Contributors: 9
Author Tokens Token Proportion Commits Commit Proportion
Ben Skeggs 14516 93.57% 172 85.57%
Alexandre Courbot 496 3.20% 18 8.96%
Ilia Mirkin 309 1.99% 2 1.00%
Christoph Bumiller 112 0.72% 3 1.49%
Maarten Lankhorst 47 0.30% 1 0.50%
Lauri Peltonen 21 0.14% 1 0.50%
Marcin Ślusarz 6 0.04% 2 1.00%
Kelly Doran 5 0.03% 1 0.50%
Baoyou Xie 2 0.01% 1 0.50%
Total 15514 201


/*
 * Copyright 2012 Red Hat Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 *
 * Authors: Ben Skeggs
 */
#include "gf100.h"
#include "ctxgf100.h"
#include "fuc/os.h"

#include <core/client.h>
#include <core/firmware.h>
#include <core/option.h>
#include <subdev/acr.h>
#include <subdev/fb.h>
#include <subdev/mc.h>
#include <subdev/pmu.h>
#include <subdev/therm.h>
#include <subdev/timer.h>
#include <engine/fifo.h>

#include <nvif/class.h>
#include <nvif/cl9097.h>
#include <nvif/if900d.h>
#include <nvif/unpack.h>

/*******************************************************************************
 * Zero Bandwidth Clear
 ******************************************************************************/

static void
gf100_gr_zbc_clear_color(struct gf100_gr *gr, int zbc)
{
	struct nvkm_device *device = gr->base.engine.subdev.device;
	if (gr->zbc_color[zbc].format) {
		nvkm_wr32(device, 0x405804, gr->zbc_color[zbc].ds[0]);
		nvkm_wr32(device, 0x405808, gr->zbc_color[zbc].ds[1]);
		nvkm_wr32(device, 0x40580c, gr->zbc_color[zbc].ds[2]);
		nvkm_wr32(device, 0x405810, gr->zbc_color[zbc].ds[3]);
	}
	nvkm_wr32(device, 0x405814, gr->zbc_color[zbc].format);
	nvkm_wr32(device, 0x405820, zbc);
	nvkm_wr32(device, 0x405824, 0x00000004); /* TRIGGER | WRITE | COLOR */
}

static int
gf100_gr_zbc_color_get(struct gf100_gr *gr, int format,
		       const u32 ds[4], const u32 l2[4])
{
	struct nvkm_ltc *ltc = gr->base.engine.subdev.device->ltc;
	int zbc = -ENOSPC, i;

	for (i = ltc->zbc_color_min; i <= ltc->zbc_color_max; i++) {
		if (gr->zbc_color[i].format) {
			if (gr->zbc_color[i].format != format)
				continue;
			if (memcmp(gr->zbc_color[i].ds, ds, sizeof(
				   gr->zbc_color[i].ds)))
				continue;
			if (memcmp(gr->zbc_color[i].l2, l2, sizeof(
				   gr->zbc_color[i].l2))) {
				WARN_ON(1);
				return -EINVAL;
			}
			return i;
		} else {
			zbc = (zbc < 0) ? i : zbc;
		}
	}

	if (zbc < 0)
		return zbc;

	memcpy(gr->zbc_color[zbc].ds, ds, sizeof(gr->zbc_color[zbc].ds));
	memcpy(gr->zbc_color[zbc].l2, l2, sizeof(gr->zbc_color[zbc].l2));
	gr->zbc_color[zbc].format = format;
	nvkm_ltc_zbc_color_get(ltc, zbc, l2);
	gr->func->zbc->clear_color(gr, zbc);
	return zbc;
}

static void
gf100_gr_zbc_clear_depth(struct gf100_gr *gr, int zbc)
{
	struct nvkm_device *device = gr->base.engine.subdev.device;
	if (gr->zbc_depth[zbc].format)
		nvkm_wr32(device, 0x405818, gr->zbc_depth[zbc].ds);
	nvkm_wr32(device, 0x40581c, gr->zbc_depth[zbc].format);
	nvkm_wr32(device, 0x405820, zbc);
	nvkm_wr32(device, 0x405824, 0x00000005); /* TRIGGER | WRITE | DEPTH */
}

static int
gf100_gr_zbc_depth_get(struct gf100_gr *gr, int format,
		       const u32 ds, const u32 l2)
{
	struct nvkm_ltc *ltc = gr->base.engine.subdev.device->ltc;
	int zbc = -ENOSPC, i;

	for (i = ltc->zbc_depth_min; i <= ltc->zbc_depth_max; i++) {
		if (gr->zbc_depth[i].format) {
			if (gr->zbc_depth[i].format != format)
				continue;
			if (gr->zbc_depth[i].ds != ds)
				continue;
			if (gr->zbc_depth[i].l2 != l2) {
				WARN_ON(1);
				return -EINVAL;
			}
			return i;
		} else {
			zbc = (zbc < 0) ? i : zbc;
		}
	}

	if (zbc < 0)
		return zbc;

	gr->zbc_depth[zbc].format = format;
	gr->zbc_depth[zbc].ds = ds;
	gr->zbc_depth[zbc].l2 = l2;
	nvkm_ltc_zbc_depth_get(ltc, zbc, l2);
	gr->func->zbc->clear_depth(gr, zbc);
	return zbc;
}

const struct gf100_gr_func_zbc
gf100_gr_zbc = {
	.clear_color = gf100_gr_zbc_clear_color,
	.clear_depth = gf100_gr_zbc_clear_depth,
};

/*******************************************************************************
 * Graphics object classes
 ******************************************************************************/
#define gf100_gr_object(p) container_of((p), struct gf100_gr_object, object)

struct gf100_gr_object {
	struct nvkm_object object;
	struct gf100_gr_chan *chan;
};

static int
gf100_fermi_mthd_zbc_color(struct nvkm_object *object, void *data, u32 size)
{
	struct gf100_gr *gr = gf100_gr(nvkm_gr(object->engine));
	union {
		struct fermi_a_zbc_color_v0 v0;
	} *args = data;
	int ret = -ENOSYS;

	if (!(ret = nvif_unpack(ret, &data, &size, args->v0, 0, 0, false))) {
		switch (args->v0.format) {
		case FERMI_A_ZBC_COLOR_V0_FMT_ZERO:
		case FERMI_A_ZBC_COLOR_V0_FMT_UNORM_ONE:
		case FERMI_A_ZBC_COLOR_V0_FMT_RF32_GF32_BF32_AF32:
		case FERMI_A_ZBC_COLOR_V0_FMT_R16_G16_B16_A16:
		case FERMI_A_ZBC_COLOR_V0_FMT_RN16_GN16_BN16_AN16:
		case FERMI_A_ZBC_COLOR_V0_FMT_RS16_GS16_BS16_AS16:
		case FERMI_A_ZBC_COLOR_V0_FMT_RU16_GU16_BU16_AU16:
		case FERMI_A_ZBC_COLOR_V0_FMT_RF16_GF16_BF16_AF16:
		case FERMI_A_ZBC_COLOR_V0_FMT_A8R8G8B8:
		case FERMI_A_ZBC_COLOR_V0_FMT_A8RL8GL8BL8:
		case FERMI_A_ZBC_COLOR_V0_FMT_A2B10G10R10:
		case FERMI_A_ZBC_COLOR_V0_FMT_AU2BU10GU10RU10:
		case FERMI_A_ZBC_COLOR_V0_FMT_A8B8G8R8:
		case FERMI_A_ZBC_COLOR_V0_FMT_A8BL8GL8RL8:
		case FERMI_A_ZBC_COLOR_V0_FMT_AN8BN8GN8RN8:
		case FERMI_A_ZBC_COLOR_V0_FMT_AS8BS8GS8RS8:
		case FERMI_A_ZBC_COLOR_V0_FMT_AU8BU8GU8RU8:
		case FERMI_A_ZBC_COLOR_V0_FMT_A2R10G10B10:
		case FERMI_A_ZBC_COLOR_V0_FMT_BF10GF11RF11:
			ret = gf100_gr_zbc_color_get(gr, args->v0.format,
							   args->v0.ds,
							   args->v0.l2);
			if (ret >= 0) {
				args->v0.index = ret;
				return 0;
			}
			break;
		default:
			return -EINVAL;
		}
	}

	return ret;
}

static int
gf100_fermi_mthd_zbc_depth(struct nvkm_object *object, void *data, u32 size)
{
	struct gf100_gr *gr = gf100_gr(nvkm_gr(object->engine));
	union {
		struct fermi_a_zbc_depth_v0 v0;
	} *args = data;
	int ret = -ENOSYS;

	if (!(ret = nvif_unpack(ret, &data, &size, args->v0, 0, 0, false))) {
		switch (args->v0.format) {
		case FERMI_A_ZBC_DEPTH_V0_FMT_FP32:
			ret = gf100_gr_zbc_depth_get(gr, args->v0.format,
							   args->v0.ds,
							   args->v0.l2);
			return (ret >= 0) ? 0 : -ENOSPC;
		default:
			return -EINVAL;
		}
	}

	return ret;
}

static int
gf100_fermi_mthd(struct nvkm_object *object, u32 mthd, void *data, u32 size)
{
	nvif_ioctl(object, "fermi mthd %08x\n", mthd);
	switch (mthd) {
	case FERMI_A_ZBC_COLOR:
		return gf100_fermi_mthd_zbc_color(object, data, size);
	case FERMI_A_ZBC_DEPTH:
		return gf100_fermi_mthd_zbc_depth(object, data, size);
	default:
		break;
	}
	return -EINVAL;
}

const struct nvkm_object_func
gf100_fermi = {
	.mthd = gf100_fermi_mthd,
};

