iomem *base = pll_14nm->phy->base; spinlock_t *lock = &pll_14nm->postdiv_lock; u8 shift = postdiv->shift; u8 width = postdiv->width; unsigned int value; unsigned long flags = 0; u32 val; DBG("DSI%d PLL parent rate=%lu parent rate %lu", pll_14nm->phy->id, rate, parent_rate); value = divider_get_val(rate, parent_rate, NULL, postdiv->width, postdiv->flags); spin_lock_irqsave(lock, flags); val = dsi_phy_read(base + REG_DSI_14nm_PHY_CMN_CLK_CFG0); val &= ~(div_mask(width) << shift); val |= value << shift; dsi_phy_write(base + REG_DSI_14nm_PHY_CMN_CLK_CFG0, val); /* If we're master in bonded DSI mode, then the slave PLL's post-dividers * follow the master's post dividers */ if (pll_14nm->phy->usecase == MSM_DSI_PHY_MASTER) { struct dsi_pll_14nm *pll_14nm_slave = pll_14nm->slave; void __iomem *slave_base = pll_14nm_slave->phy->base; dsi_phy_write(slave_base + REG_DSI_14nm_PHY_CMN_CLK_CFG0, val); } spin_unlock_irqrestore(lock, flags); return 0; } static const struct clk_ops clk_ops_dsi_pll_14nm_postdiv = { .recalc_rate = dsi_pll_14nm_postdiv_recalc_rate, .round_rate = dsi_pll_14nm_postdiv_round_rate, .set_rate = dsi_pll_14nm_postdiv_set_rate, }; /* * PLL Callbacks */ static void dsi_14nm_pll_save_state(struct msm_dsi_phy *phy) { struct dsi_pll_14nm *pll_14nm = to_pll_14nm(phy->vco_hw); struct pll_14nm_cached_state *cached_state = &pll_14nm->cached_state; void __iomem *cmn_base = pll_14nm->phy->base; u32 data; data = dsi_phy_read(cmn_base + REG_DSI_14nm_PHY_CMN_CLK_CFG0); cached_state->n1postdiv = data & 0xf; cached_state->n2postdiv = (data >> 4) & 0xf; DBG("DSI%d PLL save state %x %x", pll_14nm->phy->id, cached_state->n1postdiv, cached_state->n2postdiv); cached_state->vco_rate = clk_hw_get_rate(phy->vco_hw); } static int dsi_14nm_pll_restore_state(struct msm_dsi_phy *phy) { struct dsi_pll_14nm *pll_14nm = to_pll_14nm(phy->vco_hw); struct pll_14nm_cached_state *cached_state = &pll_14nm->cached_state; void __iomem *cmn_base = pll_14nm->phy->base; u32 data; int ret; ret = dsi_pll_14nm_vco_set_rate(phy->vco_hw, cached_state->vco_rate, 0); if (ret) { DRM_DEV_ERROR(&pll_14nm->phy->pdev->dev, "restore vco rate failed. ret=%d\n", ret); return ret; } data = cached_state->n1postdiv | (cached_state->n2postdiv << 4); DBG("DSI%d PLL restore state %x %x", pll_14nm->phy->id, cached_state->n1postdiv, cached_state->n2postdiv); dsi_phy_write(cmn_base + REG_DSI_14nm_PHY_CMN_CLK_CFG0, data); /* also restore post-dividers for slave DSI PLL */ if (phy->usecase == MSM_DSI_PHY_MASTER) { struct dsi_pll_14nm *pll_14nm_slave = pll_14nm->slave; void __iomem *slave_base = pll_14nm_slave->phy->base; dsi_phy_write(slave_base + REG_DSI_14nm_PHY_CMN_CLK_CFG0, data); } return 