Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Hai Li | 2038 | 45.73% | 11 | 24.44% |
Dmitry Eremin-Solenikov | 1349 | 30.27% | 18 | 40.00% |
Archit Taneja | 526 | 11.80% | 3 | 6.67% |
Luca Weiss | 246 | 5.52% | 1 | 2.22% |
Jonathan Marek | 94 | 2.11% | 1 | 2.22% |
Marijn Suijten | 74 | 1.66% | 4 | 8.89% |
Stephan Gerhold | 51 | 1.14% | 1 | 2.22% |
Doug Anderson | 49 | 1.10% | 1 | 2.22% |
Angelo G. Del Regno | 20 | 0.45% | 1 | 2.22% |
Mamta Shukla | 4 | 0.09% | 1 | 2.22% |
Rob Clark | 3 | 0.07% | 1 | 2.22% |
Thomas Gleixner | 2 | 0.04% | 1 | 2.22% |
Stephen Boyd | 1 | 0.02% | 1 | 2.22% |
Total | 4457 | 45 |
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2015, The Linux Foundation. All rights reserved. */ #include <linux/clk.h> #include <linux/clk-provider.h> #include "dsi_phy.h" #include "dsi.xml.h" #include "dsi_phy_28nm.xml.h" /* * DSI PLL 28nm - clock diagram (eg: DSI0): * * dsi0analog_postdiv_clk * | dsi0indirect_path_div2_clk * | | * +------+ | +----+ | |\ dsi0byte_mux * dsi0vco_clk --o--| DIV1 |--o--| /2 |--o--| \ | * | +------+ +----+ | m| | +----+ * | | u|--o--| /4 |-- dsi0pllbyte * | | x| +----+ * o--------------------------| / * | |/ * | +------+ * o----------| DIV3 |------------------------- dsi0pll * +------+ */ #define POLL_MAX_READS 10 #define POLL_TIMEOUT_US 50 #define VCO_REF_CLK_RATE 19200000 #define VCO_MIN_RATE 350000000 #define VCO_MAX_RATE 750000000 /* v2.0.0 28nm LP implementation */ #define DSI_PHY_28NM_QUIRK_PHY_LP BIT(0) #define DSI_PHY_28NM_QUIRK_PHY_8226 BIT(1) #define LPFR_LUT_SIZE 10 struct lpfr_cfg { unsigned long vco_rate; u32 resistance; }; /* Loop filter resistance: */ static const struct lpfr_cfg lpfr_lut[LPFR_LUT_SIZE] = { { 479500000, 8 }, { 480000000, 11 }, { 575500000, 8 }, { 576000000, 12 }, { 610500000, 8 }, { 659500000, 9 }, { 671500000, 10 }, { 672000000, 14 }, { 708500000, 10 }, { 750000000, 11 }, }; struct pll_28nm_cached_state { unsigned long vco_rate; u8 postdiv3; u8 postdiv1; u8 byte_mux; }; struct dsi_pll_28nm { struct clk_hw clk_hw; struct msm_dsi_phy *phy; struct pll_28nm_cached_state cached_state; }; #define to_pll_28nm(x) container_of(x, struct dsi_pll_28nm, clk_hw) static bool pll_28nm_poll_for_ready(struct dsi_pll_28nm *pll_28nm, u32 nb_tries, u32 timeout_us) { bool pll_locked = false; u32 val; while (nb_tries--) { val = dsi_phy_read(pll_28nm->phy->pll_base + REG_DSI_28nm_PHY_PLL_STATUS); pll_locked = !!(val & DSI_28nm_PHY_PLL_STATUS_PLL_RDY); if (pll_locked) break; udelay(timeout_us); } DBG("DSI PLL is %slocked", pll_locked ? "" : "*not* "); return pll_locked; } static void pll_28nm_software_reset(struct dsi_pll_28nm *pll_28nm) { void __iomem *base = pll_28nm->phy->pll_base; /* * Add HW recommended delays after toggling the software * reset bit off and back on. */ dsi_phy_write_udelay(base + REG_DSI_28nm_PHY_PLL_TEST_CFG, DSI_28nm_PHY_PLL_TEST_CFG_PLL_SW_RESET, 1); dsi_phy_write_udelay(base + REG_DSI_28nm_PHY_PLL_TEST_CFG, 0x00, 1); } /* * Clock Callbacks */ static int dsi_pll_28nm_clk_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct dsi_pll_28nm *pll_28nm = to_pll_28nm(hw); struct device *dev = &pll_28nm->phy->pdev->dev; void __iomem *base = pll_28nm->phy->pll_base; unsigned long div_fbx1000, gen_vco_clk; u32 refclk_cfg, frac_n_mode, frac_n_value; u32 sdm_cfg0, sdm_cfg1, sdm_cfg2, sdm_cfg3; u32 cal_cfg10, cal_cfg11; u32 rem; int i; VERB("rate=%lu, parent's=%lu", rate, parent_rate); /* Force postdiv2 to be div-4 */ dsi_phy_write(base + REG_DSI_28nm_PHY_PLL_POSTDIV2_CFG, 3); /* Configure the Loop filter resistance */ for (i = 0; i < LPFR_LUT_SIZE; i++) if (rate <= lpfr_lut[i].vco_rate) break; if (i == LPFR_LUT_SIZE) { DRM_DEV_ERROR(dev, "unable to get loop filter resistance. vco=%lu\n", rate); return -EINVAL; } dsi_phy_write(base + REG_DSI_28nm_PHY_PLL_LPFR_CFG, lpfr_lut[i].resistance); /* Loop filter capacitance values : c1 and c2 */ dsi_phy_write(base + REG_DSI_28nm_PHY_PLL_LPFC1_CFG, 0x70); dsi_phy_write(base + REG_DSI_28nm_PHY_PLL_LPFC2_CFG, 0x15); rem = rate % VCO_REF_CLK_RATE; if (rem) { refclk_cfg = DSI_28nm_PHY_PLL_REFCLK_CFG_DBLR; frac_n_mode = 1; div_fbx1000 = rate / (VCO_REF_CLK_RATE / 500); gen_vco_clk = div_fbx1000 * (VCO_REF_CLK_RATE / 500); } else { refclk_cfg = 0x0; frac_n_mode = 0; div_fbx1000 = rate / (VCO_REF_CLK_RATE / 1000); gen_vco_clk = div_fbx1000 * (VCO_REF_CLK_RATE / 1000); } DBG("refclk_cfg = %d", refclk_cfg); rem = div_fbx1000 % 1000; frac_n_value = (rem << 16) / 1000; DBG("div_fb = %lu", div_fbx1000); DBG("frac_n_value = %d", frac_n_value); DBG("Generated VCO Clock: %lu", gen_vco_clk); rem = 0; sdm_cfg1 = dsi_phy_read(base + REG_DSI_28nm_PHY_PLL_SDM_CFG1); sdm_cfg1 &= ~DSI_28nm_PHY_PLL_SDM_CFG1_DC_OFFSET__MASK; if (frac_n_mode) { sdm_cfg0 = 0x0; sdm_cfg0 |= DSI_28nm_PHY_PLL_SDM_CFG0_BYP_DIV(0); sdm_cfg1 |= DSI_28nm_PHY_PLL_SDM_CFG1_DC_OFFSET( (u32)(((div_fbx1000 / 1000) & 0x3f) - 1)); sdm_cfg3 = frac_n_value >> 8; sdm_cfg2 = frac_n_value & 0xff; } else { sdm_cfg0 = DSI_28nm_PHY_PLL_SDM_CFG0_BYP; sdm_cfg0 |= DSI_28nm_PHY_PLL_SDM_CFG0_BYP_DIV( (u32)(((div_fbx1000 / 1000) & 0x3f) - 1)); sdm_cfg1 |= DSI_28nm_PHY_PLL_SDM_CFG1_DC_OFFSET(0); sdm_cfg2 = 0; sdm_cfg3 = 0; } DBG("sdm_cfg0=%d", sdm_cfg0); DBG("sdm_cfg1=%d", sdm_cfg1); DBG("sdm_cfg2=%d", sdm_cfg2); DBG("sdm_cfg3=%d", sdm_cfg3); cal_cfg11 = (u32)(gen_vco_clk / (256 * 1000000)); cal_cfg10 = (u32)((gen_vco_clk % (256 * 1000000)) / 1000000); DBG("cal_cfg10=%d, cal_cfg11=%d", cal_cfg10, cal_cfg11); dsi_phy_write(base + REG_DSI_28nm_PHY_PLL_CHGPUMP_CFG, 0x02); dsi_phy_write(base + REG_DSI_28nm_PHY_PLL_CAL_CFG3, 0x2b); dsi_phy_write(base + REG_DSI_28nm_PHY_PLL_CAL_CFG4, 0x06); dsi_phy_write(base + REG_DSI_28nm_PHY_PLL_LKDET_CFG2, 0x0d); dsi_phy_write(base + REG_DSI_28nm_PHY_PLL_SDM_CFG1, sdm_cfg1); dsi_phy_write(base + REG_DSI_28nm_PHY_PLL_SDM_CFG2, DSI_28nm_PHY_PLL_SDM_CFG2_FREQ_SEED_7_0(sdm_cfg2)); dsi_phy_write(base + REG_DSI_28nm_PHY_PLL_SDM_CFG3, DSI_28nm_PHY_PLL_SDM_CFG3_FREQ_SEED_15_8(sdm_cfg3)); dsi_phy_write(base + REG_DSI_28nm_PHY_PLL_SDM_CFG4, 0x00); /* Add hardware recommended delay for correct PLL configuration */ if (pll_28nm->phy->cfg->quirks & DSI_PHY_28NM_QUIRK_PHY_LP) udelay(1000); else udelay(1); dsi_phy_write(base + REG_DSI_28nm_PHY_PLL_REFCLK_CFG, refclk_cfg); dsi_phy_write(base + REG_DSI_28nm_PHY_PLL_PWRGEN_CFG, 0x00); dsi_phy_write(base + REG_DSI_28nm_PHY_PLL_VCOLPF_CFG, 0x31); dsi_phy_write(base + REG_DSI_28nm_PHY_PLL_SDM_CFG0, sdm_cfg0); dsi_phy_write(base + REG_DSI_28nm_PHY_PLL_CAL_CFG0, 0x12); dsi_phy_write(base + REG_DSI_28nm_PHY_PLL_CAL_CFG6, 0x30); dsi_phy_write(base + REG_DSI_28nm_PHY_PLL_CAL_CFG7, 0x00); dsi_phy_write(base + REG_DSI_28nm_PHY_PLL_CAL_CFG8, 0x60); dsi_phy_write(base + REG_DSI_28nm_PHY_PLL_CAL_CFG9, 0x00); dsi_phy_write(base + REG_DSI_28nm_PHY_PLL_CAL_CFG10, cal_cfg10 & 0xff); dsi_phy_write(base + REG_DSI_28nm_PHY_PLL_CAL_CFG11, cal_cfg11 & 0xff); dsi_phy_write(base + REG_DSI_28nm_PHY_PLL_EFUSE_CFG, 0x20); return 0; } static int dsi_pll_28nm_clk_is_enabled(struct clk_hw *hw) { struct dsi_pll_28nm *pll_28nm = to_pll_28nm(hw); return pll_28nm_poll_for_ready(pll_28nm, POLL_MAX_READS, POLL_TIMEOUT_US); } static unsigned long dsi_pll_28nm_clk_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct dsi_pll_28nm *pll_28nm = to_pll_28nm(hw); void __iomem *base = pll_28nm->phy->pll_base; u32 sdm0, doubler, sdm_byp_div; u32 sdm_dc_off, sdm_freq_seed, sdm2, sdm3; u32 ref_clk = VCO_REF_CLK_RATE; unsigned long vco_rate; VERB("parent_rate=%lu", parent_rate); /* Check to see if the ref clk doubler is enabled */ doubler = dsi_phy_read(base + REG_DSI_28nm_PHY_PLL_REFCLK_CFG) & DSI_28nm_PHY_PLL_REFCLK_CFG_DBLR; ref_clk += (doubler * VCO_REF_CLK_RATE); /* see if it is integer mode or sdm mode */ sdm0 = dsi_phy_read(base + REG_DSI_28nm_PHY_PLL_SDM_CFG0); if (sdm0 & DSI_28nm_PHY_PLL_SDM_CFG0_BYP) { /* integer mode */ sdm_byp_div = FIELD( dsi_phy_read(base + REG_DSI_28nm_PHY_PLL_SDM_CFG0), DSI_28nm_PHY_PLL_SDM_CFG0_BYP_DIV) + 1; vco_rate = ref_clk * sdm_byp_div; } else { /* sdm mode */ sdm_dc_off = FIELD( dsi_phy_read(base + REG_DSI_28nm_PHY_PLL_SDM_CFG1), DSI_28nm_PHY_PLL_SDM_CFG1_DC_OFFSET); DBG("sdm_dc_off = %d", sdm_dc_off); sdm2 = FIELD(dsi_phy_read(base + REG_DSI_28nm_PHY_PLL_SDM_CFG2), DSI_28nm_PHY_PLL_SDM_CFG2_FREQ_SEED_7_0); sdm3 = FIELD(dsi_phy_read(base + REG_DSI_28nm_PHY_PLL_SDM_CFG3), DSI_28nm_PHY_PLL_SDM_CFG3_FREQ_SEED_15_8); sdm_freq_seed = (sdm3 << 8) | sdm2; DBG("sdm_freq_seed = %d", sdm_freq_seed); vco_rate = (ref_clk * (sdm_dc_off + 1)) + mult_frac(ref_clk, sdm_freq_seed, BIT(16)); DBG("vco rate = %lu", vco_rate); } DBG("returning vco rate = %lu", vco_rate); return vco_rate; } static int _dsi_pll_28nm_vco_prepare_hpm(struct dsi_pll_28nm *pll_28nm) { struct device *dev = &pll_28nm->phy->pdev->dev; void __iomem *base = pll_28nm->phy->pll_base; u32 max_reads = 5, timeout_us = 100; bool locked; u32 val; int i; DBG("id=%d", pll_28nm->phy->id); pll_28nm_software_reset(pll_28nm); /* * PLL power up sequence. * Add necessary delays recommended by hardware. */ val = DSI_28nm_PHY_PLL_GLB_CFG_PLL_PWRDN_B; dsi_phy_write_udelay(base + REG_DSI_28nm_PHY_PLL_GLB_CFG, val, 1); val |= DSI_28nm_PHY_PLL_GLB_CFG_PLL_PWRGEN_PWRDN_B; dsi_phy_write_udelay(base + REG_DSI_28nm_PHY_PLL_GLB_CFG, val, 200); val |= DSI_28nm_PHY_PLL_GLB_CFG_PLL_LDO_PWRDN_B; dsi_phy_write_udelay(base + REG_DSI_28nm_PHY_PLL_GLB_CFG, val, 500); val |= DSI_28nm_PHY_PLL_GLB_CFG_PLL_ENABLE; dsi_phy_write_udelay(base + REG_DSI_28nm_PHY_PLL_GLB_CFG, val, 600); for (i = 0; i < 2; i++) { /* DSI Uniphy lock detect setting */ dsi_phy_write_udelay(base + REG_DSI_28nm_PHY_PLL_LKDET_CFG2, 0x0c, 100); dsi_phy_write(base + REG_DSI_28nm_PHY_PLL_LKDET_CFG2, 0x0d); /* poll for PLL ready status */ locked = pll_28nm_poll_for_ready(pll_28nm, max_reads, timeout_us); if (locked) break; pll_28nm_software_reset(pll_28nm); /* * PLL power up sequence. * Add necessary delays recommended by hardware. */ val = DSI_28nm_PHY_PLL_GLB_CFG_PLL_PWRDN_B; dsi_phy_write_udelay(base + REG_DSI_28nm_PHY_PLL_GLB_CFG, val, 1); val |= DSI_28nm_PHY_PLL_GLB_CFG_PLL_PWRGEN_PWRDN_B; dsi_phy_write_udelay(base + REG_DSI_28nm_PHY_PLL_GLB_CFG, val, 200); val |= DSI_28nm_PHY_PLL_GLB_CFG_PLL_LDO_PWRDN_B; dsi_phy_write_udelay(base + REG_DSI_28nm_PHY_PLL_GLB_CFG, val, 250); val &= ~DSI_28nm_PHY_PLL_GLB_CFG_PLL_LDO_PWRDN_B; dsi_phy_write_udelay(base + REG_DSI_28nm_PHY_PLL_GLB_CFG, val, 200); val |= DSI_28nm_PHY_PLL_GLB_CFG_PLL_LDO_PWRDN_B; dsi_phy_write_udelay(base + REG_DSI_28nm_PHY_PLL_GLB_CFG, val, 500); val |= DSI_28nm_PHY_PLL_GLB_CFG_PLL_ENABLE; dsi_phy_write_udelay(base + REG_DSI_28nm_PHY_PLL_GLB_CFG, val, 600); } if (unlikely(!locked)) DRM_DEV_ERROR(dev, "DSI PLL lock failed\n"); else DBG("DSI PLL Lock success"); return locked ? 