static void
gf100_gr_mthd_set_shader_exceptions(struct nvkm_device *device, u32 data)
{
	nvkm_wr32(device, 0x419e44, data ? 0xffffffff : 0x00000000);
	nvkm_wr32(device, 0x419e4c, data ? 0xffffffff : 0x00000000);
}

static bool
gf100_gr_mthd_sw(struct nvkm_device *device, u16 class, u32 mthd, u32 data)
{
	switch (class & 0x00ff) {
	case 0x97:
	case 0xc0:
		switch (mthd) {
		case 0x1528:
			gf100_gr_mthd_set_shader_exceptions(device, data);
			return true;
		default:
			break;
		}
		break;
	default:
		break;
	}
	return false;
}

static const struct nvkm_object_func
gf100_gr_object_func = {
};

static int
gf100_gr_object_new(const struct nvkm_oclass *oclass, void *data, u32 size,
		    struct nvkm_object **pobject)
{
	struct gf100_gr_chan *chan = gf100_gr_chan(oclass->parent);
	struct gf100_gr_object *object;

	if (!(object = kzalloc(sizeof(*object), GFP_KERNEL)))
		return -ENOMEM;
	*pobject = &object->object;

	nvkm_object_ctor(oclass->base.func ? oclass->base.func :
			 &gf100_gr_object_func, oclass, &object->object);
	object->chan = chan;
	return 0;
}

static int
gf100_gr_object_get(struct nvkm_gr *base, int index, struct nvkm_sclass *sclass)
{
	struct gf100_gr *gr = gf100_gr(base);
	int c = 0;

	while (gr->func->sclass[c].oclass) {
		if (c++ == index) {
			*sclass = gr->func->sclass[index];
			sclass->ctor = gf100_gr_object_new;
			return index;
		}
	}

	return c;
}

/*******************************************************************************
 * PGRAPH context
 ******************************************************************************/

static int
gf100_gr_chan_bind(struct nvkm_object *object, struct nvkm_gpuobj *parent,
		   int align, struct nvkm_gpuobj **pgpuobj)
{
	struct gf100_gr_chan *chan = gf100_gr_chan(object);
	struct gf100_gr *gr = chan->gr;
	int ret, i;

	ret = nvkm_gpuobj_new(gr->base.engine.subdev.device, gr->size,
			      align, false, parent, pgpuobj);
	if (ret)
		return ret;

	nvkm_kmap(*pgpuobj);
	for (i = 0; i < gr->size; i += 4)
		nvkm_wo32(*pgpuobj, i, gr->data[i / 4]);

	if (!gr->firmware) {
		nvkm_wo32(*pgpuobj, 0x00, chan->mmio_nr / 2);
		nvkm_wo32(*pgpuobj, 0x04, chan->mmio_vma->addr >> 8);
	} else {
		nvkm_wo32(*pgpuobj, 0xf4, 0);
		nvkm_wo32(*pgpuobj, 0xf8, 0);
		nvkm_wo32(*pgpuobj, 0x10, chan->mmio_nr / 2);
		nvkm_wo32(*pgpuobj, 0x14, lower_32_bits(chan->mmio_vma->addr));
		nvkm_wo32(*pgpuobj, 0x18, upper_32_bits(chan->mmio_vma->addr));
		nvkm_wo32(*pgpuobj, 0x1c, 1);
		nvkm_wo32(*pgpuobj, 0x20, 0);
		nvkm_wo32(*pgpuobj, 0x28, 0);
		nvkm_wo32(*pgpuobj, 0x2c, 0);
	}
	nvkm_done(*pgpuobj);
	return 0;
}

static void *
gf100_gr_chan_dtor(struct nvkm_object *object)
{
	struct gf100_gr_chan *chan = gf100_gr_chan(object);

	nvkm_vmm_put(chan->vmm, &chan->mmio_vma);
	nvkm_memory_unref(&chan->mmio);

	nvkm_vmm_put(chan->vmm, &chan->attrib_cb);
	nvkm_vmm_put(chan->vmm, &chan->unknown);
	nvkm_vmm_put(chan->vmm, &chan->bundle_cb);
	nvkm_vmm_put(chan->vmm, &chan->pagepool);
	nvkm_vmm_unref(&chan->vmm);
	return chan;
}

static const struct nvkm_object_func
gf100_gr_chan = {
	.dtor = gf100_gr_chan_dtor,
	.bind = gf100_gr_chan_bind,
};

static int
gf100_gr_chan_new(struct nvkm_gr *base, struct nvkm_chan *fifoch,
		  const struct nvkm_oclass *oclass,
		  struct nvkm_object **pobject)
{
	struct gf100_gr *gr = gf100_gr(base);
	struct gf100_gr_chan *chan;
	struct gf100_vmm_map_v0 args = { .priv = 1 };
	struct nvkm_device *device = gr->base.engine.subdev.device;
	int ret;

	if (!(chan = kzalloc(sizeof(*chan), GFP_KERNEL)))
		return -ENOMEM;
	nvkm_object_ctor(&gf100_gr_chan, oclass, &chan->object);
	chan->gr = gr;
	chan->vmm = nvkm_vmm_ref(fifoch->vmm);
	*pobject = &chan->object;

	/* Map pagepool. */
	ret = nvkm_vmm_get(chan->vmm, 12, nvkm_memory_size(gr->pagepool), &chan->pagepool);
	if (ret)
		return ret;

	ret = nvkm_memory_map(gr->pagepool, 0, chan->vmm, chan->pagepool, &args, sizeof(args));
	if (ret)
		return ret;

	/* Map bundle circular buffer. */
	ret = nvkm_vmm_get(chan->vmm, 12, nvkm_memory_size(gr->bundle_cb), &chan->bundle_cb);
	if (ret)
		return ret;

	ret = nvkm_memory_map(gr->bundle_cb, 0, chan->vmm, chan->bundle_cb, &args, sizeof(args));
	if (ret)
		return ret;

	/* Map attribute circular buffer. */
	ret = nvkm_vmm_get(chan->vmm, 12, nvkm_memory_size(gr->attrib_cb), &chan->attrib_cb);
	if (ret)
		return ret;

	if (device->card_type < GP100) {
		ret = nvkm_memory_map(gr->attrib_cb, 0, chan->vmm, chan->attrib_cb, NULL, 0);
		if (ret)
			return ret;
	} else {
		ret = nvkm_memory_map(gr->attrib_cb, 0, chan->vmm, chan->attrib_cb,
				      &args, sizeof(args));;
		if (ret)
			return ret;
	}

	/* Map some context buffer of unknown purpose. */
	if (gr->func->grctx->unknown_size) {
		ret = nvkm_vmm_get(chan->vmm, 12, nvkm_memory_size(gr->unknown), &chan->unknown);
		if (ret)
			return ret;

		ret = nvkm_memory_map(gr->unknown, 0, chan->vmm, chan->unknown,
				      &args, sizeof(args));
		if (ret)
			return ret;
	}

	/* Generate golden context image. */
	mutex_lock(&gr->fecs.mutex);
	if (gr->data == NULL) {
		ret = gf100_grctx_generate(gr, chan, fifoch->inst);
		if (ret) {
			nvkm_error(&base->engine.subdev, "failed to construct context\n");
			return ret;
		}
	}
	mutex_unlock(&gr->fecs.mutex);

	/* allocate memory for a "mmio list" buffer that's used by the HUB
	 * fuc to modify some per-context register settings on first load
	 * of the context.
	 */
	ret = nvkm_memory_new(device, NVKM_MEM_TARGET_INST, 0x1000, 0x100,
			      false, &chan->mmio);
	if (ret)
		return ret;

	ret = nvkm_vmm_get(fifoch->vmm, 12, 0x1000, &chan->mmio_vma);
	if (ret)
		return ret;

	ret = nvkm_memory_map(chan->mmio, 0, fifoch->vmm,
			      chan->mmio_vma, &args, sizeof(args));
	if (ret)
		return ret;

	/* finally, fill in the mmio list and point the context at it */
	nvkm_kmap(chan->mmio);
	gr->func->grctx->pagepool(chan, chan->pagepool->addr);
	gr->func->grctx->bundle(chan, chan->bundle_cb->addr, gr->func->grctx->bundle_size);
	gr->func->grctx->attrib_cb(chan, chan->attrib_cb->addr, gr->func->grctx->attrib_cb_size(gr));
	gr->func->grctx->attrib(chan);
	if (gr->func->grctx->patch_ltc)
		gr->func->grctx->patch_ltc(chan);
	if (gr->func->grctx->unknown_size)
		gr->func->grctx->unknown(chan, chan->unknown->addr, gr->func->grctx->unknown_size);
	nvkm_done(chan->mmio);
	return 0;
}

