Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Jonathan Marek | 2790 | 46.06% | 3 | 5.56% |
Dmitry Eremin-Solenikov | 2417 | 39.90% | 22 | 40.74% |
Hai Li | 219 | 3.62% | 10 | 18.52% |
Neil Armstrong | 175 | 2.89% | 1 | 1.85% |
Archit Taneja | 133 | 2.20% | 5 | 9.26% |
Marijn Suijten | 100 | 1.65% | 4 | 7.41% |
Doug Anderson | 89 | 1.47% | 1 | 1.85% |
Arnd Bergmann | 70 | 1.16% | 1 | 1.85% |
Rajeev Nandan | 40 | 0.66% | 1 | 1.85% |
Rob Clark | 7 | 0.12% | 2 | 3.70% |
Stephen Boyd | 6 | 0.10% | 1 | 1.85% |
Konrad Dybcio | 5 | 0.08% | 1 | 1.85% |
Fabian Frederick | 3 | 0.05% | 1 | 1.85% |
Mamta Shukla | 3 | 0.05% | 1 | 1.85% |
Total | 6057 | 54 |
/* * SPDX-License-Identifier: GPL-2.0 * Copyright (c) 2018, The Linux Foundation */ #include <linux/clk.h> #include <linux/clk-provider.h> #include <linux/iopoll.h> #include "dsi_phy.h" #include "dsi.xml.h" #include "dsi_phy_7nm.xml.h" /* * DSI PLL 7nm - clock diagram (eg: DSI0): TODO: updated CPHY diagram * * dsi0_pll_out_div_clk dsi0_pll_bit_clk * | | * | | * +---------+ | +----------+ | +----+ * dsi0vco_clk ---| out_div |--o--| divl_3_0 |--o--| /8 |-- dsi0_phy_pll_out_byteclk * +---------+ | +----------+ | +----+ * | | * | | dsi0_pll_by_2_bit_clk * | | | * | | +----+ | |\ dsi0_pclk_mux * | |--| /2 |--o--| \ | * | | +----+ | \ | +---------+ * | --------------| |--o--| div_7_4 |-- dsi0_phy_pll_out_dsiclk * |------------------------------| / +---------+ * | +-----+ | / * -----------| /4? |--o----------|/ * +-----+ | | * | |dsiclk_sel * | * dsi0_pll_post_out_div_clk */ #define VCO_REF_CLK_RATE 19200000 #define FRAC_BITS 18 /* Hardware is pre V4.1 */ #define DSI_PHY_7NM_QUIRK_PRE_V4_1 BIT(0) /* Hardware is V4.1 */ #define DSI_PHY_7NM_QUIRK_V4_1 BIT(1) /* Hardware is V4.2 */ #define DSI_PHY_7NM_QUIRK_V4_2 BIT(2) /* Hardware is V4.3 */ #define DSI_PHY_7NM_QUIRK_V4_3 BIT(3) /* Hardware is V5.2 */ #define DSI_PHY_7NM_QUIRK_V5_2 BIT(4) struct dsi_pll_config { bool enable_ssc; bool ssc_center; u32 ssc_freq; u32 ssc_offset; u32 ssc_adj_per; /* out */ u32 decimal_div_start; u32 frac_div_start; u32 pll_clock_inverters; u32 ssc_stepsize; u32 ssc_div_per; }; struct pll_7nm_cached_state { unsigned long vco_rate; u8 bit_clk_div; u8 pix_clk_div; u8 pll_out_div; u8 pll_mux; }; struct dsi_pll_7nm { struct clk_hw clk_hw; struct msm_dsi_phy *phy; u64 vco_current_rate; /* protects REG_DSI_7nm_PHY_CMN_CLK_CFG0 register */ spinlock_t postdiv_lock; struct pll_7nm_cached_state cached_state; struct dsi_pll_7nm *slave; }; #define to_pll_7nm(x) container_of(x, struct dsi_pll_7nm, clk_hw) /* * Global list of private DSI PLL struct pointers. We need this for bonded DSI * mode, where the master PLL's clk_ops needs access the slave's private data */ static struct dsi_pll_7nm *pll_7nm_list[DSI_MAX]; static void dsi_pll_setup_config(struct dsi_pll_config *config) { config->ssc_freq = 31500; config->ssc_offset = 4800; config->ssc_adj_per = 2; /* TODO: ssc enable */ config->enable_ssc = false; config->ssc_center = 0; } static void dsi_pll_calc_dec_frac(struct dsi_pll_7nm *pll, struct dsi_pll_config *config) { u64 fref = VCO_REF_CLK_RATE; u64 pll_freq; u64 divider; u64 dec, dec_multiple; u32 frac; u64 multiplier; pll_freq = pll->vco_current_rate; divider = fref * 2; multiplier = 1 << FRAC_BITS; dec_multiple = div_u64(pll_freq * multiplier, divider); dec = div_u64_rem(dec_multiple, multiplier, &frac); if (pll->phy->cfg->quirks & DSI_PHY_7NM_QUIRK_PRE_V4_1) config->pll_clock_inverters = 0x28; else if ((pll->phy->cfg->quirks & DSI_PHY_7NM_QUIRK_V5_2)) { if (pll_freq <= 1300000000ULL) config->pll_clock_inverters = 0xa0; else if (pll_freq <= 2500000000ULL) config->pll_clock_inverters = 0x20; else if (pll_freq <= 4000000000ULL) config->pll_clock_inverters = 0x00; else config->pll_clock_inverters = 0x40; } else { if (pll_freq <= 1000000000ULL) config->pll_clock_inverters = 0xa0; else if (pll_freq <= 2500000000ULL) config->pll_clock_inverters = 0x20; else if (pll_freq <= 3020000000ULL) config->pll_clock_inverters = 0x00; else config->pll_clock_inverters = 0x40; } config->decimal_div_start = dec; config->frac_div_start = frac; } #define SSC_CENTER BIT(0) #define SSC_EN BIT(1) static void dsi_pll_calc_ssc(struct dsi_pll_7nm *pll, struct dsi_pll_config *config) { u32 ssc_per; u32 ssc_mod; u64 ssc_step_size; u64 frac; if (!config->enable_ssc) { DBG("SSC not enabled\n"); return; } ssc_per = DIV_ROUND_CLOSEST(VCO_REF_CLK_RATE, config->ssc_freq) / 2 - 1; ssc_mod = (ssc_per + 1) % (config->ssc_adj_per + 1); ssc_per -= ssc_mod; frac = config->frac_div_start; ssc_step_size = config->decimal_div_start; ssc_step_size *= (1 << FRAC_BITS); ssc_step_size += frac; ssc_step_size *= config->ssc_offset; ssc_step_size *= (config->ssc_adj_per + 1); ssc_step_size = div_u64(ssc_step_size, (ssc_per + 