0 : -EINVAL; } static int dsi_pll_28nm_vco_prepare_hpm(struct clk_hw *hw) { struct dsi_pll_28nm *pll_28nm = to_pll_28nm(hw); int i, ret; if (unlikely(pll_28nm->phy->pll_on)) return 0; for (i = 0; i < 3; i++) { ret = _dsi_pll_28nm_vco_prepare_hpm(pll_28nm); if (!ret) { pll_28nm->phy->pll_on = true; return 0; } } return ret; } static int dsi_pll_28nm_vco_prepare_8226(struct clk_hw *hw) { struct dsi_pll_28nm *pll_28nm = to_pll_28nm(hw); struct device *dev = &pll_28nm->phy->pdev->dev; void __iomem *base = pll_28nm->phy->pll_base; u32 max_reads = 5, timeout_us = 100; bool locked; u32 val; int i; DBG("id=%d", pll_28nm->phy->id); pll_28nm_software_reset(pll_28nm); /* * PLL power up sequence. * Add necessary delays recommended by hardware. */ dsi_phy_write(base + REG_DSI_28nm_PHY_PLL_CAL_CFG1, 0x34); val = DSI_28nm_PHY_PLL_GLB_CFG_PLL_PWRDN_B; dsi_phy_write_udelay(base + REG_DSI_28nm_PHY_PLL_GLB_CFG, val, 200); val |= DSI_28nm_PHY_PLL_GLB_CFG_PLL_PWRGEN_PWRDN_B; dsi_phy_write_udelay(base + REG_DSI_28nm_PHY_PLL_GLB_CFG, val, 200); val |= DSI_28nm_PHY_PLL_GLB_CFG_PLL_LDO_PWRDN_B; val |= DSI_28nm_PHY_PLL_GLB_CFG_PLL_ENABLE; dsi_phy_write_udelay(base + REG_DSI_28nm_PHY_PLL_GLB_CFG, val, 600); for (i = 0; i < 7; i++) { /* DSI Uniphy lock detect setting */ dsi_phy_write(base + REG_DSI_28nm_PHY_PLL_LKDET_CFG2, 0x0d); dsi_phy_write_udelay(base + REG_DSI_28nm_PHY_PLL_LKDET_CFG2, 0x0c, 100); dsi_phy_write(base + REG_DSI_28nm_PHY_PLL_LKDET_CFG2, 0x0d); /* poll for PLL ready status */ locked = pll_28nm_poll_for_ready(pll_28nm, max_reads, timeout_us); if (locked) break; pll_28nm_software_reset(pll_28nm); /* * PLL power up sequence. * Add necessary delays recommended by hardware. */ dsi_phy_write_udelay(base + REG_DSI_28nm_PHY_PLL_PWRGEN_CFG, 0x00, 50); val = DSI_28nm_PHY_PLL_GLB_CFG_PLL_PWRDN_B; val |= DSI_28nm_PHY_PLL_GLB_CFG_PLL_PWRGEN_PWRDN_B; dsi_phy_write_udelay(base + REG_DSI_28nm_PHY_PLL_GLB_CFG, val, 100); val |= DSI_28nm_PHY_PLL_GLB_CFG_PLL_LDO_PWRDN_B; val |= DSI_28nm_PHY_PLL_GLB_CFG_PLL_ENABLE; dsi_phy_write_udelay(base + REG_DSI_28nm_PHY_PLL_GLB_CFG, val, 600); } if (unlikely(!locked)) DRM_DEV_ERROR(dev, "DSI PLL lock failed\n"); else DBG("DSI PLL Lock success"); return locked ? 0 : -EINVAL; } static int dsi_pll_28nm_vco_prepare_lp(struct clk_hw *hw) { struct dsi_pll_28nm *pll_28nm = to_pll_28nm(hw); struct device *dev = &pll_28nm->phy->pdev->dev; void __iomem *base = pll_28nm->phy->pll_base; bool locked; u32 max_reads = 10, timeout_us = 50; u32 val; DBG("id=%d", pll_28nm->phy->id); if (unlikely(pll_28nm->phy->pll_on)) return 0; pll_28nm_software_reset(pll_28nm); /* * PLL power up sequence. * Add necessary delays recommended by hardware. */ dsi_phy_write_ndelay(base + REG_DSI_28nm_PHY_PLL_CAL_CFG1, 0x34, 500); val = DSI_28nm_PHY_PLL_GLB_CFG_PLL_PWRDN_B; dsi_phy_write_ndelay(base + REG_DSI_28nm_PHY_PLL_GLB_CFG, val, 500); val |= DSI_28nm_PHY_PLL_GLB_CFG_PLL_PWRGEN_PWRDN_B; dsi_phy_write_ndelay(base + REG_DSI_28nm_PHY_PLL_GLB_CFG, val, 500); val |= DSI_28nm_PHY_PLL_GLB_CFG_PLL_LDO_PWRDN_B | DSI_28nm_PHY_PLL_GLB_CFG_PLL_ENABLE; dsi_phy_write_ndelay(base + REG_DSI_28nm_PHY_PLL_GLB_CFG, val, 500); /* DSI PLL toggle lock detect setting */ dsi_phy_write_ndelay(base + REG_DSI_28nm_PHY_PLL_LKDET_CFG2, 0x04, 500); dsi_phy_write_udelay(base + REG_DSI_28nm_PHY_PLL_LKDET_CFG2, 0x05, 512); locked = pll_28nm_poll_for_ready(pll_28nm, max_reads, timeout_us); if (unlikely(!locked)) { DRM_DEV_ERROR(dev, "DSI PLL lock failed\n"); return -EINVAL; } DBG("DSI PLL lock success"); pll_28nm->phy->pll_on = true; return 0; } static void dsi_pll_28nm_vco_unprepare(struct clk_hw *hw) { struct dsi_pll_28nm *pll_28nm = to_pll_28nm(hw); DBG("id=%d", pll_28nm->phy->id); if (unlikely(!pll_28nm->phy->pll_on)) return; dsi_phy_write(pll_28nm->phy->pll_base + REG_DSI_28nm_PHY_PLL_GLB_CFG, 0x00); pll_28nm->phy->pll_on = false; } static long dsi_pll_28nm_clk_round_rate(struct clk_hw *hw, unsigned long rate, unsigned long *parent_rate) { struct dsi_pll_28nm *pll_28nm = to_pll_28nm(hw); if (rate < pll_28nm->phy->cfg->min_pll_rate) return pll_28nm->phy->cfg->min_pll_rate; else if (rate > pll_28nm->phy->cfg->max_pll_rate) return pll_28nm->phy->cfg->max_pll_rate; else return rate; } static const struct clk_ops clk_ops_dsi_pll_28nm_vco_hpm = { .round_rate = dsi_pll_28nm_clk_round_rate, .set_rate = dsi_pll_28nm_clk_set_rate, .recalc_rate = dsi_pll_28nm_clk_recalc_rate, .prepare = dsi_pll_28nm_vco_prepare_hpm, .unprepare = dsi_pll_28nm_vco_unprepare, .is_enabled = dsi_pll_28nm_clk_is_enabled, }; static const struct clk_ops clk_ops_dsi_pll_28nm_vco_lp = { .round_rate = dsi_pll_28nm_clk_round_rate, .set_rate = dsi_pll_28nm_clk_set_rate, .recalc_rate = dsi_pll_28nm_clk_recalc_rate, .prepare = dsi_pll_28nm_vco_prepare_lp, .unprepare = dsi_pll_28nm_vco_unprepare, .is_enabled = dsi_pll_28nm_clk_is_enabled, }; static const struct clk_ops clk_ops_dsi_pll_28nm_vco_8226 = { .round_rate = dsi_pll_28nm_clk_round_rate, .set_rate = dsi_pll_28nm_clk_set_rate, .recalc_rate = dsi_pll_28nm_clk_recalc_rate, .prepare = dsi_pll_28nm_vco_prepare_8226, .unprepare = dsi_pll_28nm_vco_unprepare, .is_enabled = dsi_pll_28nm_clk_is_enabled, }; /* * PLL Callbacks */ static void dsi_28nm_pll_save_state(struct msm_dsi_phy *phy) { struct dsi_pll_28nm *pll_28nm = to_pll_28nm(phy->vco_hw); struct pll_28nm_cached_state *cached_state = &pll_28nm->cached_state; void __iomem *base = pll_28nm->phy->pll_base; cached_state->postdiv3 = dsi_phy_read(base + REG_DSI_28nm_PHY_PLL_POSTDIV3_CFG); cached_state->postdiv1 = dsi_phy_read(base + REG_DSI_28nm_PHY_PLL_POSTDIV1_CFG); cached_state->byte_mux = dsi_phy_read(base + REG_DSI_28nm_PHY_PLL_VREG_CFG); if (dsi_pll_28nm_clk_is_enabled(phy->vco_hw)) cached_state->vco_rate = clk_hw_get_rate(phy->vco_hw); else cached_state->vco_rate = 0; } static int dsi_28nm_pll_restore_state(struct msm_dsi_phy *phy) { struct dsi_pll_28nm *pll_28nm = to_pll_28nm(phy->vco_hw); struct pll_28nm_cached_state *cached_state = &pll_28nm->cached_state; void __iomem *base = pll_28nm->phy->pll_base; int ret; ret = dsi_pll_28nm_clk_set_rate(phy->vco_hw, cached_state->vco_rate, 0); if (ret) { DRM_DEV_ERROR(&pll_28nm->phy->pdev->dev, "restore vco rate failed. ret=%d\n", ret); return ret; } dsi_phy_write(base + REG_DSI_28nm_PHY_PLL_POSTDIV3_CFG, cached_state->postdiv3); dsi_phy_write(base + REG_DSI_28nm_PHY_PLL_POSTDIV1_CFG, cached_state->postdiv1); dsi_phy_write(base + REG_DSI_28nm_PHY_PLL_VREG_CFG, cached_state->byte_mux); return 0; } static int pll_28nm_register(struct dsi_pll_28nm *pll_28nm, struct clk_hw **provided_clocks) { char clk_name[32]; struct clk_init_data vco_init = { .parent_data = &(const struct clk_parent_data) { .fw_name = "ref", .name = "xo", }, .num_parents = 1, .name = clk_name, .flags = CLK_IGNORE_UNUSED, }; struct device *dev = &pll_28nm->phy->pdev->dev; struct clk_hw *hw, *analog_postdiv, *indirect_path_div2, *byte_mux; int ret; DBG("%d", pll_28nm->phy->id); if (pll_28nm->phy->cfg->quirks & DSI_PHY_28NM_QUIRK_PHY_LP) vco_init.ops = &clk_ops_dsi_pll_28nm_vco_lp; else if (pll_28nm->phy->cfg->quirks & DSI_PHY_28NM_QUIRK_PHY_8226) vco_init.ops = &clk_ops_dsi_pll_28nm_vco_8226; else vco_init.ops = &clk_ops_dsi_pll_28nm_vco_hpm; snprintf(clk_name, sizeof(clk_name), "dsi%dvco_clk", pll_28nm->phy->id); pll_28nm->clk_hw.init = &vco_init; ret = devm_clk_hw_register(dev, &pll_28nm->clk_hw); if (ret) return ret; snprintf(clk_name, sizeof(clk_name), "dsi%danalog_postdiv_clk", pll_28nm->phy->id); analog_postdiv = devm_clk_hw_register_divider_parent_hw(dev, clk_name, &pll_28nm->clk_hw, CLK_SET_RATE_PARENT, pll_28nm->phy->pll_base + REG_DSI_28nm_PHY_PLL_POSTDIV1_CFG, 0, 4, 0, NULL); if (IS_ERR(analog_postdiv)) return PTR_ERR(analog_postdiv); snprintf(clk_name, sizeof(clk_name), "dsi%dindirect_path_div2_clk", pll_28nm->phy->id); indirect_path_div2 = devm_clk_hw_register_fixed_factor_parent_hw(dev, clk_name, analog_postdiv, CLK_SET_RATE_PARENT, 1, 2); if (IS_ERR(indirect_path_div2)) return PTR_ERR(indirect_path_div2); snprintf(clk_name, sizeof(clk_name), "dsi%dpll", pll_28nm->phy->id); hw = devm_clk_hw_register_divider_parent_hw(dev, clk_name, &pll_28nm->clk_hw, 0, pll_28nm->phy->pll_base + REG_DSI_28nm_PHY_PLL_POSTDIV3_CFG, 0, 8, 0, NULL); if (IS_ERR(hw)) return PTR_ERR(hw); provided_clocks[DSI_PIXEL_PLL_CLK] = hw; snprintf(clk_name, sizeof(clk_name), "dsi%dbyte_mux", pll_28nm->phy->id); byte_mux = devm_clk_hw_register_mux_parent_hws(dev, clk_name, ((const struct clk_hw *[]){ &pll_28nm->clk_hw, indirect_path_div2, }), 2, CLK_SET_RATE_PARENT, pll_28nm->phy->pll_base + REG_DSI_28nm_PHY_PLL_VREG_CFG, 1, 1, 0, NULL); if (IS_ERR(byte_mux)) return PTR_ERR(byte_mux); snprintf(clk_name, sizeof(clk_name), "dsi%dpllbyte", pll_28nm->phy->id); hw = devm_clk_hw_register_fixed_factor_parent_hw(dev, clk_name, byte_mux, CLK_SET_RATE_PARENT, 1, 4); if (IS_ERR(hw)) return PTR_ERR(hw); provided_clocks[DSI_BYTE_PLL_CLK] = hw; return 0; } static int dsi_pll_28nm_init(struct msm_dsi_phy *phy) { struct platform_device *pdev = phy->pdev; struct dsi_pll_28nm *pll_28nm; int ret; if (!pdev) return -ENODEV; pll_28nm = devm_kzalloc(&pdev->dev, sizeof(*pll_28nm), GFP_KERNEL); if (!pll_28nm) return -ENOMEM; pll_28nm->phy = phy; ret = pll_28nm_register(pll_28nm, phy->provided_clocks->hws); if (ret) { DRM_DEV_ERROR(&pdev->dev, "failed to register PLL: %d\n", ret); return ret; } phy->vco_hw = &pll_28nm->clk_hw; return 0; } static void dsi_28nm_dphy_set_timing(struct msm_dsi_phy *phy, struct msm_dsi_dphy_timing *timing) { void __iomem *base = phy->base; dsi_phy_write(base + REG_DSI_28nm_PHY_TIMING_CTRL_0, DSI_28nm_PHY_TIMING_CTRL_0_CLK_ZERO(timing->clk_zero)); dsi_phy_write(base + REG_DSI_28nm_PHY_TIMING_CTRL_1, DSI_28nm_PHY_TIMING_CTRL_1_CLK_TRAIL(timing->clk_trail)); dsi_phy_write(base + REG_DSI_28nm_PHY_TIMING_CTRL_2, DSI_28nm_PHY_TIMING_CTRL_2_CLK_PREPARE(timing->clk_prepare)); if (timing->clk_zero & BIT(8)) dsi_phy_write(base + REG_DSI_28nm_PHY_TIMING_CTRL_3, DSI_28nm_PHY_TIMING_CTRL_3_CLK_ZERO_8); dsi_phy_write(base + REG_DSI_28nm_PHY_TIMING_CTRL_4, DSI_28nm_PHY_TIMING_CTRL_4_HS_EXIT(timing->hs_exit)); dsi_phy_write(base + REG_DSI_28nm_PHY_TIMING_CTRL_5, DSI_28nm_PHY_TIMING_CTRL_5_HS_ZERO(timing->hs_zero)); dsi_phy_write(base + REG_DSI_28nm_PHY_TIMING_CTRL_6, DSI_28nm_PHY_TIMING_CTRL_6_HS_PREPARE(timing->hs_prepare)); dsi_phy_write(base + REG_DSI_28nm_PHY_TIMING_CTRL_7, DSI_28nm_PHY_TIMING_CTRL_7_HS_TRAIL(timing->hs_trail)); dsi_phy_write(base + REG_DSI_28nm_PHY_TIMING_CTRL_8, DSI_28nm_PHY_TIMING_CTRL_8_HS_RQST(timing->hs_rqst)); dsi_phy_write(base + REG_DSI_28nm_PHY_TIMING_CTRL_9, DSI_28nm_PHY_TIMING_CTRL_9_TA_GO(timing->ta_go) | DSI_28nm_PHY_TIMING_CTRL_9_TA_SURE(timing->ta_sure)); dsi_phy_write(base + REG_DSI_28nm_PHY_TIMING_CTRL_10, DSI_28nm_PHY_TIMING_CTRL_10_TA_GET(timing->ta_get)); dsi_phy_write(base + REG_DSI_28nm_PHY_TIMING_CTRL_11, DSI_28nm_PHY_TIMING_CTRL_11_TRIG3_CMD(0)); } static void dsi_28nm_phy_regulator_enable_dcdc(struct msm_dsi_phy *phy) { void __iomem *base = phy->reg_base; dsi_phy_write(base + REG_DSI_28nm_PHY_REGULATOR_CTRL_0, 0x0); dsi_phy_write(base + REG_DSI_28nm_PHY_REGULATOR_CAL_PWR_CFG, 1); dsi_phy_write(base + REG_DSI_28nm_PHY_REGULATOR_CTRL_5, 0); dsi_phy_write(base + REG_DSI_28nm_PHY_REGULATOR_CTRL_3, 0); dsi_phy_write(base + REG_DSI_28nm_PHY_REGULATOR_CTRL_2, 0x3); dsi_phy_write(base + REG_DSI_28nm_PHY_REGULATOR_CTRL_1, 0x9); dsi_phy_write(base + REG_DSI_28nm_PHY_REGULATOR_CTRL_0, 0x7); dsi_phy_write(base + REG_DSI_28nm_PHY_REGULATOR_CTRL_4, 0x20); dsi_phy_write(phy->base + REG_DSI_28nm_PHY_LDO_CNTRL, 0x00); } static void dsi_28nm_phy_regulator_enable_ldo(struct msm_dsi_phy *phy) { void __iomem *base = phy->reg_base; dsi_phy_write(base + REG_DSI_28nm_PHY_REGULATOR_CTRL_0, 0x0); dsi_phy_write(base + REG_DSI_28nm_PHY_REGULATOR_CAL_PWR_CFG, 0); dsi_phy_write(base + REG_DSI_28nm_PHY_REGULATOR_CTRL_5, 0x7); dsi_phy_write(base + REG_DSI_28nm_PHY_REGULATOR_CTRL_3, 0); dsi_phy_write(base + REG_DSI_28nm_PHY_REGULATOR_CTRL_2, 0x1); dsi_phy_write(base + REG_DSI_28nm_PHY_REGULATOR_CTRL_1, 0x1); dsi_phy_write(base + REG_DSI_28nm_PHY_REGULATOR_CTRL_4, 0x20); if (phy->cfg->quirks & DSI_PHY_28NM_QUIRK_PHY_LP) dsi_phy_write(phy->base + REG_DSI_28nm_PHY_LDO_CNTRL, 0x05); else dsi_phy_write(phy->base + REG_DSI_28nm_PHY_LDO_CNTRL, 0x0d); } static void dsi_28nm_phy_regulator_ctrl(struct msm_dsi_phy *phy, bool enable) { if (!enable) { dsi_phy_write(phy->reg_base + REG_DSI_28nm_PHY_REGULATOR_CAL_PWR_CFG, 0); return; } if (phy->regulator_ldo_mode) dsi_28nm_phy_regulator_enable_ldo(phy); else dsi_28nm_phy_regulator_enable_dcdc(phy); } static int dsi_28nm_phy_enable(struct msm_dsi_phy *phy, struct msm_dsi_phy_clk_request *clk_req) { struct msm_dsi_dphy_timing *timing = &phy->timing; int i; void __iomem *base = phy->base; u32 val; DBG(""); if (msm_dsi_dphy_timing_calc(timing, clk_req)) { DRM_DEV_ERROR(&phy->pdev->dev, "%s: D-PHY timing calculation failed\n", __func__); return -EINVAL; } dsi_phy_write(base + REG_DSI_28nm_PHY_STRENGTH_0, 0xff); dsi_28nm_phy_regulator_ctrl(phy, true); dsi_28nm_dphy_set_timing(phy, timing); dsi_phy_write(base + REG_DSI_28nm_PHY_CTRL_1, 0x00); dsi_phy_write(base + REG_DSI_28nm_PHY_CTRL_0, 0x5f); dsi_phy_write(base + REG_DSI_28nm_PHY_STRENGTH_1, 0x6); for (i = 0; i < 4; i++) { dsi_phy_write(base + REG_DSI_28nm_PHY_LN_CFG_0(i), 0); dsi_phy_write(base + REG_DSI_28nm_PHY_LN_CFG_1(i), 0); dsi_phy_write(base + REG_DSI_28nm_PHY_LN_CFG_2(i), 