/*******************************************************************************
 * PGRAPH register lists
 ******************************************************************************/

const struct gf100_gr_init
gf100_gr_init_main_0[] = {
	{ 0x400080,   1, 0x04, 0x003083c2 },
	{ 0x400088,   1, 0x04, 0x00006fe7 },
	{ 0x40008c,   1, 0x04, 0x00000000 },
	{ 0x400090,   1, 0x04, 0x00000030 },
	{ 0x40013c,   1, 0x04, 0x013901f7 },
	{ 0x400140,   1, 0x04, 0x00000100 },
	{ 0x400144,   1, 0x04, 0x00000000 },
	{ 0x400148,   1, 0x04, 0x00000110 },
	{ 0x400138,   1, 0x04, 0x00000000 },
	{ 0x400130,   2, 0x04, 0x00000000 },
	{ 0x400124,   1, 0x04, 0x00000002 },
	{}
};

const struct gf100_gr_init
gf100_gr_init_fe_0[] = {
	{ 0x40415c,   1, 0x04, 0x00000000 },
	{ 0x404170,   1, 0x04, 0x00000000 },
	{}
};

const struct gf100_gr_init
gf100_gr_init_pri_0[] = {
	{ 0x404488,   2, 0x04, 0x00000000 },
	{}
};

const struct gf100_gr_init
gf100_gr_init_rstr2d_0[] = {
	{ 0x407808,   1, 0x04, 0x00000000 },
	{}
};

const struct gf100_gr_init
gf100_gr_init_pd_0[] = {
	{ 0x406024,   1, 0x04, 0x00000000 },
	{}
};

const struct gf100_gr_init
gf100_gr_init_ds_0[] = {
	{ 0x405844,   1, 0x04, 0x00ffffff },
	{ 0x405850,   1, 0x04, 0x00000000 },
	{ 0x405908,   1, 0x04, 0x00000000 },
	{}
};

const struct gf100_gr_init
gf100_gr_init_scc_0[] = {
	{ 0x40803c,   1, 0x04, 0x00000000 },
	{}
};

const struct gf100_gr_init
gf100_gr_init_prop_0[] = {
	{ 0x4184a0,   1, 0x04, 0x00000000 },
	{}
};

const struct gf100_gr_init
gf100_gr_init_gpc_unk_0[] = {
	{ 0x418604,   1, 0x04, 0x00000000 },
	{ 0x418680,   1, 0x04, 0x00000000 },
	{ 0x418714,   1, 0x04, 0x80000000 },
	{ 0x418384,   1, 0x04, 0x00000000 },
	{}
};

const struct gf100_gr_init
gf100_gr_init_setup_0[] = {
	{ 0x418814,   3, 0x04, 0x00000000 },
	{}
};

const struct gf100_gr_init
gf100_gr_init_crstr_0[] = {
	{ 0x418b04,   1, 0x04, 0x00000000 },
	{}
};

const struct gf100_gr_init
gf100_gr_init_setup_1[] = {
	{ 0x4188c8,   1, 0x04, 0x80000000 },
	{ 0x4188cc,   1, 0x04, 0x00000000 },
	{ 0x4188d0,   1, 0x04, 0x00010000 },
	{ 0x4188d4,   1, 0x04, 0x00000001 },
	{}
};

const struct gf100_gr_init
gf100_gr_init_zcull_0[] = {
	{ 0x418910,   1, 0x04, 0x00010001 },
	{ 0x418914,   1, 0x04, 0x00000301 },
	{ 0x418918,   1, 0x04, 0x00800000 },
	{ 0x418980,   1, 0x04, 0x77777770 },
	{ 0x418984,   3, 0x04, 0x77777777 },
	{}
};

const struct gf100_gr_init
gf100_gr_init_gpm_0[] = {
	{ 0x418c04,   1, 0x04, 0x00000000 },
	{ 0x418c88,   1, 0x04, 0x00000000 },
	{}
};

const struct gf100_gr_init
gf100_gr_init_gpc_unk_1[] = {
	{ 0x418d00,   1, 0x04, 0x00000000 },
	{ 0x418f08,   1, 0x04, 0x00000000 },
	{ 0x418e00,   1, 0x04, 0x00000050 },
	{ 0x418e08,   1, 0x04, 0x00000000 },
	{}
};

const struct gf100_gr_init
gf100_gr_init_gcc_0[] = {
	{ 0x41900c,   1, 0x04, 0x00000000 },
	{ 0x419018,   1, 0x04, 0x00000000 },
	{}
};

const struct gf100_gr_init
gf100_gr_init_tpccs_0[] = {
	{ 0x419d08,   2, 0x04, 0x00000000 },
	{ 0x419d10,   1, 0x04, 0x00000014 },
	{}
};

const struct gf100_gr_init
gf100_gr_init_tex_0[] = {
	{ 0x419ab0,   1, 0x04, 0x00000000 },
	{ 0x419ab8,   1, 0x04, 0x000000e7 },
	{ 0x419abc,   2, 0x04, 0x00000000 },
	{}
};

const struct gf100_gr_init
gf100_gr_init_pe_0[] = {
	{ 0x41980c,   3, 0x04, 0x00000000 },
	{ 0x419844,   1, 0x04, 0x00000000 },
	{ 0x41984c,   1, 0x04, 0x00005bc5 },
	{ 0x419850,   4, 0x04, 0x00000000 },
	{}
};

const struct gf100_gr_init
gf100_gr_init_l1c_0[] = {
	{ 0x419c98,   1, 0x04, 0x00000000 },
	{ 0x419ca8,   1, 0x04, 0x80000000 },
	{ 0x419cb4,   1, 0x04, 0x00000000 },
	{ 0x419cb8,   1, 0x04, 0x00008bf4 },
	{ 0x419cbc,   1, 0x04, 0x28137606 },
	{ 0x419cc0,   2, 0x04, 0x00000000 },
	{}
};

const struct gf100_gr_init
gf100_gr_init_wwdx_0[] = {
	{ 0x419bd4,   1, 0x04, 0x00800000 },
	{ 0x419bdc,   1, 0x04, 0x00000000 },
	{}
};

const struct gf100_gr_init
gf100_gr_init_tpccs_1[] = {
	{ 0x419d2c,   1, 0x04, 0x00000000 },
	{}
};

const struct gf100_gr_init
gf100_gr_init_mpc_0[] = {
	{ 0x419c0c,   1, 0x04, 0x00000000 },
	{}
};

static const struct gf100_gr_init
gf100_gr_init_sm_0[] = {
	{ 0x419e00,   1, 0x04, 0x00000000 },
	{ 0x419ea0,   1, 0x04, 0x00000000 },
	{ 0x419ea4,   1, 0x04, 0x00000100 },
	{ 0x419ea8,   1, 0x04, 0x00001100 },
	{ 0x419eac,   1, 0x04, 0x11100702 },
	{ 0x419eb0,   1, 0x04, 0x00000003 },
	{ 0x419eb4,   4, 0x04, 0x00000000 },
	{ 0x419ec8,   1, 0x04, 0x06060618 },
	{ 0x419ed0,   1, 0x04, 0x0eff0e38 },
	{ 0x419ed4,   1, 0x04, 0x011104f1 },
	{ 0x419edc,   1, 0x04, 0x00000000 },
	{ 0x419f00,   1, 0x04, 0x00000000 },
	{ 0x419f2c,   1, 0x04, 0x00000000 },
	{}
};

const struct gf100_gr_init
gf100_gr_init_be_0[] = {
	{ 0x40880c,   1, 0x04, 0x00000000 },
	{ 0x408910,   9, 0x04, 0x00000000 },
	{ 0x408950,   1, 0x04, 0x00000000 },
	{ 0x408954,   1, 0x04, 0x0000ffff },
	{ 0x408984,   1, 0x04, 0x00000000 },
	{ 0x408988,   1, 0x04, 0x08040201 },
	{ 0x40898c,   1, 0x04, 0x80402010 },
	{}
};

const struct gf100_gr_init
gf100_gr_init_fe_1[] = {
	{ 0x4040f0,   1, 0x04, 0x00000000 },
	{}
};

const struct gf100_gr_init
gf100_gr_init_pe_1[] = {
	{ 0x419880,   1, 0x04, 0x00000002 },
	{}
};

static const struct gf100_gr_pack
gf100_gr_pack_mmio[] = {
	{ gf100_gr_init_main_0 },
	{ gf100_gr_init_fe_0 },
	{ gf100_gr_init_pri_0 },
	{ gf100_gr_init_rstr2d_0 },
	{ gf100_gr_init_pd_0 },
	{ gf100_gr_init_ds_0 },
	{ gf100_gr_init_scc_0 },
	{ gf100_gr_init_prop_0 },
	{ gf100_gr_init_gpc_unk_0 },
	{ gf100_gr_init_setup_0 },
	{ gf100_gr_init_crstr_0 },
	{ gf100_gr_init_setup_1 },
	{ gf100_gr_init_zcull_0 },
	{ gf100_gr_init_gpm_0 },
	{ gf100_gr_init_gpc_unk_1 },
	{ gf100_gr_init_gcc_0 },
	{ gf100_gr_init_tpccs_0 },
	{ gf100_gr_init_tex_0 },
	{ gf100_gr_init_pe_0 },
	{ gf100_gr_init_l1c_0 },
	{ gf100_gr_init_wwdx_0 },
	{ gf100_gr_init_tpccs_1 },
	{ gf100_gr_init_mpc_0 },
	{ gf100_gr_init_sm_0 },
	{ gf100_gr_init_be_0 },
	{ gf100_gr_init_fe_1 },
	{ gf100_gr_init_pe_1 },
	{}
};