1)); ssc_step_size = DIV_ROUND_CLOSEST_ULL(ssc_step_size, 1000000); config->ssc_div_per = ssc_per; config->ssc_stepsize = ssc_step_size; pr_debug("SCC: Dec:%d, frac:%llu, frac_bits:%d\n", config->decimal_div_start, frac, FRAC_BITS); pr_debug("SSC: div_per:0x%X, stepsize:0x%X, adjper:0x%X\n", ssc_per, (u32)ssc_step_size, config->ssc_adj_per); } static void dsi_pll_ssc_commit(struct dsi_pll_7nm *pll, struct dsi_pll_config *config) { void __iomem *base = pll->phy->pll_base; if (config->enable_ssc) { pr_debug("SSC is enabled\n"); dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_SSC_STEPSIZE_LOW_1, config->ssc_stepsize & 0xff); dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_SSC_STEPSIZE_HIGH_1, config->ssc_stepsize >> 8); dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_SSC_DIV_PER_LOW_1, config->ssc_div_per & 0xff); dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_SSC_DIV_PER_HIGH_1, config->ssc_div_per >> 8); dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_SSC_ADJPER_LOW_1, config->ssc_adj_per & 0xff); dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_SSC_ADJPER_HIGH_1, config->ssc_adj_per >> 8); dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_SSC_CONTROL, SSC_EN | (config->ssc_center ? SSC_CENTER : 0)); } } static void dsi_pll_config_hzindep_reg(struct dsi_pll_7nm *pll) { void __iomem *base = pll->phy->pll_base; u8 analog_controls_five_1 = 0x01, vco_config_1 = 0x00; if (!(pll->phy->cfg->quirks & DSI_PHY_7NM_QUIRK_PRE_V4_1)) if (pll->vco_current_rate >= 3100000000ULL) analog_controls_five_1 = 0x03; if (pll->phy->cfg->quirks & DSI_PHY_7NM_QUIRK_V4_1) { if (pll->vco_current_rate < 1520000000ULL) vco_config_1 = 0x08; else if (pll->vco_current_rate < 2990000000ULL) vco_config_1 = 0x01; } if ((pll->phy->cfg->quirks & DSI_PHY_7NM_QUIRK_V4_2) || (pll->phy->cfg->quirks & DSI_PHY_7NM_QUIRK_V4_3)) { if (pll->vco_current_rate < 1520000000ULL) vco_config_1 = 0x08; else if (pll->vco_current_rate >= 2990000000ULL) vco_config_1 = 0x01; } if ((pll->phy->cfg->quirks & DSI_PHY_7NM_QUIRK_V5_2)) { if (pll->vco_current_rate < 1557000000ULL) vco_config_1 = 0x08; else vco_config_1 = 0x01; } dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_ANALOG_CONTROLS_FIVE_1, analog_controls_five_1); dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_VCO_CONFIG_1, vco_config_1); dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_ANALOG_CONTROLS_FIVE, 0x01); dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_ANALOG_CONTROLS_TWO, 0x03); dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_ANALOG_CONTROLS_THREE, 0x00); dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_DSM_DIVIDER, 0x00); dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_FEEDBACK_DIVIDER, 0x4e); dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_CALIBRATION_SETTINGS, 0x40); dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_BAND_SEL_CAL_SETTINGS_THREE, 0xba); dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_FREQ_DETECT_SETTINGS_ONE, 0x0c); dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_OUTDIV, 0x00); dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_CORE_OVERRIDE, 0x00); dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_PLL_DIGITAL_TIMERS_TWO, 0x08); dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_PLL_PROP_GAIN_RATE_1, 0x0a); dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_PLL_BAND_SEL_RATE_1, 0xc0); dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_PLL_INT_GAIN_IFILT_BAND_1, 0x84); dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_PLL_INT_GAIN_IFILT_BAND_1, 0x82); dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_PLL_FL_INT_GAIN_PFILT_BAND_1, 0x4c); dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_PLL_LOCK_OVERRIDE, 0x80); dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_PFILT, 0x29); dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_PFILT, 0x2f); dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_IFILT, 0x2a); dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_IFILT, !(pll->phy->cfg->quirks & DSI_PHY_7NM_QUIRK_PRE_V4_1) ? 0x3f : 0x22); if (!(pll->phy->cfg->quirks & DSI_PHY_7NM_QUIRK_PRE_V4_1)) { dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_PERF_OPTIMIZE, 0x22); if (pll->slave) dsi_phy_write(pll->slave->phy->pll_base + REG_DSI_7nm_PHY_PLL_PERF_OPTIMIZE, 0x22); } } static void dsi_pll_commit(struct dsi_pll_7nm *pll, struct dsi_pll_config *config) { void __iomem *base = pll->phy->pll_base; dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_CORE_INPUT_OVERRIDE, 0x12); dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_DECIMAL_DIV_START_1, config->decimal_div_start); dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_FRAC_DIV_START_LOW_1, config->frac_div_start & 0xff); dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_FRAC_DIV_START_MID_1, (config->frac_div_start & 0xff00) >> 8); dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_FRAC_DIV_START_HIGH_1, (config->frac_div_start & 0x30000) >> 16); dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_PLL_LOCKDET_RATE_1, 0x40); dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_PLL_LOCK_DELAY, 0x06); dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_CMODE_1, pll->phy->cphy_mode ? 