0); dsi_phy_write(base + REG_DSI_28nm_PHY_LN_CFG_3(i), 0); dsi_phy_write(base + REG_DSI_28nm_PHY_LN_CFG_4(i), 0); dsi_phy_write(base + REG_DSI_28nm_PHY_LN_TEST_DATAPATH(i), 0); dsi_phy_write(base + REG_DSI_28nm_PHY_LN_DEBUG_SEL(i), 0); dsi_phy_write(base + REG_DSI_28nm_PHY_LN_TEST_STR_0(i), 0x1); dsi_phy_write(base + REG_DSI_28nm_PHY_LN_TEST_STR_1(i), 0x97); } dsi_phy_write(base + REG_DSI_28nm_PHY_LNCK_CFG_4, 0); dsi_phy_write(base + REG_DSI_28nm_PHY_LNCK_CFG_1, 0xc0); dsi_phy_write(base + REG_DSI_28nm_PHY_LNCK_TEST_STR0, 0x1); dsi_phy_write(base + REG_DSI_28nm_PHY_LNCK_TEST_STR1, 0xbb); dsi_phy_write(base + REG_DSI_28nm_PHY_CTRL_0, 0x5f); val = dsi_phy_read(base + REG_DSI_28nm_PHY_GLBL_TEST_CTRL); if (phy->id == DSI_1 && phy->usecase == MSM_DSI_PHY_SLAVE) val &= ~DSI_28nm_PHY_GLBL_TEST_CTRL_BITCLK_HS_SEL; else val |= DSI_28nm_PHY_GLBL_TEST_CTRL_BITCLK_HS_SEL; dsi_phy_write(base + REG_DSI_28nm_PHY_GLBL_TEST_CTRL, val); return 0; } static void dsi_28nm_phy_disable(struct msm_dsi_phy *phy) { dsi_phy_write(phy->base + REG_DSI_28nm_PHY_CTRL_0, 0); dsi_28nm_phy_regulator_ctrl(phy, false); /* * Wait for the registers writes to complete in order to * ensure that the phy is completely disabled */ wmb(); } static const struct regulator_bulk_data dsi_phy_28nm_regulators[] = { { .supply = "vddio", .init_load_uA = 100000 }, }; const struct msm_dsi_phy_cfg dsi_phy_28nm_hpm_cfgs = { .has_phy_regulator = true, .regulator_data = dsi_phy_28nm_regulators, .num_regulators = ARRAY_SIZE(dsi_phy_28nm_regulators), .ops = { .enable = dsi_28nm_phy_enable, .disable = dsi_28nm_phy_disable, .pll_init = dsi_pll_28nm_init, .save_pll_state = dsi_28nm_pll_save_state, .restore_pll_state = dsi_28nm_pll_restore_state, }, .min_pll_rate = VCO_MIN_RATE, .max_pll_rate = VCO_MAX_RATE, .io_start = { 0xfd922b00, 0xfd923100 }, .num_dsi_phy = 2, }; const struct msm_dsi_phy_cfg dsi_phy_28nm_hpm_famb_cfgs = { .has_phy_regulator = true, .regulator_data = dsi_phy_28nm_regulators, .num_regulators = ARRAY_SIZE(dsi_phy_28nm_regulators), .ops = { .enable = dsi_28nm_phy_enable, .disable = dsi_28nm_phy_disable, .pll_init = dsi_pll_28nm_init, .save_pll_state = dsi_28nm_pll_save_state, .restore_pll_state = dsi_28nm_pll_restore_state, }, .min_pll_rate = VCO_MIN_RATE, .max_pll_rate = VCO_MAX_RATE, .io_start = { 0x1a94400, 0x1a96400 }, .num_dsi_phy = 2, }; const struct msm_dsi_phy_cfg dsi_phy_28nm_lp_cfgs = { .has_phy_regulator = true, .regulator_data = dsi_phy_28nm_regulators, .num_regulators = ARRAY_SIZE(dsi_phy_28nm_regulators), .ops = { .enable = dsi_28nm_phy_enable, .disable = dsi_28nm_phy_disable, .pll_init = dsi_pll_28nm_init, .save_pll_state = dsi_28nm_pll_save_state, .restore_pll_state = dsi_28nm_pll_restore_state, }, .min_pll_rate = VCO_MIN_RATE, .max_pll_rate = VCO_MAX_RATE, .io_start = { 0x1a98500 }, .num_dsi_phy = 1, .quirks = DSI_PHY_28NM_QUIRK_PHY_LP, }; const struct msm_dsi_phy_cfg dsi_phy_28nm_8226_cfgs = { .has_phy_regulator = true, .regulator_data = dsi_phy_28nm_regulators, .num_regulators = ARRAY_SIZE(dsi_phy_28nm_regulators), .ops = { .enable = dsi_28nm_phy_enable, .disable = dsi_28nm_phy_disable, .pll_init = dsi_pll_28nm_init, .save_pll_state = dsi_28nm_pll_save_state, .restore_pll_state = dsi_28nm_pll_restore_state, }, .min_pll_rate = VCO_MIN_RATE, .max_pll_rate = VCO_MAX_RATE, .io_start = { 0xfd922b00 }, .num_dsi_phy = 1, .quirks = DSI_PHY_28NM_QUIRK_PHY_8226, };
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1