/*******************************************************************************
 * PGRAPH engine/subdev functions
 ******************************************************************************/

static u32
gf100_gr_ctxsw_inst(struct nvkm_gr *gr)
{
	return nvkm_rd32(gr->engine.subdev.device, 0x409b00);
}

static int
gf100_gr_fecs_ctrl_ctxsw(struct gf100_gr *gr, u32 mthd)
{
	struct nvkm_device *device = gr->base.engine.subdev.device;

	nvkm_wr32(device, 0x409804, 0xffffffff);
	nvkm_wr32(device, 0x409800, 0x00000000);
	nvkm_wr32(device, 0x409500, 0xffffffff);
	nvkm_wr32(device, 0x409504, mthd);
	nvkm_msec(device, 2000,
		u32 stat = nvkm_rd32(device, 0x409804);
		if (stat == 0x00000002)
			return -EIO;
		if (stat == 0x00000001)
			return 0;
	);

	return -ETIMEDOUT;
}

static int
gf100_gr_fecs_start_ctxsw(struct nvkm_gr *base)
{
	struct gf100_gr *gr = gf100_gr(base);
	int ret = 0;

	mutex_lock(&gr->fecs.mutex);
	if (!--gr->fecs.disable) {
		if (WARN_ON(ret = gf100_gr_fecs_ctrl_ctxsw(gr, 0x39)))
			gr->fecs.disable++;
	}
	mutex_unlock(&gr->fecs.mutex);
	return ret;
}

static int
gf100_gr_fecs_stop_ctxsw(struct nvkm_gr *base)
{
	struct gf100_gr *gr = gf100_gr(base);
	int ret = 0;

	mutex_lock(&gr->fecs.mutex);
	if (!gr->fecs.disable++) {
		if (WARN_ON(ret = gf100_gr_fecs_ctrl_ctxsw(gr, 0x38)))
			gr->fecs.disable--;
	}
	mutex_unlock(&gr->fecs.mutex);
	return ret;
}

static int
gf100_gr_fecs_halt_pipeline(struct gf100_gr *gr)
{
	int ret = 0;

	if (gr->firmware) {
		mutex_lock(&gr->fecs.mutex);
		ret = gf100_gr_fecs_ctrl_ctxsw(gr, 0x04);
		mutex_unlock(&gr->fecs.mutex);
	}

	return ret;
}

int
gf100_gr_fecs_wfi_golden_save(struct gf100_gr *gr, u32 inst)
{
	struct nvkm_device *device = gr->base.engine.subdev.device;

	nvkm_mask(device, 0x409800, 0x00000003, 0x00000000);
	nvkm_wr32(device, 0x409500, inst);
	nvkm_wr32(device, 0x409504, 0x00000009);
	nvkm_msec(device, 2000,
		u32 stat = nvkm_rd32(device, 0x409800);
		if (stat & 0x00000002)
			return -EIO;
		if (stat & 0x00000001)
			return 0;
	);

	return -ETIMEDOUT;
}

int
gf100_gr_fecs_bind_pointer(struct gf100_gr *gr, u32 inst)
{
	struct nvkm_device *device = gr->base.engine.subdev.device;

	nvkm_mask(device, 0x409800, 0x00000030, 0x00000000);
	nvkm_wr32(device, 0x409500, inst);
	nvkm_wr32(device, 0x409504, 0x00000003);
	nvkm_msec(device, 2000,
		u32 stat = nvkm_rd32(device, 0x409800);
		if (stat & 0x00000020)
			return -EIO;
		if (stat & 0x00000010)
			return 0;
	);

	return -ETIMEDOUT;
}

static int
gf100_gr_fecs_set_reglist_virtual_address(struct gf100_gr *gr, u64 addr)
{
	struct nvkm_device *device = gr->base.engine.subdev.device;

	nvkm_wr32(device, 0x409810, addr >> 8);
	nvkm_wr32(device, 0x409800, 0x00000000);
	nvkm_wr32(device, 0x409500, 0x00000001);
	nvkm_wr32(device, 0x409504, 0x00000032);
	nvkm_msec(device, 2000,
		if (nvkm_rd32(device, 0x409800) == 0x00000001)
			return 0;
	);

	return -ETIMEDOUT;
}

static int
gf100_gr_fecs_set_reglist_bind_instance(struct gf100_gr *gr, u32 inst)
{
	struct nvkm_device *device = gr->base.engine.subdev.device;

	nvkm_wr32(device, 0x409810, inst);
	nvkm_wr32(device, 0x409800, 0x00000000);
	nvkm_wr32(device, 0x409500, 0x00000001);
	nvkm_wr32(device, 0x409504, 0x00000031);
	nvkm_msec(device, 2000,
		if (nvkm_rd32(device, 0x409800) == 0x00000001)
			return 0;
	);

	return -ETIMEDOUT;
}

static int
gf100_gr_fecs_discover_reglist_image_size(struct gf100_gr *gr, u32 *psize)
{
	struct nvkm_device *device = gr->base.engine.subdev.device;

	nvkm_wr32(device, 0x409800, 0x00000000);
	nvkm_wr32(device, 0x409500, 0x00000001);
	nvkm_wr32(device, 0x409504, 0x00000030);
	nvkm_msec(device, 2000,
		if ((*psize = nvkm_rd32(device, 0x409800)))
			return 0;
	);

	return -ETIMEDOUT;
}

static int
gf100_gr_fecs_elpg_bind(struct gf100_gr *gr)
{
	u32 size;
	int ret;

	ret = gf100_gr_fecs_discover_reglist_image_size(gr, &size);
	if (ret)
		return ret;

	/*XXX: We need to allocate + map the above into PMU's inst block,
	 *     which which means we probably need a proper PMU before we
	 *     even bother.
	 */

	ret = gf100_gr_fecs_set_reglist_bind_instance(gr, 0);
	if (ret)
		return ret;

	return gf100_gr_fecs_set_reglist_virtual_address(gr, 0);
}

static int
gf100_gr_fecs_discover_pm_image_size(struct gf100_gr *gr, u32 *psize)
{
	struct nvkm_device *device = gr->base.engine.subdev.device;

	nvkm_wr32(device, 0x409800, 0x00000000);
	nvkm_wr32(device, 0x409500, 0x00000000);
	nvkm_wr32(device, 0x409504, 0x00000025);
	nvkm_msec(device, 2000,
		if ((*psize = nvkm_rd32(device, 0x409800)))
			return 0;
	);

	return -ETIMEDOUT;
}

static int
gf100_gr_fecs_discover_zcull_image_size(struct gf100_gr *gr, u32 *psize)
{
	struct nvkm_device *device = gr->base.engine.subdev.device;

	nvkm_wr32(device, 0x409800, 0x00000000);
	nvkm_wr32(device, 0x409500, 0x00000000);
	nvkm_wr32(device, 0x409504, 0x00000016);
	nvkm_msec(device, 2000,
		if ((*psize = nvkm_rd32(device, 0x409800)))
			return 0;
	);

	return -ETIMEDOUT;
}

static int
gf100_gr_fecs_discover_image_size(struct gf100_gr *gr, u32 *psize)
{
	struct nvkm_device *device = gr->base.engine.subdev.device;

	nvkm_wr32(device, 0x409800, 0x00000000);
	nvkm_wr32(device, 0x409500, 0x00000000);
	nvkm_wr32(device, 0x409504, 0x00000010);
	nvkm_msec(device, 2000,
		if ((*psize = nvkm_rd32(device, 0x409800)))
			return 0;
	);

	return -ETIMEDOUT;
}

static void
gf100_gr_fecs_set_watchdog_timeout(struct gf100_gr *gr, u32 timeout)
{
	struct nvkm_device *device = gr->base.engine.subdev.device;

	nvkm_wr32(device, 0x409800, 0x00000000);
	nvkm_wr32(device, 0x409500, timeout);
	nvkm_wr32(device, 0x409504, 0x00000021);
}

static bool
gf100_gr_chsw_load(struct nvkm_gr *base)
{
	struct gf100_gr *gr = gf100_gr(base);
	if (!gr->firmware) {
		u32 trace = nvkm_rd32(gr->base.engine.subdev.device, 0x40981c);
		if (trace & 0x00000040)
			return true;
	} else {
		u32 mthd = nvkm_rd32(gr->base.engine.subdev.device, 0x409808);
		if (mthd & 0x00080000)
			return true;
	}
	return false;
}

int
gf100_gr_rops(struct gf100_gr *gr)
{
	struct nvkm_device *device = gr->base.engine.subdev.device;
	return (nvkm_rd32(device, 0x409604) & 0x001f0000) >> 16;
}

void
gf100_gr_zbc_init(struct gf100_gr *gr)
{
	const u32  zero[] = { 0x00000000, 0x00000000, 0x00000000, 0x00000000,
			      0x00000000, 0x00000000, 0x00000000, 0x00000000 };
	const u32   one[] = { 0x3f800000, 0x3f800000, 0x3f800000, 0x3f800000,
			      0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff };
	const u32 f32_0[] = { 0x00000000, 0x00000000, 0x00000000, 0x00000000,
			      0x00000000, 0x00000000, 0x00000000, 0x00000000 };
	const u32 f32_1[] = { 0x3f800000, 0x3f800000, 0x3f800000, 0x3f800000,
			      0x3f800000, 0x3f800000, 0x3f800000, 0x3f800000 };
	struct nvkm_ltc *ltc = gr->base.engine.subdev.device->ltc;
	int index, c = ltc->zbc_color_min, d = ltc->zbc_depth_min, s = ltc->zbc_depth_min;

	if (!gr->zbc_color[0].format) {
		gf100_gr_zbc_color_get(gr, 1,  & zero[0],   &zero[4]); c++;
		gf100_gr_zbc_color_get(gr, 2,  &  one[0],    &one[4]); c++;
		gf100_gr_zbc_color_get(gr, 4,  &f32_0[0],  &f32_0[4]); c++;
		gf100_gr_zbc_color_get(gr, 4,  &f32_1[0],  &f32_1[4]); c++;
		gf100_gr_zbc_depth_get(gr, 1, 0x00000000, 0x00000000); d++;
		gf100_gr_zbc_depth_get(gr, 1, 0x3f800000, 0x3f800000); d++;
		if (gr->func->zbc->stencil_get) {
			gr->func->zbc->stencil_get(gr, 1, 0x00, 0x00); s++;
			gr->func->zbc->stencil_get(gr, 1, 0x01, 0x01); s++;
			gr->func->zbc->stencil_get(gr, 1, 0xff, 0xff); s++;
		}
	}

	for (index = c; index <= ltc->zbc_color_max; index++)
		gr->func->zbc->clear_color(gr, index);
	for (index = d; index <= ltc->zbc_depth_max; index++)
		gr->func->zbc->clear_depth(gr, index);

	if (gr->func->zbc->clear_stencil) {
		for (index = s; index <= ltc->zbc_depth_max; index++)
			gr->func->zbc->clear_stencil(gr, index);
	}
}