0x00 : 0x10); dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_CLOCK_INVERTERS, config->pll_clock_inverters); } static int dsi_pll_7nm_vco_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct dsi_pll_7nm *pll_7nm = to_pll_7nm(hw); struct dsi_pll_config config; DBG("DSI PLL%d rate=%lu, parent's=%lu", pll_7nm->phy->id, rate, parent_rate); pll_7nm->vco_current_rate = rate; dsi_pll_setup_config(&config); dsi_pll_calc_dec_frac(pll_7nm, &config); dsi_pll_calc_ssc(pll_7nm, &config); dsi_pll_commit(pll_7nm, &config); dsi_pll_config_hzindep_reg(pll_7nm); dsi_pll_ssc_commit(pll_7nm, &config); /* flush, ensure all register writes are done*/ wmb(); return 0; } static int dsi_pll_7nm_lock_status(struct dsi_pll_7nm *pll) { int rc; u32 status = 0; u32 const delay_us = 100; u32 const timeout_us = 5000; rc = readl_poll_timeout_atomic(pll->phy->pll_base + REG_DSI_7nm_PHY_PLL_COMMON_STATUS_ONE, status, ((status & BIT(0)) > 0), delay_us, timeout_us); if (rc) pr_err("DSI PLL(%d) lock failed, status=0x%08x\n", pll->phy->id, status); return rc; } static void dsi_pll_disable_pll_bias(struct dsi_pll_7nm *pll) { u32 data = dsi_phy_read(pll->phy->base + REG_DSI_7nm_PHY_CMN_CTRL_0); dsi_phy_write(pll->phy->pll_base + REG_DSI_7nm_PHY_PLL_SYSTEM_MUXES, 0); dsi_phy_write(pll->phy->base + REG_DSI_7nm_PHY_CMN_CTRL_0, data & ~BIT(5)); ndelay(250); } static void dsi_pll_enable_pll_bias(struct dsi_pll_7nm *pll) { u32 data = dsi_phy_read(pll->phy->base + REG_DSI_7nm_PHY_CMN_CTRL_0); dsi_phy_write(pll->phy->base + REG_DSI_7nm_PHY_CMN_CTRL_0, data | BIT(5)); dsi_phy_write(pll->phy->pll_base + REG_DSI_7nm_PHY_PLL_SYSTEM_MUXES, 0xc0); ndelay(250); } static void dsi_pll_disable_global_clk(struct dsi_pll_7nm *pll) { u32 data; data = dsi_phy_read(pll->phy->base + REG_DSI_7nm_PHY_CMN_CLK_CFG1); dsi_phy_write(pll->phy->base + REG_DSI_7nm_PHY_CMN_CLK_CFG1, data & ~BIT(5)); } static void dsi_pll_enable_global_clk(struct dsi_pll_7nm *pll) { u32 data; dsi_phy_write(pll->phy->base + REG_DSI_7nm_PHY_CMN_CTRL_3, 0x04); data = dsi_phy_read(pll->phy->base + REG_DSI_7nm_PHY_CMN_CLK_CFG1); dsi_phy_write(pll->phy->base + REG_DSI_7nm_PHY_CMN_CLK_CFG1, data | BIT(5) | BIT(4)); } static void dsi_pll_phy_dig_reset(struct dsi_pll_7nm *pll) { /* * Reset the PHY digital domain. This would be needed when * coming out of a CX or analog rail power collapse while * ensuring that the pads maintain LP00 or LP11 state */ dsi_phy_write(pll->phy->base + REG_DSI_7nm_PHY_CMN_GLBL_DIGTOP_SPARE4, BIT(0)); wmb(); /* Ensure that the reset is deasserted */ dsi_phy_write(pll->phy->base + REG_DSI_7nm_PHY_CMN_GLBL_DIGTOP_SPARE4, 0x0); wmb(); /* Ensure that the reset is deasserted */ } static int dsi_pll_7nm_vco_prepare(struct clk_hw *hw) { struct dsi_pll_7nm *pll_7nm = to_pll_7nm(hw); int rc; dsi_pll_enable_pll_bias(pll_7nm); if (pll_7nm->slave) dsi_pll_enable_pll_bias(pll_7nm->slave); /* Start PLL */ dsi_phy_write(pll_7nm->phy->base + REG_DSI_7nm_PHY_CMN_PLL_CNTRL, 0x01); /* * ensure all PLL configurations are written prior to checking * for PLL lock. */ wmb(); /* Check for PLL lock */ rc = dsi_pll_7nm_lock_status(pll_7nm); if (rc) { pr_err("PLL(%d) lock failed\n", pll_7nm->phy->id); goto error; } pll_7nm->phy->pll_on = true; /* * assert power on reset for PHY digital in case the PLL is * enabled after CX of analog domain power collapse. This needs * to be done before enabling the global clk. */ dsi_pll_phy_dig_reset(pll_7nm); if (pll_7nm->slave) dsi_pll_phy_dig_reset(pll_7nm->slave); dsi_pll_enable_global_clk(pll_7nm); if (pll_7nm->slave) dsi_pll_enable_global_clk(pll_7nm->slave); error: return rc; } static void dsi_pll_disable_sub(struct dsi_pll_7nm *pll) { dsi_phy_write(pll->phy->base + REG_DSI_7nm_PHY_CMN_RBUF_CTRL, 0); dsi_pll_disable_pll_bias(pll); } static void dsi_pll_7nm_vco_unprepare(struct clk_hw *hw) { struct dsi_pll_7nm *pll_7nm = to_pll_7nm(hw); /* * To avoid any stray glitches while abruptly powering down the PLL * make sure to gate the clock using the clock enable bit before * powering down the PLL */ dsi_pll_disable_global_clk(pll_7nm); dsi_phy_write(pll_7nm->phy->base + REG_DSI_7nm_PHY_CMN_PLL_CNTRL, 0); dsi_pll_disable_sub(pll_7nm); if (pll_7nm->slave) { dsi_pll_disable_global_clk(pll_7nm->slave); dsi_pll_disable_sub(pll_7nm->slave); } /* flush, ensure all register writes are done */ wmb(); pll_7nm->phy->pll_on = false; } static unsigned long dsi_pll_7nm_vco_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct dsi_pll_7nm *pll_7nm = to_pll_7nm(hw); void __iomem *base = pll_7nm->phy->pll_base; u64 ref_clk = VCO_REF_CLK_RATE; u64 vco_rate = 0x0; u64 multiplier; u32 frac; u32 dec; u64 pll_freq, tmp64; dec = dsi_phy_read(base + REG_DSI_7nm_PHY_PLL_DECIMAL_DIV_START_1); dec &= 0xff; frac = dsi_phy_read(base + REG_DSI_7nm_PHY_PLL_FRAC_DIV_START_LOW_1); frac |= ((dsi_phy_read(base + REG_DSI_7nm_PHY_PLL_FRAC_DIV_START_MID_1) & 0xff) << 8); frac |= ((dsi_phy_read(base + REG_DSI_7nm_PHY_PLL_FRAC_DIV_START_HIGH_1) & 0x3) << 16); /* * TODO: * 1. Assumes prescaler is disabled */ multiplier = 1 << FRAC_BITS; pll_freq = dec * (ref_clk * 2); tmp64 = (ref_clk * 2 * frac); pll_freq += div_u64(tmp64, multiplier); vco_rate = pll_freq; pll_7nm->vco_current_rate = vco_rate; DBG("DSI PLL%d returning vco rate = %lu, dec = %x, frac = %x", pll_7nm->phy->id, (unsigned long)vco_rate, dec, frac); return (unsigned long)vco_rate; } static long dsi_pll_7nm_clk_round_rate(struct clk_hw *hw, unsigned long rate, unsigned long *parent_rate) { struct dsi_pll_7nm *pll_7nm = to_pll_7nm(hw); if (rate < pll_7nm->phy->cfg->min_pll_rate) return pll_7nm->phy->cfg->min_pll_rate; else if (rate > pll_7nm->phy->cfg->max_pll_rate) return pll_7nm->phy->cfg->max_pll_rate; else return rate; } static const struct clk_ops clk_ops_dsi_pll_7nm_vco = { .round_rate = dsi_pll_7nm_clk_round_rate, .set_rate = dsi_pll_7nm_vco_set_rate, .recalc_rate = dsi_pll_7nm_vco_recalc_rate, .prepare = dsi_pll_7nm_vco_prepare, .unprepare = dsi_pll_7nm_vco_unprepare, }; /* * PLL Callbacks */ static void dsi_7nm_pll_save_state(struct msm_dsi_phy *phy) { struct dsi_pll_7nm *pll_7nm = to_pll_7nm(phy->vco_hw); struct pll_7nm_cached_state *cached = &pll_7nm->cached_state; void __iomem *phy_base = pll_7nm->phy->base; u32 cmn_clk_cfg0, cmn_clk_cfg1; cached->pll_out_div = dsi_phy_read(pll_7nm->phy->pll_base + REG_DSI_7nm_PHY_PLL_PLL_OUTDIV_RATE); cached->pll_out_div &= 0x3; cmn_clk_cfg0 = dsi_phy_read(phy_base + REG_DSI_7nm_PHY_CMN_CLK_CFG0); cached->bit_clk_div = cmn_clk_cfg0 & 0xf; cached->pix_clk_div = (cmn_clk_cfg0 & 0xf0) >> 4; cmn_clk_cfg1 = dsi_phy_read(phy_base + REG_DSI_7nm_PHY_CMN_CLK_CFG1); cached->pll_mux = cmn_clk_cfg1 & 0x3; DBG("DSI PLL%d outdiv %x bit_clk_div %x pix_clk_div %x pll_mux %x", pll_7nm->phy->id, cached->pll_out_div, cached->bit_clk_div, cached->pix_clk_div, cached->pll_mux); } static int dsi_7nm_pll_restore_state(struct msm_dsi_phy *phy) { struct dsi_pll_7nm *pll_7nm = to_pll_7nm(phy->vco_hw); struct pll_7nm_cached_state *cached = &pll_7nm->cached_state; void __iomem *phy_base = pll_7nm->phy->base; u32 val; int ret; val = dsi_phy_read(pll_7nm->phy->pll_base + REG_DSI_7nm_PHY_PLL_PLL_OUTDIV_RATE); val &= ~0x3; val |= cached->pll_out_div; dsi_phy_write(pll_7nm->phy->pll_base + REG_DSI_7nm_PHY_PLL_PLL_OUTDIV_RATE, val); dsi_phy_write(phy_base + REG_DSI_7nm_PHY_CMN_CLK_CFG0, cached->bit_clk_div | (cached->pix_clk_div << 4)); val = dsi_phy_read(phy_base + REG_DSI_7nm_PHY_CMN_CLK_CFG1); val &= ~0x3; val |= cached->pll_mux; dsi_phy_write(phy_base + REG_DSI_7nm_PHY_CMN_CLK_CFG1, val); ret = dsi_pll_7nm_vco_set_rate(phy->vco_hw, pll_7nm->vco_current_rate, VCO_REF_CLK_RATE); if (ret) { DRM_DEV_ERROR(&pll_7nm->phy->pdev->dev, "restore vco rate failed. ret=%d\n", ret); return ret; } DBG("DSI PLL%d", pll_7nm->phy->id); return 0; } static int dsi_7nm_set_usecase(struct msm_dsi_phy *phy) { struct dsi_pll_7nm *pll_7nm = to_pll_7nm(phy->vco_hw); void __iomem *base = phy->base; u32 data = 0x0; /* internal PLL */ DBG("DSI PLL%d", pll_7nm->phy->id); switch (phy->usecase) { case MSM_DSI_PHY_STANDALONE: break; case MSM_DSI_PHY_MASTER: pll_7nm->slave = pll_7nm_list[(pll_7nm->phy->id + 1) % DSI_MAX]; break; case MSM_DSI_PHY_SLAVE: data = 0x1; /* external PLL */ break; default: return -EINVAL; } /* set PLL src */ dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_CLK_CFG1, (data << 2)); return 0; } /* * The post dividers and mux clocks are created using the standard divider and * mux API. Unlike the 14nm PHY, the slave PLL doesn't need its dividers/mux * state to follow the master PLL's divider/mux state. Therefore, we don't * require special clock ops that also configure the slave PLL registers */ static int pll_7nm_register(struct dsi_pll_7nm *pll_7nm, struct clk_hw **provided_clocks) { char clk_name[32]; struct clk_init_data vco_init = { .parent_data = &(const struct clk_parent_data) { .fw_name = "ref", }, .num_parents = 1, .name = clk_name, .flags = CLK_IGNORE_UNUSED, .ops = &clk_ops_dsi_pll_7nm_vco, }; struct device *dev = &pll_7nm->phy->pdev->dev; struct clk_hw *hw, *pll_out_div, *pll_bit, *pll_by_2_bit; struct clk_hw *pll_post_out_div, *phy_pll_out_dsi_parent; int ret; DBG("DSI%d", pll_7nm->phy->id); snprintf(clk_name, sizeof(clk_name), "dsi%dvco_clk", pll_7nm->phy->id); pll_7nm->clk_hw.init = &vco_init; ret = devm_clk_hw_register(dev, &pll_7nm->clk_hw); if (ret) return ret; snprintf(clk_name, sizeof(clk_name), "dsi%d_pll_out_div_clk", pll_7nm->phy->id); pll_out_div = devm_clk_hw_register_divider_parent_hw(dev, clk_name, &pll_7nm->clk_hw, CLK_SET_RATE_PARENT, pll_7nm->phy->pll_base + REG_DSI_7nm_PHY_PLL_PLL_OUTDIV_RATE, 0, 2, CLK_DIVIDER_POWER_OF_TWO, NULL); if (IS_ERR(pll_out_div)) { ret = PTR_ERR(pll_out_div); goto fail; } snprintf(clk_name, sizeof(clk_name), "dsi%d_pll_bit_clk", pll_7nm->phy->id); /* BIT CLK: DIV_CTRL_3_0 */ pll_bit = devm_clk_hw_register_divider_parent_hw(dev, clk_name, pll_out_div, CLK_SET_RATE_PARENT, pll_7nm->phy->base + REG_DSI_7nm_PHY_CMN_CLK_CFG0, 0, 4, CLK_DIVIDER_ONE_BASED, &pll_7nm->postdiv_lock); if (IS_ERR(pll_bit)) { ret = PTR_ERR(pll_bit); goto fail; } snprintf(clk_name, sizeof(clk_name), "dsi%d_phy_pll_out_byteclk", pll_7nm->phy->id); /* DSI Byte clock = VCO_CLK / OUT_DIV / BIT_DIV / 8 */ hw = devm_clk_hw_register_fixed_factor_parent_hw(dev, clk_name, pll_bit, CLK_SET_RATE_PARENT, 1, pll_7nm->phy->cphy_mode ? 7 : 8); if (IS_ERR(hw)) { ret = PTR_ERR(hw); goto fail; } provided_clocks[DSI_BYTE_PLL_CLK] = hw; snprintf(clk_name, sizeof(clk_name), "dsi%d_pll_by_2_bit_clk", pll_7nm->phy->id); pll_by_2_bit = devm_clk_hw_register_fixed_factor_parent_hw(dev, clk_name, pll_bit, 0, 1, 2); if (IS_ERR(pll_by_2_bit)) { ret = PTR_ERR(pll_by_2_bit); goto fail; } snprintf(clk_name, sizeof(clk_name), "dsi%d_pll_post_out_div_clk", pll_7nm->phy->id); if (pll_7nm->phy->cphy_mode) pll_post_out_div = devm_clk_hw_register_fixed_factor_parent_hw( dev, clk_name, pll_out_div, 0, 2, 7); else pll_post_out_div = devm_clk_hw_register_fixed_factor_parent_hw( dev, clk_name, pll_out_div, 0, 1, 4); if (IS_ERR(pll_post_out_div)) { ret = PTR_ERR(pll_post_out_div); goto fail; } /* in CPHY mode, pclk_mux will always have post_out_div as parent * don't register a pclk_mux clock and just use post_out_div instead */ if (pll_7nm->phy->cphy_mode) { u32 data; data = dsi_phy_read(pll_7nm->phy->base + REG_DSI_7nm_PHY_CMN_CLK_CFG1); dsi_phy_write(pll_7nm->phy->base + REG_DSI_7nm_PHY_CMN_CLK_CFG1, data | 3); phy_pll_out_dsi_parent = pll_post_out_div; } else { snprintf(clk_name, sizeof(clk_name), "dsi%d_pclk_mux", pll_7nm->phy->id); hw = devm_clk_hw_register_mux_parent_hws(dev, clk_name, ((const struct clk_hw *[]){ pll_bit, pll_by_2_bit, }), 2, 0, pll_7nm->phy->base + REG_DSI_7nm_PHY_CMN_CLK_CFG1, 0, 1, 0, NULL); if (IS_ERR(hw)) { ret = PTR_ERR(hw); goto fail; } phy_pll_out_dsi_parent = hw; } snprintf(clk_name, sizeof(clk_name), "dsi%d_phy_pll_out_dsiclk", pll_7nm->phy->id); /* PIX CLK DIV : DIV_CTRL_7_4*/ hw = devm_clk_hw_register_divider_parent_hw(dev, clk_name, phy_pll_out_dsi_parent, 0, pll_7nm->phy->base + REG_DSI_7nm_PHY_CMN_CLK_CFG0, 4, 4, CLK_DIVIDER_ONE_BASED, &pll_7nm->postdiv_lock); if (IS_ERR(hw)) { ret = PTR_ERR(hw); goto fail; } provided_clocks[DSI_PIXEL_PLL_CLK] = hw; return 0; fail: return ret; } static int dsi_pll_7nm_init(struct msm_dsi_phy *phy) { struct platform_device *pdev = phy->pdev; struct dsi_pll_7nm *pll_7nm; int ret; pll_7nm = devm_kzalloc(&pdev->dev, sizeof(*pll_7nm), GFP_KERNEL); if (!pll_7nm) return -ENOMEM; DBG("DSI PLL%d", phy->id); pll_7nm_list[phy->id] = pll_7nm; spin_lock_init(&pll_7nm->postdiv_lock); pll_7nm->phy = phy; ret = pll_7nm_register(pll_7nm, phy->provided_clocks->hws); if (ret) { DRM_DEV_ERROR(&pdev->dev, "failed to register PLL: %d\n", ret); return ret; } phy->vco_hw = &pll_7nm->clk_hw; /* TODO: Remove this when we have proper display handover support */ msm_dsi_phy_pll_save_state(phy); return 0; } static int dsi_phy_hw_v4_0_is_pll_on(struct msm_dsi_phy *phy) { void __iomem *base = phy->base; u32 data = 0; data = dsi_phy_read(base + REG_DSI_7nm_PHY_CMN_PLL_CNTRL); mb(); /* make sure read happened */ return (data & BIT(0)); } static void dsi_phy_hw_v4_0_config_lpcdrx(struct msm_dsi_phy *phy, bool enable) { void __iomem *lane_base = phy->lane_base; int phy_lane_0 = 0; /* TODO: Support all lane swap configs */ /* * LPRX and CDRX need to enabled only for physical data lane * corresponding to the logical data lane 0 */ if (enable) dsi_phy_write(lane_base + REG_DSI_7nm_PHY_LN_LPRX_CTRL(phy_lane_0), 0x3); else dsi_phy_write(lane_base + REG_DSI_7nm_PHY_LN_LPRX_CTRL(phy_lane_0), 0); } static void dsi_phy_hw_v4_0_lane_settings(struct msm_dsi_phy *phy) { int i; const u8 tx_dctrl_0[] = { 0x00, 0x00, 0x00, 0x04, 0x01 }; const u8 tx_dctrl_1[] = { 0x40, 0x40, 0x40, 0x46, 0x41 }; const u8 *tx_dctrl = tx_dctrl_0; void __iomem *lane_base = phy->lane_base; if (!