0; } static int dsi_14nm_set_usecase(struct msm_dsi_phy *phy) { struct dsi_pll_14nm *pll_14nm = to_pll_14nm(phy->vco_hw); void __iomem *base = phy->pll_base; u32 clkbuflr_en, bandgap = 0; switch (phy->usecase) { case MSM_DSI_PHY_STANDALONE: clkbuflr_en = 0x1; break; case MSM_DSI_PHY_MASTER: clkbuflr_en = 0x3; pll_14nm->slave = pll_14nm_list[(pll_14nm->phy->id + 1) % DSI_MAX]; break; case MSM_DSI_PHY_SLAVE: clkbuflr_en = 0x0; bandgap = 0x3; break; default: return -EINVAL; } dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_CLKBUFLR_EN, clkbuflr_en); if (bandgap) dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_PLL_BANDGAP, bandgap); return 0; } static struct clk_hw *pll_14nm_postdiv_register(struct dsi_pll_14nm *pll_14nm, const char *name, const struct clk_hw *parent_hw, unsigned long flags, u8 shift) { struct dsi_pll_14nm_postdiv *pll_postdiv; struct device *dev = &pll_14nm->phy->pdev->dev; struct clk_init_data postdiv_init = { .parent_hws = (const struct clk_hw *[]) { parent_hw }, .num_parents = 1, .name = name, .flags = flags, .ops = &clk_ops_dsi_pll_14nm_postdiv, }; int ret; pll_postdiv = devm_kzalloc(dev, sizeof(*pll_postdiv), GFP_KERNEL); if (!pll_postdiv) return ERR_PTR(-ENOMEM); pll_postdiv->pll = pll_14nm; pll_postdiv->shift = shift; /* both N1 and N2 postdividers are 4 bits wide */ pll_postdiv->width = 4; /* range of each divider is from 1 to 15 */ pll_postdiv->flags = CLK_DIVIDER_ONE_BASED; pll_postdiv->hw.init = &postdiv_init; ret = devm_clk_hw_register(dev, &pll_postdiv->hw); if (ret) return ERR_PTR(ret); return &pll_postdiv->hw; } static int pll_14nm_register(struct dsi_pll_14nm *pll_14nm, struct clk_hw **provided_clocks) { char clk_name[32]; struct clk_init_data vco_init = { .parent_data = &(const struct clk_parent_data) { .fw_name = "ref", }, .num_parents = 1, .name = clk_name, .flags = CLK_IGNORE_UNUSED, .ops = &clk_ops_dsi_pll_14nm_vco, }; struct device *dev = &pll_14nm->phy->pdev->dev; struct clk_hw *hw, *n1_postdiv, *n1_postdivby2; int ret; DBG("DSI%d", pll_14nm->phy->id); snprintf(clk_name, sizeof(clk_name), "dsi%dvco_clk", pll_14nm->phy->id); pll_14nm->clk_hw.init = &vco_init; ret = devm_clk_hw_register(dev, &pll_14nm->clk_hw); if (ret) return ret; snprintf(clk_name, sizeof(clk_name), "dsi%dn1_postdiv_clk", pll_14nm->phy->id); /* N1 postdiv, bits 0-3 in REG_DSI_14nm_PHY_CMN_CLK_CFG0 */ n1_postdiv = pll_14nm_postdiv_register(pll_14nm, clk_name, &pll_14nm->clk_hw, CLK_SET_RATE_PARENT, 0); if (IS_ERR(n1_postdiv)) return PTR_ERR(n1_postdiv); snprintf(clk_name, sizeof(clk_name), "dsi%dpllbyte", pll_14nm->phy->id); /* DSI Byte clock = VCO_CLK / N1 / 8 */ hw = devm_clk_hw_register_fixed_factor_parent_hw(dev, clk_name, n1_postdiv, CLK_SET_RATE_PARENT, 1, 8); if (IS_ERR(hw)) return PTR_ERR(hw); provided_clocks[DSI_BYTE_PLL_CLK] = hw; snprintf(clk_name, sizeof(clk_name), "dsi%dn1_postdivby2_clk", pll_14nm->phy->id); /* * Skip the mux for now, force DSICLK_SEL to 1, Add a /2 divider * on the way. Don't let it set parent. */ n1_postdivby2 = devm_clk_hw_register_fixed_factor_parent_hw(dev, clk_name, n1_postdiv, 0, 1, 2); if (IS_ERR(n1_postdivby2)) return PTR_ERR(n1_postdivby2); snprintf(clk_name, sizeof(clk_name), "dsi%dpll", pll_14nm->phy->id); /* DSI pixel clock = VCO_CLK / N1 / 2 / N2 * This is the output of N2 post-divider, bits 4-7 in * REG_DSI_14nm_PHY_CMN_CLK_CFG0. Don't let it set parent. */ hw = pll_14nm_postdiv_register(pll_14nm, clk_name, n1_postdivby2, 0, 4); if (IS_ERR(hw)) return PTR_ERR(hw); provided_clocks[DSI_PIXEL_PLL_CLK] = hw; return 0; } static int dsi_pll_14nm_init(struct msm_dsi_phy *phy) { struct platform_device *pdev = phy->pdev; struct dsi_pll_14nm *pll_14nm; int ret; if (!pdev) return -ENODEV; pll_14nm = devm_kzalloc(&pdev->dev, sizeof(*pll_14nm), GFP_KERNEL); if (!pll_14nm) return -ENOMEM; DBG("PLL%d", phy->id); pll_14nm_list[phy->id] = pll_14nm; spin_lock_init(&pll_14nm->postdiv_lock); pll_14nm->phy = phy; ret = pll_14nm_register(pll_14nm, phy->provided_clocks->hws); if (ret) { DRM_DEV_ERROR(&pdev->dev, "failed to register PLL: %d\n", ret); return ret; } phy->vco_hw = &pll_14nm->clk_hw; return 0; } static void dsi_14nm_dphy_set_timing(struct msm_dsi_phy *phy, struct msm_dsi_dphy_timing *timing, int lane_idx) { void __iomem *base = phy->lane_base; bool clk_ln = (lane_idx == PHY_14NM_CKLN_IDX); u32 zero = clk_ln ? timing->clk_zero : timing->hs_zero; u32 prepare = clk_ln ? timing->clk_prepare : timing->hs_prepare; u32 trail = clk_ln ? timing->clk_trail : timing->hs_trail; u32 rqst = clk_ln ? timing->hs_rqst_ckln : timing->hs_rqst; u32 prep_dly = clk_ln ? timing->hs_prep_dly_ckln : timing->hs_prep_dly; u32 halfbyte_en = clk_ln ? timing->hs_halfbyte_en_ckln : timing->hs_halfbyte_en; dsi_phy_write(base + REG_DSI_14nm_PHY_LN_TIMING_CTRL_4(lane_idx), DSI_14nm_PHY_LN_TIMING_CTRL_4_HS_EXIT(timing->hs_exit)); dsi_phy_write(base + REG_DSI_14nm_PHY_LN_TIMING_CTRL_5(lane_idx), DSI_14nm_PHY_LN_TIMING_CTRL_5_HS_ZERO(zero)); dsi_phy_write(base + REG_DSI_14nm_PHY_LN_TIMING_CTRL_6(lane_idx), DSI_14nm_PHY_LN_TIMING_CTRL_6_HS_PREPARE(prepare)); dsi_phy_write(base + REG_DSI_14nm_PHY_LN_TIMING_CTRL_7(lane_idx), DSI_14nm_PHY_LN_TIMING_CTRL_7_HS_TRAIL(trail)); dsi_phy_write(base + REG_DSI_14nm_PHY_LN_TIMING_CTRL_8(lane_idx), DSI_14nm_PHY_LN_TIMING_CTRL_8_HS_RQST(rqst)); dsi_phy_write(base + REG_DSI_14nm_PHY_LN_CFG0(lane_idx), DSI_14nm_PHY_LN_CFG0_PREPARE_DLY(prep_dly)); dsi_phy_write(base + REG_DSI_14nm_PHY_LN_CFG1(lane_idx), halfbyte_en ? DSI_14nm_PHY_LN_CFG1_HALFBYTECLK_EN : 0); dsi_phy_write(base + REG_DSI_14nm_PHY_LN_TIMING_CTRL_9(lane_idx), DSI_14nm_PHY_LN_TIMING_CTRL_9_TA_GO(timing->ta_go) | DSI_14nm_PHY_LN_TIMING_CTRL_9_TA_SURE(timing->ta_sure)); dsi_phy_write(base + REG_DSI_14nm_PHY_LN_TIMING_CTRL_10(lane_idx), DSI_14nm_PHY_LN_TIMING_CTRL_10_TA_GET(timing->ta_get)); dsi_phy_write(base + REG_DSI_14nm_PHY_LN_TIMING_CTRL_11(lane_idx), DSI_14nm_PHY_LN_TIMING_CTRL_11_TRIG3_CMD(0xa0)); } static int dsi_14nm_phy_enable(struct msm_dsi_phy *phy, struct msm_dsi_phy_clk_request *clk_req) { struct msm_dsi_dphy_timing *timing = &phy->timing; u32 data; int i; int ret; void __iomem *base = phy->base; void __iomem *lane_base = phy->lane_base; u32 glbl_test_ctrl; if (msm_dsi_dphy_timing_calc_v2(timing, clk_req)) { DRM_DEV_ERROR(&phy->pdev->dev, "%s: D-PHY timing calculation failed\n", __func__); return -EINVAL; } data = 0x1c; if (phy->usecase != MSM_DSI_PHY_STANDALONE) data |= DSI_14nm_PHY_CMN_LDO_CNTRL_VREG_CTRL(32); dsi_phy_write(base + REG_DSI_14nm_PHY_CMN_LDO_CNTRL, data); dsi_phy_write(base + REG_DSI_14nm_PHY_CMN_GLBL_TEST_CTRL, 0x1); /* 4 data lanes + 1 clk lane configuration */ for (i = 0; i < 5; i++) { dsi_phy_write(lane_base + REG_DSI_14nm_PHY_LN_VREG_CNTRL(i), 0x1d); dsi_phy_write(lane_base + REG_DSI_14nm_PHY_LN_STRENGTH_CTRL_0(i), 0xff); dsi_phy_write(lane_base + REG_DSI_14nm_PHY_LN_STRENGTH_CTRL_1(i), (i == PHY_14NM_CKLN_IDX) ? 0x00 : 0x06); dsi_phy_write(lane_base + REG_DSI_14nm_PHY_LN_CFG3(i), (i == PHY_14NM_CKLN_IDX) ? 0x8f : 0x0f); dsi_phy_write(lane_base + REG_DSI_14nm_PHY_LN_CFG2(i), 0x10); dsi_phy_write(lane_base + REG_DSI_14nm_PHY_LN_TEST_DATAPATH(i), 0); dsi_phy_write(lane_base + REG_DSI_14nm_PHY_LN_TEST_STR(i), 0x88); dsi_14nm_dphy_set_timing(phy, timing, i); } /* Make sure PLL is not start */ dsi_phy_write(base + REG_DSI_14nm_PHY_CMN_PLL_CNTRL, 0x00); wmb(); /* make sure everything is written before reset and enable */ /* reset digital block */ dsi_phy_write(base + REG_DSI_14nm_PHY_CMN_CTRL_1, 0x80); wmb(); /* ensure reset is asserted */ udelay(100); dsi_phy_write(base + REG_DSI_14nm_PHY_CMN_CTRL_1, 0x00); glbl_test_ctrl = dsi_phy_read(base + REG_DSI_14nm_PHY_CMN_GLBL_TEST_CTRL); if (phy->id == DSI_1 && phy->usecase == MSM_DSI_PHY_SLAVE) glbl_test_ctrl |= DSI_14nm_PHY_CMN_GLBL_TEST_CTRL_BITCLK_HS_SEL; else glbl_test_ctrl &= ~DSI_14nm_PHY_CMN_GLBL_TEST_CTRL_BITCLK_HS_SEL; dsi_phy_write(base + REG_DSI_14nm_PHY_CMN_GLBL_TEST_CTRL, glbl_test_ctrl); ret = dsi_14nm_set_usecase(phy); if (ret) { DRM_DEV_ERROR(&phy->pdev->dev, "%s: set pll usecase failed, %d\n", __func__, ret); return ret; } /* Remove power down from PLL and all lanes */ dsi_phy_write(base + REG_DSI_14nm_PHY_CMN_CTRL_0, 0xff); return 0; } static void dsi_14nm_phy_disable(struct msm_dsi_phy *phy) { dsi_phy_write(phy->base + REG_DSI_14nm_PHY_CMN_GLBL_TEST_CTRL, 0); dsi_phy_write(phy->base + REG_DSI_14nm_PHY_CMN_CTRL_0, 0); /* ensure that the phy is completely disabled */ wmb(); } static const struct regulator_bulk_data dsi_phy_14nm_17mA_regulators[] = { { .supply = "vcca", .init_load_uA = 17000 }, }; static const struct regulator_bulk_data dsi_phy_14nm_73p4mA_regulators[] = { { .supply = "vcca", .init_load_uA = 73400 }, }; const struct msm_dsi_phy_cfg dsi_phy_14nm_cfgs = { .has_phy_lane = true, .regulator_data = dsi_phy_14nm_17mA_regulators, .num_regulators = ARRAY_SIZE(dsi_phy_14nm_17mA_regulators), .ops = { .enable = dsi_14nm_phy_enable, .disable = dsi_14nm_phy_disable, .pll_init = dsi_pll_14nm_init, .save_pll_state = dsi_14nm_pll_save_state, .restore_pll_state = dsi_14nm_pll_restore_state, }, .min_pll_rate = VCO_MIN_RATE, .max_pll_rate = VCO_MAX_RATE, .io_start = { 0x994400, 0x996400 }, .num_dsi_phy = 2, }; const struct msm_dsi_phy_cfg dsi_phy_14nm_660_cfgs = { .has_phy_lane = true, .regulator_data = dsi_phy_14nm_73p4mA_regulators, .num_regulators = ARRAY_SIZE(dsi_phy_14nm_73p4mA_regulators), .ops = { .enable = dsi_14nm_phy_enable, .disable = dsi_14nm_phy_disable, .pll_init = dsi_pll_14nm_init, .save_pll_state = dsi_14nm_pll_save_state, .restore_pll_state = dsi_14nm_pll_restore_state, }, .min_pll_rate = VCO_MIN_RATE, .max_pll_rate = VCO_MAX_RATE, .io_start = { 0xc994400, 0xc996400 }, .num_dsi_phy = 2, }; const struct msm_dsi_phy_cfg dsi_phy_14nm_8953_cfgs = { .has_phy_lane = true, .regulator_data = dsi_phy_14nm_17mA_regulators, .num_regulators = ARRAY_SIZE(dsi_phy_14nm_17mA_regulators), .ops = { .enable = dsi_14nm_phy_enable, .disable = dsi_14nm_phy_disable, .pll_init = dsi_pll_14nm_init, .save_pll_state = dsi_14nm_pll_save_state, .restore_pll_state = dsi_14nm_pll_restore_state, }, .min_pll_rate = VCO_MIN_RATE, .max_pll_rate = VCO_MAX_RATE, .io_start = { 0x1a94400, 0x1a96400 }, .num_dsi_phy = 2, }; const struct msm_dsi_phy_cfg dsi_phy_14nm_2290_cfgs = { .has_phy_lane = true, .ops = { .enable = dsi_14nm_phy_enable, .disable = dsi_14nm_phy_disable, .pll_init = dsi_pll_14nm_init, .save_pll_state = dsi_14nm_pll_save_state, .restore_pll_state = dsi_14nm_pll_restore_state, }, .min_pll_rate = VCO_MIN_RATE, .max_pll_rate = VCO_MAX_RATE, .io_start = { 0x5e94400 }, .num_dsi_phy = 1, };
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1