/**
 * Wait until GR goes idle. GR is considered idle if it is disabled by the
 * MC (0x200) register, or GR is not busy and a context switch is not in
 * progress.
 */
int
gf100_gr_wait_idle(struct gf100_gr *gr)
{
	struct nvkm_subdev *subdev = &gr->base.engine.subdev;
	struct nvkm_device *device = subdev->device;
	unsigned long end_jiffies = jiffies + msecs_to_jiffies(2000);
	bool gr_enabled, ctxsw_active, gr_busy;

	do {
		/*
		 * required to make sure FIFO_ENGINE_STATUS (0x2640) is
		 * up-to-date
		 */
		nvkm_rd32(device, 0x400700);

		gr_enabled = nvkm_rd32(device, 0x200) & 0x1000;
		ctxsw_active = nvkm_fifo_ctxsw_in_progress(&gr->base.engine);
		gr_busy = nvkm_rd32(device, 0x40060c) & 0x1;

		if (!gr_enabled || (!gr_busy && !ctxsw_active))
			return 0;
	} while (time_before(jiffies, end_jiffies));

	nvkm_error(subdev,
		   "wait for idle timeout (en: %d, ctxsw: %d, busy: %d)\n",
		   gr_enabled, ctxsw_active, gr_busy);
	return -EAGAIN;
}

void
gf100_gr_mmio(struct gf100_gr *gr, const struct gf100_gr_pack *p)
{
	struct nvkm_device *device = gr->base.engine.subdev.device;
	const struct gf100_gr_pack *pack;
	const struct gf100_gr_init *init;

	pack_for_each_init(init, pack, p) {
		u32 next = init->addr + init->count * init->pitch;
		u32 addr = init->addr;
		while (addr < next) {
			nvkm_wr32(device, addr, init->data);
			addr += init->pitch;
		}
	}
}

void
gf100_gr_icmd(struct gf100_gr *gr, const struct gf100_gr_pack *p)
{
	struct nvkm_device *device = gr->base.engine.subdev.device;
	const struct gf100_gr_pack *pack;
	const struct gf100_gr_init *init;
	u64 data = 0;

	nvkm_wr32(device, 0x400208, 0x80000000);

	pack_for_each_init(init, pack, p) {
		u32 next = init->addr + init->count * init->pitch;
		u32 addr = init->addr;

		if ((pack == p && init == p->init) || data != init->data) {
			nvkm_wr32(device, 0x400204, init->data);
			if (pack->type == 64)
				nvkm_wr32(device, 0x40020c, upper_32_bits(init->data));
			data = init->data;
		}

		while (addr < next) {
			nvkm_wr32(device, 0x400200, addr);
			/**
			 * Wait for GR to go idle after submitting a
			 * GO_IDLE bundle
			 */
			if ((addr & 0xffff) == 0xe100)
				gf100_gr_wait_idle(gr);
			nvkm_msec(device, 2000,
				if (!(nvkm_rd32(device, 0x400700) & 0x00000004))
					break;
			);
			addr += init->pitch;
		}
	}

	nvkm_wr32(device, 0x400208, 0x00000000);
}

void
gf100_gr_mthd(struct gf100_gr *gr, const struct gf100_gr_pack *p)
{
	struct nvkm_device *device = gr->base.engine.subdev.device;
	const struct gf100_gr_pack *pack;
	const struct gf100_gr_init *init;
	u32 data = 0;

	pack_for_each_init(init, pack, p) {
		u32 ctrl = 0x80000000 | pack->type;
		u32 next = init->addr + init->count * init->pitch;
		u32 addr = init->addr;

		if ((pack == p && init == p->init) || data != init->data) {
			nvkm_wr32(device, 0x40448c, init->data);
			data = init->data;
		}

		while (addr < next) {
			nvkm_wr32(device, 0x404488, ctrl | (addr << 14));
			addr += init->pitch;
		}
	}
}

u64
gf100_gr_units(struct nvkm_gr *base)
{
	struct gf100_gr *gr = gf100_gr(base);
	u64 cfg;

	cfg  = (u32)gr->gpc_nr;
	cfg |= (u32)gr->tpc_total << 8;
	cfg |= (u64)gr->rop_nr << 32;

	return cfg;
}

static const struct nvkm_bitfield gf100_dispatch_error[] = {
	{ 0x00000001, "INJECTED_BUNDLE_ERROR" },
	{ 0x00000002, "CLASS_SUBCH_MISMATCH" },
	{ 0x00000004, "SUBCHSW_DURING_NOTIFY" },
	{}
};

static const struct nvkm_bitfield gf100_m2mf_error[] = {
	{ 0x00000001, "PUSH_TOO_MUCH_DATA" },
	{ 0x00000002, "PUSH_NOT_ENOUGH_DATA" },
	{}
};

static const struct nvkm_bitfield gf100_unk6_error[] = {
	{ 0x00000001, "TEMP_TOO_SMALL" },
	{}
};

static const struct nvkm_bitfield gf100_ccache_error[] = {
	{ 0x00000001, "INTR" },
	{ 0x00000002, "LDCONST_OOB" },
	{}
};

static const struct nvkm_bitfield gf100_macro_error[] = {
	{ 0x00000001, "TOO_FEW_PARAMS" },
	{ 0x00000002, "TOO_MANY_PARAMS" },
	{ 0x00000004, "ILLEGAL_OPCODE" },
	{ 0x00000008, "DOUBLE_BRANCH" },
	{ 0x00000010, "WATCHDOG" },
	{}
};

static const struct nvkm_bitfield gk104_sked_error[] = {
	{ 0x00000040, "CTA_RESUME" },
	{ 0x00000080, "CONSTANT_BUFFER_SIZE" },
	{ 0x00000200, "LOCAL_MEMORY_SIZE_POS" },
	{ 0x00000400, "LOCAL_MEMORY_SIZE_NEG" },
	{ 0x00000800, "WARP_CSTACK_SIZE" },
	{ 0x00001000, "TOTAL_TEMP_SIZE" },
	{ 0x00002000, "REGISTER_COUNT" },
	{ 0x00040000, "TOTAL_THREADS" },
	{ 0x00100000, "PROGRAM_OFFSET" },
	{ 0x00200000, "SHARED_MEMORY_SIZE" },
	{ 0x00800000, "CTA_THREAD_DIMENSION_ZERO" },
	{ 0x01000000, "MEMORY_WINDOW_OVERLAP" },
	{ 0x02000000, "SHARED_CONFIG_TOO_SMALL" },
	{ 0x04000000, "TOTAL_REGISTER_COUNT" },
	{}
};

static const struct nvkm_bitfield gf100_gpc_rop_error[] = {
	{ 0x00000002, "RT_PITCH_OVERRUN" },
	{ 0x00000010, "RT_WIDTH_OVERRUN" },
	{ 0x00000020, "RT_HEIGHT_OVERRUN" },
	{ 0x00000080, "ZETA_STORAGE_TYPE_MISMATCH" },
	{ 0x00000100, "RT_STORAGE_TYPE_MISMATCH" },
	{ 0x00000400, "RT_LINEAR_MISMATCH" },
	{}
};

static void
gf100_gr_trap_gpc_rop(struct gf100_gr *gr, int gpc)
{
	struct nvkm_subdev *subdev = &gr->base.engine.subdev;
	struct nvkm_device *device = subdev->device;
	char error[128];
	u32 trap[4];

	trap[0] = nvkm_rd32(device, GPC_UNIT(gpc, 0x0420)) & 0x3fffffff;
	trap[1] = nvkm_rd32(device, GPC_UNIT(gpc, 0x0434));
	trap[2] = nvkm_rd32(device, GPC_UNIT(gpc, 0x0438));
	trap[3] = nvkm_rd32(device, GPC_UNIT(gpc, 0x043c));

	nvkm_snprintbf(error, sizeof(error), gf100_gpc_rop_error, trap[0]);

	nvkm_error(subdev, "GPC%d/PROP trap: %08x [%s] x = %u, y = %u, "
			   "format = %x, storage type = %x\n",
		   gpc, trap[0], error, trap[1] & 0xffff, trap[1] >> 16,
		   (trap[2] >> 8) & 0x3f, trap[3] & 0xff);
	nvkm_wr32(device, GPC_UNIT(gpc, 0x0420), 0xc0000000);
}

const struct nvkm_enum gf100_mp_warp_error[] = {
	{ 0x01, "STACK_ERROR" },
	{ 0x02, "API_STACK_ERROR" },
	{ 0x03, "RET_EMPTY_STACK_ERROR" },
	{ 0x04, "PC_WRAP" },
	{ 0x05, "MISALIGNED_PC" },
	{ 0x06, "PC_OVERFLOW" },
	{ 0x07, "MISALIGNED_IMMC_ADDR" },
	{ 0x08, "MISALIGNED_REG" },
	{ 0x09, "ILLEGAL_INSTR_ENCODING" },
	{ 0x0a, "ILLEGAL_SPH_INSTR_COMBO" },
	{ 0x0b, "ILLEGAL_INSTR_PARAM" },
	{ 0x0c, "INVALID_CONST_ADDR" },
	{ 0x0d, "OOR_REG" },
	{ 0x0e, "OOR_ADDR" },
	{ 0x0f, "MISALIGNED_ADDR" },
	{ 0x10, "INVALID_ADDR_SPACE" },
	{ 0x11, "ILLEGAL_INSTR_PARAM2" },
	{ 0x12, "INVALID_CONST_ADDR_LDC" },
	{ 0x13, "GEOMETRY_SM_ERROR" },
	{ 0x14, "DIVERGENT" },
	{ 0x15, "WARP_EXIT" },
	{}
};