(phy->cfg->quirks & DSI_PHY_7NM_QUIRK_PRE_V4_1)) tx_dctrl = tx_dctrl_1; /* Strength ctrl settings */ for (i = 0; i < 5; i++) { /* * Disable LPRX and CDRX for all lanes. And later on, it will * be only enabled for the physical data lane corresponding * to the logical data lane 0 */ dsi_phy_write(lane_base + REG_DSI_7nm_PHY_LN_LPRX_CTRL(i), 0); dsi_phy_write(lane_base + REG_DSI_7nm_PHY_LN_PIN_SWAP(i), 0x0); } dsi_phy_hw_v4_0_config_lpcdrx(phy, true); /* other settings */ for (i = 0; i < 5; i++) { dsi_phy_write(lane_base + REG_DSI_7nm_PHY_LN_CFG0(i), 0x0); dsi_phy_write(lane_base + REG_DSI_7nm_PHY_LN_CFG1(i), 0x0); dsi_phy_write(lane_base + REG_DSI_7nm_PHY_LN_CFG2(i), i == 4 ? 0x8a : 0xa); dsi_phy_write(lane_base + REG_DSI_7nm_PHY_LN_TX_DCTRL(i), tx_dctrl[i]); } } static int dsi_7nm_phy_enable(struct msm_dsi_phy *phy, struct msm_dsi_phy_clk_request *clk_req) { int ret; u32 status; u32 const delay_us = 5; u32 const timeout_us = 1000; struct msm_dsi_dphy_timing *timing = &phy->timing; void __iomem *base = phy->base; bool less_than_1500_mhz; u32 vreg_ctrl_0, vreg_ctrl_1, lane_ctrl0; u32 glbl_pemph_ctrl_0; u32 glbl_str_swi_cal_sel_ctrl, glbl_hstx_str_ctrl_0; u32 glbl_rescode_top_ctrl, glbl_rescode_bot_ctrl; u32 data; DBG(""); if (phy->cphy_mode) ret = msm_dsi_cphy_timing_calc_v4(timing, clk_req); else ret = msm_dsi_dphy_timing_calc_v4(timing, clk_req); if (ret) { DRM_DEV_ERROR(&phy->pdev->dev, "%s: PHY timing calculation failed\n", __func__); return -EINVAL; } if (dsi_phy_hw_v4_0_is_pll_on(phy)) pr_warn("PLL turned on before configuring PHY\n"); /* Request for REFGEN READY */ if ((phy->cfg->quirks & DSI_PHY_7NM_QUIRK_V4_3) || (phy->cfg->quirks & DSI_PHY_7NM_QUIRK_V5_2)) { dsi_phy_write(phy->base + REG_DSI_7nm_PHY_CMN_GLBL_DIGTOP_SPARE10, 0x1); udelay(500); } /* wait for REFGEN READY */ ret = readl_poll_timeout_atomic(base + REG_DSI_7nm_PHY_CMN_PHY_STATUS, status, (status & BIT(0)), delay_us, timeout_us); if (ret) { pr_err("Ref gen not ready. Aborting\n"); return -EINVAL; } /* TODO: CPHY enable path (this is for DPHY only) */ /* Alter PHY configurations if data rate less than 1.5GHZ*/ less_than_1500_mhz = (clk_req->bitclk_rate <= 1500000000); glbl_str_swi_cal_sel_ctrl = 0x00; if (phy->cphy_mode) { vreg_ctrl_0 = 0x51; vreg_ctrl_1 = 0x55; glbl_hstx_str_ctrl_0 = 0x00; glbl_pemph_ctrl_0 = 0x11; lane_ctrl0 = 0x17; } else { vreg_ctrl_0 = less_than_1500_mhz ? 0x53 : 0x52; vreg_ctrl_1 = 0x5c; glbl_hstx_str_ctrl_0 = 0x88; glbl_pemph_ctrl_0 = 0x00; lane_ctrl0 = 0x1f; } if ((phy->cfg->quirks & DSI_PHY_7NM_QUIRK_V5_2)) { if (phy->cphy_mode) { vreg_ctrl_0 = 0x45; vreg_ctrl_1 = 0x41; glbl_rescode_top_ctrl = 0x00; glbl_rescode_bot_ctrl = 0x00; } else { vreg_ctrl_0 = 0x44; vreg_ctrl_1 = 0x19; glbl_rescode_top_ctrl = less_than_1500_mhz ? 0x3c : 0x03; glbl_rescode_bot_ctrl = less_than_1500_mhz ? 0x38 : 0x3c; } } else if ((phy->cfg->quirks & DSI_PHY_7NM_QUIRK_V4_3)) { if (phy->cphy_mode) { glbl_rescode_top_ctrl = less_than_1500_mhz ? 0x3d : 0x01; glbl_rescode_bot_ctrl = less_than_1500_mhz ? 0x38 : 0x3b; } else { glbl_rescode_top_ctrl = less_than_1500_mhz ? 0x3d : 0x01; glbl_rescode_bot_ctrl = less_than_1500_mhz ? 0x38 : 0x39; } } else if (phy->cfg->quirks & DSI_PHY_7NM_QUIRK_V4_2) { if (phy->cphy_mode) { glbl_rescode_top_ctrl = less_than_1500_mhz ? 0x3d : 0x01; glbl_rescode_bot_ctrl = less_than_1500_mhz ? 0x38 : 0x3b; } else { glbl_rescode_top_ctrl = less_than_1500_mhz ? 0x3c : 0x00; glbl_rescode_bot_ctrl = less_than_1500_mhz ? 0x38 : 0x39; } } else if (phy->cfg->quirks & DSI_PHY_7NM_QUIRK_V4_1) { if (phy->cphy_mode) { glbl_hstx_str_ctrl_0 = 0x88; glbl_rescode_top_ctrl = 0x00; glbl_rescode_bot_ctrl = 0x3c; } else { glbl_rescode_top_ctrl = less_than_1500_mhz ? 0x3d : 0x00; glbl_rescode_bot_ctrl = less_than_1500_mhz ? 0x39 : 0x3c; } } else { if (phy->cphy_mode) { glbl_str_swi_cal_sel_ctrl = 0x03; glbl_hstx_str_ctrl_0 = 0x66; } else { vreg_ctrl_0 = less_than_1500_mhz ? 0x5B : 0x59; glbl_str_swi_cal_sel_ctrl = less_than_1500_mhz ? 0x03 : 0x00; glbl_hstx_str_ctrl_0 = less_than_1500_mhz ? 0x66 : 0x88; } glbl_rescode_top_ctrl = 0x03; glbl_rescode_bot_ctrl = 0x3c; } /* de-assert digital and pll power down */ data = BIT(6) | BIT(5); dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_CTRL_0, data); /* Assert PLL core reset */ dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_PLL_CNTRL, 0x00); /* turn off resync FIFO */ dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_RBUF_CTRL, 0x00); /* program CMN_CTRL_4 for minor_ver 2 chipsets*/ if ((phy->cfg->quirks & DSI_PHY_7NM_QUIRK_V5_2) || (dsi_phy_read(base + REG_DSI_7nm_PHY_CMN_REVISION_ID0) & (0xf0)) == 0x20) dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_CTRL_4, 0x04); /* Configure PHY lane swap (TODO: we need to calculate this) */ dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_LANE_CFG0, 