const struct nvkm_bitfield gf100_mp_global_error[] = {
	{ 0x00000001, "SM_TO_SM_FAULT" },
	{ 0x00000002, "L1_ERROR" },
	{ 0x00000004, "MULTIPLE_WARP_ERRORS" },
	{ 0x00000008, "PHYSICAL_STACK_OVERFLOW" },
	{ 0x00000010, "BPT_INT" },
	{ 0x00000020, "BPT_PAUSE" },
	{ 0x00000040, "SINGLE_STEP_COMPLETE" },
	{ 0x20000000, "ECC_SEC_ERROR" },
	{ 0x40000000, "ECC_DED_ERROR" },
	{ 0x80000000, "TIMEOUT" },
	{}
};

void
gf100_gr_trap_mp(struct gf100_gr *gr, int gpc, int tpc)
{
	struct nvkm_subdev *subdev = &gr->base.engine.subdev;
	struct nvkm_device *device = subdev->device;
	u32 werr = nvkm_rd32(device, TPC_UNIT(gpc, tpc, 0x648));
	u32 gerr = nvkm_rd32(device, TPC_UNIT(gpc, tpc, 0x650));
	const struct nvkm_enum *warp;
	char glob[128];

	nvkm_snprintbf(glob, sizeof(glob), gf100_mp_global_error, gerr);
	warp = nvkm_enum_find(gf100_mp_warp_error, werr & 0xffff);

	nvkm_error(subdev, "GPC%i/TPC%i/MP trap: "
			   "global %08x [%s] warp %04x [%s]\n",
		   gpc, tpc, gerr, glob, werr, warp ? warp->name : "");

	nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x648), 0x00000000);
	nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x650), gerr);
}

static void
gf100_gr_trap_tpc(struct gf100_gr *gr, int gpc, int tpc)
{
	struct nvkm_subdev *subdev = &gr->base.engine.subdev;
	struct nvkm_device *device = subdev->device;
	u32 stat = nvkm_rd32(device, TPC_UNIT(gpc, tpc, 0x0508));

	if (stat & 0x00000001) {
		u32 trap = nvkm_rd32(device, TPC_UNIT(gpc, tpc, 0x0224));
		nvkm_error(subdev, "GPC%d/TPC%d/TEX: %08x\n", gpc, tpc, trap);
		nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x0224), 0xc0000000);
		stat &= ~0x00000001;
	}

	if (stat & 0x00000002) {
		gr->func->trap_mp(gr, gpc, tpc);
		stat &= ~0x00000002;
	}

	if (stat & 0x00000004) {
		u32 trap = nvkm_rd32(device, TPC_UNIT(gpc, tpc, 0x0084));
		nvkm_error(subdev, "GPC%d/TPC%d/POLY: %08x\n", gpc, tpc, trap);
		nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x0084), 0xc0000000);
		stat &= ~0x00000004;
	}

	if (stat & 0x00000008) {
		u32 trap = nvkm_rd32(device, TPC_UNIT(gpc, tpc, 0x048c));
		nvkm_error(subdev, "GPC%d/TPC%d/L1C: %08x\n", gpc, tpc, trap);
		nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x048c), 0xc0000000);
		stat &= ~0x00000008;
	}

	if (stat & 0x00000010) {
		u32 trap = nvkm_rd32(device, TPC_UNIT(gpc, tpc, 0x0430));
		nvkm_error(subdev, "GPC%d/TPC%d/MPC: %08x\n", gpc, tpc, trap);
		nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x0430), 0xc0000000);
		stat &= ~0x00000010;
	}

	if (stat) {
		nvkm_error(subdev, "GPC%d/TPC%d/%08x: unknown\n", gpc, tpc, stat);
	}
}

static void
gf100_gr_trap_gpc(struct gf100_gr *gr, int gpc)
{
	struct nvkm_subdev *subdev = &gr->base.engine.subdev;
	struct nvkm_device *device = subdev->device;
	u32 stat = nvkm_rd32(device, GPC_UNIT(gpc, 0x2c90));
	int tpc;

	if (stat & 0x00000001) {
		gf100_gr_trap_gpc_rop(gr, gpc);
		stat &= ~0x00000001;
	}

	if (stat & 0x00000002) {
		u32 trap = nvkm_rd32(device, GPC_UNIT(gpc, 0x0900));
		nvkm_error(subdev, "GPC%d/ZCULL: %08x\n", gpc, trap);
		nvkm_wr32(device, GPC_UNIT(gpc, 0x0900), 0xc0000000);
		stat &= ~0x00000002;
	}

	if (stat & 0x00000004) {
		u32 trap = nvkm_rd32(device, GPC_UNIT(gpc, 0x1028));
		nvkm_error(subdev, "GPC%d/CCACHE: %08x\n", gpc, trap);
		nvkm_wr32(device, GPC_UNIT(gpc, 0x1028), 0xc0000000);
		stat &= ~0x00000004;
	}

	if (stat & 0x00000008) {
		u32 trap = nvkm_rd32(device, GPC_UNIT(gpc, 0x0824));
		nvkm_error(subdev, "GPC%d/ESETUP: %08x\n", gpc, trap);
		nvkm_wr32(device, GPC_UNIT(gpc, 0x0824), 0xc0000000);
		stat &= ~0x00000009;
	}

	for (tpc = 0; tpc < gr->tpc_nr[gpc]; tpc++) {
		u32 mask = 0x00010000 << tpc;
		if (stat & mask) {
			gf100_gr_trap_tpc(gr, gpc, tpc);
			nvkm_wr32(device, GPC_UNIT(gpc, 0x2c90), mask);
			stat &= ~mask;
		}
	}

	if (stat) {
		nvkm_error(subdev, "GPC%d/%08x: unknown\n", gpc, stat);
	}
}

static void
gf100_gr_trap_intr(struct gf100_gr *gr)
{
	struct nvkm_subdev *subdev = &gr->base.engine.subdev;
	struct nvkm_device *device = subdev->device;
	char error[128];
	u32 trap = nvkm_rd32(device, 0x400108);
	int rop, gpc;

	if (trap & 0x00000001) {
		u32 stat = nvkm_rd32(device, 0x404000);

		nvkm_snprintbf(error, sizeof(error), gf100_dispatch_error,
			       stat & 0x3fffffff);
		nvkm_error(subdev, "DISPATCH %08x [%s]\n", stat, error);
		nvkm_wr32(device, 0x404000, 0xc0000000);
		nvkm_wr32(device, 0x400108, 0x00000001);
		trap &= ~0x00000001;
	}

	if (trap & 0x00000002) {
		u32 stat = nvkm_rd32(device, 0x404600);

		nvkm_snprintbf(error, sizeof(error), gf100_m2mf_error,
			       stat & 0x3fffffff);
		nvkm_error(subdev, "M2MF %08x [%s]\n", stat, error);

		nvkm_wr32(device, 0x404600, 0xc0000000);
		nvkm_wr32(device, 0x400108, 0x00000002);
		trap &= ~0x00000002;
	}

	if (trap & 0x00000008) {
		u32 stat = nvkm_rd32(device, 0x408030);

		nvkm_snprintbf(error, sizeof(error), gf100_ccache_error,
			       stat & 0x3fffffff);
		nvkm_error(subdev, "CCACHE %08x [%s]\n", stat, error);
		nvkm_wr32(device, 0x408030, 0xc0000000);
		nvkm_wr32(device, 0x400108, 0x00000008);
		trap &= ~0x00000008;
	}

	if (trap & 0x00000010) {
		u32 stat = nvkm_rd32(device, 0x405840);
		nvkm_error(subdev, "SHADER %08x, sph: 0x%06x, stage: 0x%02x\n",
			   stat, stat & 0xffffff, (stat >> 24) & 0x3f);
		nvkm_wr32(device, 0x405840, 0xc0000000);
		nvkm_wr32(device, 0x400108, 0x00000010);
		trap &= ~0x00000010;
	}

	if (trap & 0x00000040) {
		u32 stat = nvkm_rd32(device, 0x40601c);

		nvkm_snprintbf(error, sizeof(error), gf100_unk6_error,
			       stat & 0x3fffffff);
		nvkm_error(subdev, "UNK6 %08x [%s]\n", stat, error);

		nvkm_wr32(device, 0x40601c, 0xc0000000);
		nvkm_wr32(device, 0x400108, 0x00000040);
		trap &= ~0x00000040;
	}

	if (trap & 0x00000080) {
		u32 stat = nvkm_rd32(device, 0x404490);
		u32 pc = nvkm_rd32(device, 0x404494);
		u32 op = nvkm_rd32(device, 0x40449c);

		nvkm_snprintbf(error, sizeof(error), gf100_macro_error,
			       stat & 0x1fffffff);
		nvkm_error(subdev, "MACRO %08x [%s], pc: 0x%03x%s, op: 0x%08x\n",
			   stat, error, pc & 0x7ff,
			   (pc & 0x10000000) ? "" : " (invalid)",
			   op);

		nvkm_wr32(device, 0x404490, 0xc0000000);
		nvkm_wr32(device, 0x400108, 0x00000080);
		trap &= ~0x00000080;
	}

	if (trap & 0x00000100) {
		u32 stat = nvkm_rd32(device, 0x407020) & 0x3fffffff;