0x21); dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_LANE_CFG1, 0x84); if (phy->cphy_mode) dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_GLBL_CTRL, BIT(6)); /* Enable LDO */ dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_VREG_CTRL_0, vreg_ctrl_0); dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_VREG_CTRL_1, vreg_ctrl_1); dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_CTRL_3, 0x00); dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_GLBL_STR_SWI_CAL_SEL_CTRL, glbl_str_swi_cal_sel_ctrl); dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_GLBL_HSTX_STR_CTRL_0, glbl_hstx_str_ctrl_0); dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_GLBL_PEMPH_CTRL_0, glbl_pemph_ctrl_0); if (phy->cphy_mode) dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_GLBL_PEMPH_CTRL_1, 0x01); dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_GLBL_RESCODE_OFFSET_TOP_CTRL, glbl_rescode_top_ctrl); dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_GLBL_RESCODE_OFFSET_BOT_CTRL, glbl_rescode_bot_ctrl); dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_GLBL_LPTX_STR_CTRL, 0x55); /* Remove power down from all blocks */ dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_CTRL_0, 0x7f); dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_LANE_CTRL0, lane_ctrl0); /* Select full-rate mode */ if (!phy->cphy_mode) dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_CTRL_2, 0x40); ret = dsi_7nm_set_usecase(phy); if (ret) { DRM_DEV_ERROR(&phy->pdev->dev, "%s: set pll usecase failed, %d\n", __func__, ret); return ret; } /* DSI PHY timings */ if (phy->cphy_mode) { dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_0, 0x00); dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_4, timing->hs_exit); dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_5, timing->shared_timings.clk_pre); dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_6, timing->clk_prepare); dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_7, timing->shared_timings.clk_post); dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_8, timing->hs_rqst); dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_9, 0x02); dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_10, 0x04); dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_11, 0x00); } else { dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_0, 0x00); dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_1, timing->clk_zero); dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_2, timing->clk_prepare); dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_3, timing->clk_trail); dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_4, timing->hs_exit); dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_5, timing->hs_zero); dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_6, timing->hs_prepare); dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_7, timing->hs_trail); dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_8, timing->hs_rqst); dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_9, 0x02); dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_10, 0x04); dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_11, 0x00); dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_12, timing->shared_timings.clk_pre); dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_13, timing->shared_timings.clk_post); } /* DSI lane settings */ dsi_phy_hw_v4_0_lane_settings(phy); DBG("DSI%d PHY enabled", phy->id); return 0; } static bool dsi_7nm_set_continuous_clock(struct msm_dsi_phy *phy, bool enable) { void __iomem *base = phy->base; u32 data; data = dsi_phy_read(base + REG_DSI_7nm_PHY_CMN_LANE_CTRL1); if (enable) data |= BIT(5) | BIT(6); else data &= ~(BIT(5) | BIT(6)); dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_LANE_CTRL1, data); return enable; } static void dsi_7nm_phy_disable(struct msm_dsi_phy *phy) { void __iomem *base = phy->base; u32 data; DBG(""); if (dsi_phy_hw_v4_0_is_pll_on(phy)) pr_warn("Turning OFF PHY while PLL is on\n"); dsi_phy_hw_v4_0_config_lpcdrx(phy, false); /* Turn off REFGEN Vote */ if ((phy->cfg->quirks & DSI_PHY_7NM_QUIRK_V4_3) || (phy->cfg->quirks & DSI_PHY_7NM_QUIRK_V5_2)) { dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_GLBL_DIGTOP_SPARE10, 0x0); wmb(); /* Delay to ensure HW removes vote before PHY shut down */ udelay(2); } data = dsi_phy_read(base + REG_DSI_7nm_PHY_CMN_CTRL_0); /* disable all lanes */ data &= ~0x1F; dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_CTRL_0, data); dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_LANE_CTRL0, 0); /* Turn off all PHY blocks */ dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_CTRL_0, 0x00); /* make sure phy is turned off */ wmb(); DBG("DSI%d PHY disabled", phy->id); } static