		nvkm_snprintbf(error, sizeof(error), gk104_sked_error, stat);
		nvkm_error(subdev, "SKED: %08x [%s]\n", stat, error);

		if (stat)
			nvkm_wr32(device, 0x407020, 0x40000000);
		nvkm_wr32(device, 0x400108, 0x00000100);
		trap &= ~0x00000100;
	}

	if (trap & 0x01000000) {
		u32 stat = nvkm_rd32(device, 0x400118);
		for (gpc = 0; stat && gpc < gr->gpc_nr; gpc++) {
			u32 mask = 0x00000001 << gpc;
			if (stat & mask) {
				gf100_gr_trap_gpc(gr, gpc);
				nvkm_wr32(device, 0x400118, mask);
				stat &= ~mask;
			}
		}
		nvkm_wr32(device, 0x400108, 0x01000000);
		trap &= ~0x01000000;
	}

	if (trap & 0x02000000) {
		for (rop = 0; rop < gr->rop_nr; rop++) {
			u32 statz = nvkm_rd32(device, ROP_UNIT(rop, 0x070));
			u32 statc = nvkm_rd32(device, ROP_UNIT(rop, 0x144));
			nvkm_error(subdev, "ROP%d %08x %08x\n",
				 rop, statz, statc);
			nvkm_wr32(device, ROP_UNIT(rop, 0x070), 0xc0000000);
			nvkm_wr32(device, ROP_UNIT(rop, 0x144), 0xc0000000);
		}
		nvkm_wr32(device, 0x400108, 0x02000000);
		trap &= ~0x02000000;
	}

	if (trap) {
		nvkm_error(subdev, "TRAP UNHANDLED %08x\n", trap);
		nvkm_wr32(device, 0x400108, trap);
	}
}

static void
gf100_gr_ctxctl_debug_unit(struct gf100_gr *gr, u32 base)
{
	struct nvkm_subdev *subdev = &gr->base.engine.subdev;
	struct nvkm_device *device = subdev->device;
	nvkm_error(subdev, "%06x - done %08x\n", base,
		   nvkm_rd32(device, base + 0x400));
	nvkm_error(subdev, "%06x - stat %08x %08x %08x %08x\n", base,
		   nvkm_rd32(device, base + 0x800),
		   nvkm_rd32(device, base + 0x804),
		   nvkm_rd32(device, base + 0x808),
		   nvkm_rd32(device, base + 0x80c));
	nvkm_error(subdev, "%06x - stat %08x %08x %08x %08x\n", base,
		   nvkm_rd32(device, base + 0x810),
		   nvkm_rd32(device, base + 0x814),
		   nvkm_rd32(device, base + 0x818),
		   nvkm_rd32(device, base + 0x81c));
}

void
gf100_gr_ctxctl_debug(struct gf100_gr *gr)
{
	struct nvkm_device *device = gr->base.engine.subdev.device;
	u32 gpcnr = nvkm_rd32(device, 0x409604) & 0xffff;
	u32 gpc;

	gf100_gr_ctxctl_debug_unit(gr, 0x409000);
	for (gpc = 0; gpc < gpcnr; gpc++)
		gf100_gr_ctxctl_debug_unit(gr, 0x502000 + (gpc * 0x8000));
}

static void
gf100_gr_ctxctl_isr(struct gf100_gr *gr)
{
	struct nvkm_subdev *subdev = &gr->base.engine.subdev;
	struct nvkm_device *device = subdev->device;
	u32 stat = nvkm_rd32(device, 0x409c18);

	if (!gr->firmware && (stat & 0x00000001)) {
		u32 code = nvkm_rd32(device, 0x409814);
		if (code == E_BAD_FWMTHD) {
			u32 class = nvkm_rd32(device, 0x409808);
			u32  addr = nvkm_rd32(device, 0x40980c);
			u32  subc = (addr & 0x00070000) >> 16;
			u32  mthd = (addr & 0x00003ffc);
			u32  data = nvkm_rd32(device, 0x409810);

			nvkm_error(subdev, "FECS MTHD subc %d class %04x "
					   "mthd %04x data %08x\n",
				   subc, class, mthd, data);
		} else {
			nvkm_error(subdev, "FECS ucode error %d\n", code);
		}
		nvkm_wr32(device, 0x409c20, 0x00000001);
		stat &= ~0x00000001;
	}

	if (!gr->firmware && (stat & 0x00080000)) {
		nvkm_error(subdev, "FECS watchdog timeout\n");
		gf100_gr_ctxctl_debug(gr);
		nvkm_wr32(device, 0x409c20, 0x00080000);
		stat &= ~0x00080000;
	}

	if (stat) {
		nvkm_error(subdev, "FECS %08x\n", stat);
		gf100_gr_ctxctl_debug(gr);
		nvkm_wr32(device, 0x409c20, stat);
	}
}

static irqreturn_t
gf100_gr_intr(struct nvkm_inth *inth)
{
	struct gf100_gr *gr = container_of(inth, typeof(*gr), base.engine.subdev.inth);
	struct nvkm_subdev *subdev = &gr->base.engine.subdev;
	struct nvkm_device *device = subdev->device;
	struct nvkm_chan *chan;
	unsigned long flags;
	u64 inst = nvkm_rd32(device, 0x409b00) & 0x0fffffff;
	u32 stat = nvkm_rd32(device, 0x400100);
	u32 addr = nvkm_rd32(device, 0x400704);
	u32 mthd = (addr & 0x00003ffc);
	u32 subc = (addr & 0x00070000) >> 16;
	u32 data = nvkm_rd32(device, 0x400708);
	u32 code = nvkm_rd32(device, 0x400110);
	u32 class;
	const char *name = "unknown";
	int chid = -1;

	chan = nvkm_chan_get_inst(&gr->base.engine, (u64)inst << 12, &flags);
	if (chan) {
		name = chan->name;
		chid = chan->id;
	}

	if (device->card_type < NV_E0 || subc < 4)
		class = nvkm_rd32(device, 0x404200 + (subc * 4));
	else
		class = 0x0000;

	if (stat & 0x00000001) {
		/*
		 * notifier interrupt, only needed for cyclestats
		 * can be safely ignored
		 */
		nvkm_wr32(device, 0x400100, 0x00000001);
		stat &= ~0x00000001;
	}

	if (stat & 0x00000010) {
		if (!gf100_gr_mthd_sw(device, class, mthd, data)) {
			nvkm_error(subdev, "ILLEGAL_MTHD ch %d [%010llx %s] "
				   "subc %d class %04x mthd %04x data %08x\n",
				   chid, inst << 12, name, subc,
				   class, mthd, data);
		}
		nvkm_wr32(device, 0x400100, 0x00000010);
		stat &= ~0x00000010;
	}

	if (stat & 0x00000020) {
		nvkm_error(subdev, "ILLEGAL_CLASS ch %d [%010llx %s] "
			   "subc %d class %04x mthd %04x data %08x\n",
			   chid, inst << 12, name, subc, class, mthd, data);
		nvkm_wr32(device, 0x400100, 0x00000020);
		stat &= ~0x00000020;
	}

	if (stat & 0x00100000) {
		const struct nvkm_enum *en =
			nvkm_enum_find(nv50_data_error_names, code);
		nvkm_error(subdev, "DATA_ERROR %08x [%s] ch %d [%010llx %s] "
				   "subc %d class %04x mthd %04x data %08x\n",
			   code, en ? en->name : "", chid, inst << 12,
			   name, subc, class, mthd, data);
		nvkm_wr32(device, 0x400100, 0x00100000);
		stat &= ~0x00100000;
	}

	if (stat & 0x00200000) {
		nvkm_error(subdev, "TRAP ch %d [%010llx %s]\n",
			   chid, inst << 12, name);
		gf100_gr_trap_intr(gr);
		nvkm_wr32(device, 0x400100, 0x00200000);
		stat &= ~0x00200000;
	}

	if (stat & 0x00080000) {
		gf100_gr_ctxctl_isr(gr);
		nvkm_wr32(device, 0x400100, 0x00080000);
		stat &= ~0x00080000;
	}

	if (stat) {
		nvkm_error(subdev, "intr %08x\n", stat);
		nvkm_wr32(device, 0x400100, stat);
	}

	nvkm_wr32(device, 0x400500, 0x00010001);
	nvkm_chan_put(&chan, flags);
	return IRQ_HANDLED;
}

static void
gf100_gr_init_fw(struct nvkm_falcon *falcon,
		 struct nvkm_blob *code, struct nvkm_blob *data)
{
	nvkm_falcon_load_dmem(falcon, data->data, 0x0, data->size, 0);
	nvkm_falcon_load_imem(falcon, code->data, 0x0, code->size, 0, 0, false);
}

static void
gf100_gr_init_csdata(struct gf100_gr *gr,
		     const struct gf100_gr_pack *pack,
		     u32 falcon, u32 starstar, u32 base)
{
	struct nvkm_device *device = gr->base.engine.subdev.device;
	const struct gf100_gr_pack *iter;
	const struct gf100_gr_init *init;
	u32 addr = ~0, prev = ~0, xfer = 0;
	u32 star, temp;

	nvkm_wr32(device, falcon + 0x01c0, 0x02000000 + starstar);
	star = nvkm_rd32(device, falcon + 0x01c4);
	temp = nvkm_rd32(device, falcon + 0x01c4);
	if (temp > star)
		star = temp;
	nvkm_wr32(device, falcon + 0x01c0, 0x01000000 + star);

	pack_for_each_init(init, iter, pack) {
		u32 head = init->addr - base;
		u32 tail = head + init->count * init->pitch;
		while (head < tail) {
			if (head != prev + 4 || xfer >= 32) {
				if (xfer) {
					u32 data = ((--xfer << 26) | addr);
					nvkm_wr32(device, falcon + 0x01c4, data);
					star += 4;
				}
				addr = head;
				xfer = 0;
			}
			prev = head;
			xfer = xfer + 1;
			head = head + init->pitch;
		}
	}

	nvkm_wr32(device, falcon + 0x01c4, (--xfer << 26) | addr);
	nvkm_wr32(device, falcon + 0x01c0, 0x01000004 + starstar);
	nvkm_wr32(device, falcon + 0x01c4, star + 4);
}