const struct regulator_bulk_data dsi_phy_7nm_36mA_regulators[] = { { .supply = "vdds", .init_load_uA = 36000 }, }; static const struct regulator_bulk_data dsi_phy_7nm_37750uA_regulators[] = { { .supply = "vdds", .init_load_uA = 37550 }, }; static const struct regulator_bulk_data dsi_phy_7nm_97800uA_regulators[] = { { .supply = "vdds", .init_load_uA = 97800 }, }; static const struct regulator_bulk_data dsi_phy_7nm_98400uA_regulators[] = { { .supply = "vdds", .init_load_uA = 98400 }, }; const struct msm_dsi_phy_cfg dsi_phy_7nm_cfgs = { .has_phy_lane = true, .regulator_data = dsi_phy_7nm_36mA_regulators, .num_regulators = ARRAY_SIZE(dsi_phy_7nm_36mA_regulators), .ops = { .enable = dsi_7nm_phy_enable, .disable = dsi_7nm_phy_disable, .pll_init = dsi_pll_7nm_init, .save_pll_state = dsi_7nm_pll_save_state, .restore_pll_state = dsi_7nm_pll_restore_state, .set_continuous_clock = dsi_7nm_set_continuous_clock, }, .min_pll_rate = 600000000UL, #ifdef CONFIG_64BIT .max_pll_rate = 5000000000UL, #else .max_pll_rate = ULONG_MAX, #endif .io_start = { 0xae94400, 0xae96400 }, .num_dsi_phy = 2, .quirks = DSI_PHY_7NM_QUIRK_V4_1, }; const struct msm_dsi_phy_cfg dsi_phy_7nm_6375_cfgs = { .has_phy_lane = true, .ops = { .enable = dsi_7nm_phy_enable, .disable = dsi_7nm_phy_disable, .pll_init = dsi_pll_7nm_init, .save_pll_state = dsi_7nm_pll_save_state, .restore_pll_state = dsi_7nm_pll_restore_state, }, .min_pll_rate = 600000000UL, #ifdef CONFIG_64BIT .max_pll_rate = 5000000000ULL, #else .max_pll_rate = ULONG_MAX, #endif .io_start = { 0x5e94400 }, .num_dsi_phy = 1, .quirks = DSI_PHY_7NM_QUIRK_V4_1, }; const struct msm_dsi_phy_cfg dsi_phy_7nm_8150_cfgs = { .has_phy_lane = true, .regulator_data = dsi_phy_7nm_36mA_regulators, .num_regulators = ARRAY_SIZE(dsi_phy_7nm_36mA_regulators), .ops = { .enable = dsi_7nm_phy_enable, .disable = dsi_7nm_phy_disable, .pll_init = dsi_pll_7nm_init, .save_pll_state = dsi_7nm_pll_save_state, .restore_pll_state = dsi_7nm_pll_restore_state, .set_continuous_clock = dsi_7nm_set_continuous_clock, }, .min_pll_rate = 1000000000UL, .max_pll_rate = 3500000000UL, .io_start = { 0xae94400, 0xae96400 }, .num_dsi_phy = 2, .quirks = DSI_PHY_7NM_QUIRK_PRE_V4_1, }; const struct msm_dsi_phy_cfg dsi_phy_7nm_7280_cfgs = { .has_phy_lane = true, .regulator_data = dsi_phy_7nm_37750uA_regulators, .num_regulators = ARRAY_SIZE(dsi_phy_7nm_37750uA_regulators), .ops = { .enable = dsi_7nm_phy_enable, .disable = dsi_7nm_phy_disable, .pll_init = dsi_pll_7nm_init, .save_pll_state = dsi_7nm_pll_save_state, .restore_pll_state = dsi_7nm_pll_restore_state, }, .min_pll_rate = 600000000UL, #ifdef CONFIG_64BIT .max_pll_rate = 5000000000ULL, #else .max_pll_rate = ULONG_MAX, #endif .io_start = { 0xae94400 }, .num_dsi_phy = 1, .quirks = DSI_PHY_7NM_QUIRK_V4_1, }; const struct msm_dsi_phy_cfg dsi_phy_5nm_8350_cfgs = { .has_phy_lane = true, .regulator_data = dsi_phy_7nm_37750uA_regulators, .num_regulators = ARRAY_SIZE(dsi_phy_7nm_37750uA_regulators), .ops = { .enable = dsi_7nm_phy_enable, .disable = dsi_7nm_phy_disable, .pll_init = dsi_pll_7nm_init, .save_pll_state = dsi_7nm_pll_save_state, .restore_pll_state = dsi_7nm_pll_restore_state, .set_continuous_clock = dsi_7nm_set_continuous_clock, }, .min_pll_rate = 600000000UL, #ifdef CONFIG_64BIT .max_pll_rate = 5000000000UL, #else .max_pll_rate = ULONG_MAX, #endif .io_start = { 0xae94400, 0xae96400 }, .num_dsi_phy = 2, .quirks = DSI_PHY_7NM_QUIRK_V4_2, }; const struct msm_dsi_phy_cfg dsi_phy_5nm_8450_cfgs = { .has_phy_lane = true, .regulator_data = dsi_phy_7nm_97800uA_regulators, .num_regulators = ARRAY_SIZE(dsi_phy_7nm_97800uA_regulators), .ops = { .enable = dsi_7nm_phy_enable, .disable = dsi_7nm_phy_disable, .pll_init = dsi_pll_7nm_init, .save_pll_state = dsi_7nm_pll_save_state, .restore_pll_state = dsi_7nm_pll_restore_state, .set_continuous_clock = dsi_7nm_set_continuous_clock, }, .min_pll_rate = 600000000UL, #ifdef CONFIG_64BIT .max_pll_rate = 5000000000UL, #else .max_pll_rate = ULONG_MAX, #endif .io_start = { 0xae94400, 0xae96400 }, .num_dsi_phy = 2, .quirks = DSI_PHY_7NM_QUIRK_V4_3, }; const struct msm_dsi_phy_cfg dsi_phy_4nm_8550_cfgs = { .has_phy_lane = true, .regulator_data = dsi_phy_7nm_98400uA_regulators, .num_regulators = ARRAY_SIZE(dsi_phy_7nm_98400uA_regulators), .ops = { .enable = dsi_7nm_phy_enable, .disable = dsi_7nm_phy_disable, .pll_init = dsi_pll_7nm_init, .save_pll_state = dsi_7nm_pll_save_state, .restore_pll_state = dsi_7nm_pll_restore_state, .set_continuous_clock = dsi_7nm_set_continuous_clock, }, .min_pll_rate = 600000000UL, #ifdef CONFIG_64BIT .max_pll_rate = 5000000000UL, #else .max_pll_rate = ULONG_MAX, #endif .io_start = { 0xae95000, 0xae97000 }, .num_dsi_phy = 2, .quirks = DSI_PHY_7NM_QUIRK_V5_2, };
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1