/* Initialize context from an external (secure or not) firmware */
static int
gf100_gr_init_ctxctl_ext(struct gf100_gr *gr)
{
	struct nvkm_subdev *subdev = &gr->base.engine.subdev;
	struct nvkm_device *device = subdev->device;
	u32 lsf_mask = 0;
	int ret;

	/* load fuc microcode */
	nvkm_mc_unk260(device, 0);

	/* securely-managed falcons must be reset using secure boot */

	if (!nvkm_acr_managed_falcon(device, NVKM_ACR_LSF_FECS)) {
		gf100_gr_init_fw(&gr->fecs.falcon, &gr->fecs.inst,
						   &gr->fecs.data);
	} else {
		lsf_mask |= BIT(NVKM_ACR_LSF_FECS);
	}

	if (!nvkm_acr_managed_falcon(device, NVKM_ACR_LSF_GPCCS)) {
		gf100_gr_init_fw(&gr->gpccs.falcon, &gr->gpccs.inst,
						    &gr->gpccs.data);
	} else {
		lsf_mask |= BIT(NVKM_ACR_LSF_GPCCS);
	}

	if (lsf_mask) {
		ret = nvkm_acr_bootstrap_falcons(device, lsf_mask);
		if (ret)
			return ret;
	}

	nvkm_mc_unk260(device, 1);

	/* start both of them running */
	nvkm_wr32(device, 0x409800, 0x00000000);
	nvkm_wr32(device, 0x41a10c, 0x00000000);
	nvkm_wr32(device, 0x40910c, 0x00000000);

	nvkm_falcon_start(&gr->gpccs.falcon);
	nvkm_falcon_start(&gr->fecs.falcon);

	if (nvkm_msec(device, 2000,
		if (nvkm_rd32(device, 0x409800) & 0x00000001)
			break;
	) < 0)
		return -EBUSY;

	gf100_gr_fecs_set_watchdog_timeout(gr, 0x7fffffff);

	/* Determine how much memory is required to store main context image. */
	ret = gf100_gr_fecs_discover_image_size(gr, &gr->size);
	if (ret)
		return ret;

	/* Determine how much memory is required to store ZCULL image. */
	ret = gf100_gr_fecs_discover_zcull_image_size(gr, &gr->size_zcull);
	if (ret)
		return ret;

	/* Determine how much memory is required to store PerfMon image. */
	ret = gf100_gr_fecs_discover_pm_image_size(gr, &gr->size_pm);
	if (ret)
		return ret;

	/*XXX: We (likely) require PMU support to even bother with this.
	 *
	 *     Also, it seems like not all GPUs support ELPG.  Traces I
	 *     have here show RM enabling it on Kepler/Turing, but none
	 *     of the GPUs between those.  NVGPU decides this by PCIID.
	 */
	if (0) {
		ret = gf100_gr_fecs_elpg_bind(gr);
		if (ret)
			return ret;
	}

	return 0;
}

static int
gf100_gr_init_ctxctl_int(struct gf100_gr *gr)
{
	const struct gf100_grctx_func *grctx = gr->func->grctx;
	struct nvkm_subdev *subdev = &gr->base.engine.subdev;
	struct nvkm_device *device = subdev->device;

	if (!gr->func->fecs.ucode) {
		return -ENOSYS;
	}

	/* load HUB microcode */
	nvkm_mc_unk260(device, 0);
	nvkm_falcon_load_dmem(&gr->fecs.falcon,
			      gr->func->fecs.ucode->data.data, 0x0,
			      gr->func->fecs.ucode->data.size, 0);
	nvkm_falcon_load_imem(&gr->fecs.falcon,
			      gr->func->fecs.ucode->code.data, 0x0,
			      gr->func->fecs.ucode->code.size, 0, 0, false);

	/* load GPC microcode */
	nvkm_falcon_load_dmem(&gr->gpccs.falcon,
			      gr->func->gpccs.ucode->data.data, 0x0,
			      gr->func->gpccs.ucode->data.size, 0);
	nvkm_falcon_load_imem(&gr->gpccs.falcon,
			      gr->func->gpccs.ucode->code.data, 0x0,
			      gr->func->gpccs.ucode->code.size, 0, 0, false);
	nvkm_mc_unk260(device, 1);

	/* load register lists */
	gf100_gr_init_csdata(gr, grctx->hub, 0x409000, 0x000, 0x000000);
	gf100_gr_init_csdata(gr, grctx->gpc_0, 0x41a000, 0x000, 0x418000);
	gf100_gr_init_csdata(gr, grctx->gpc_1, 0x41a000, 0x000, 0x418000);
	gf100_gr_init_csdata(gr, grctx->tpc, 0x41a000, 0x004, 0x419800);
	gf100_gr_init_csdata(gr, grctx->ppc, 0x41a000, 0x008, 0x41be00);

	/* start HUB ucode running, it'll init the GPCs */
	nvkm_wr32(device, 0x40910c, 0x00000000);
	nvkm_wr32(device, 0x409100, 0x00000002);
	if (nvkm_msec(device, 2000,
		if (nvkm_rd32(device, 0x409800) & 0x80000000)
			break;
	) < 0) {
		gf100_gr_ctxctl_debug(gr);
		return -EBUSY;
	}

	gr->size = nvkm_rd32(device, 0x409804);
	return 0;
}

int
gf100_gr_init_ctxctl(struct gf100_gr *gr)
{
	int ret;

	if (gr->firmware)
		ret = gf100_gr_init_ctxctl_ext(gr);
	else
		ret = gf100_gr_init_ctxctl_int(gr);

	return ret;
}

int
gf100_gr_oneinit_sm_id(struct gf100_gr *gr)
{
	int tpc, gpc;

	for (tpc = 0; tpc < gr->tpc_max; tpc++) {
		for (gpc = 0; gpc < gr->gpc_nr; gpc++) {
			if (tpc < gr->tpc_nr[gpc]) {
				gr->sm[gr->sm_nr].gpc = gpc;
				gr->sm[gr->sm_nr].tpc = tpc;
				gr->sm_nr++;
			}
		}
	}

	return 0;
}

void
gf100_gr_oneinit_tiles(struct gf100_gr *gr)
{
	static const u8 primes[] = {
		3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61
	};
	int init_frac[GPC_MAX], init_err[GPC_MAX], run_err[GPC_MAX], i, j;
	u32 mul_factor, comm_denom;
	u8  gpc_map[GPC_MAX];
	bool sorted;

	switch (gr->tpc_total) {
	case 15: gr->screen_tile_row_offset = 0x06; break;
	case 14: gr->screen_tile_row_offset = 0x05; break;
	case 13: gr->screen_tile_row_offset = 0x02; break;
	case 11: gr->screen_tile_row_offset = 0x07; break;
	case 10: gr->screen_tile_row_offset = 0x06; break;
	case  7:
	case  5: gr->screen_tile_row_offset = 0x01; break;
	case  3: gr->screen_tile_row_offset = 0x02; break;
	case  2:
	case  1: gr->screen_tile_row_offset = 0x01; break;
	default: gr->screen_tile_row_offset = 0x03;
		for (i = 0; i < ARRAY_SIZE(primes); i++) {
			if (gr->tpc_total % primes[i]) {
				gr->screen_tile_row_offset = primes[i];
				break;
			}
		}
		break;
	}

	/* Sort GPCs by TPC count, highest-to-lowest. */
	for (i = 0; i < gr->gpc_nr; i++)
		gpc_map[i] = i;
	sorted = false;

	while (!sorted) {
		for (sorted = true, i = 0; i < gr->gpc_nr - 1; i++) {
			if (gr->tpc_nr[gpc_map[i + 1]] >
			    gr->tpc_nr[gpc_map[i + 0]]) {
				u8 swap = gpc_map[i];
				gpc_map[i + 0] = gpc_map[i + 1];
				gpc_map[i + 1] = swap;
				sorted = false;
			}
		}
	}

	/* Determine tile->GPC mapping */
	mul_factor = gr->gpc_nr * gr->tpc_max;
	if (mul_factor & 1)
		mul_factor = 2;
	else
		mul_factor = 1;

	comm_denom = gr->gpc_nr * gr->tpc_max * mul_factor;

	for (i = 0; i < gr->gpc_nr; i++) {
		init_frac[i] = gr->tpc_nr[gpc_map[i]] * gr->gpc_nr * mul_factor;
		init_err[i] = i * gr->tpc_max * mul_factor - comm_denom/2;
		run_err[i] = init_frac[i] + init_err[i];
	}

	for (i = 0; i < gr->tpc_total;) {
		for (j = 0; j < gr->gpc_nr; j++) {
			if ((run_err[j] * 2) >= comm_denom) {
				gr->tile[i++] = gpc_map[j];
				run_err[j] += init_frac[j] - comm_denom;
			} else {
				run_err[j] += init_frac[j];
			}
		}
	}
}

static int
gf100_gr_oneinit(struct nvkm_gr *base)
{
	struct gf100_gr *gr = gf100_gr(base);
	struct nvkm_subdev *subdev = &gr->base.engine.subdev;
	struct nvkm_device *device = subdev->device;
	struct nvkm_intr *intr = &device->mc->intr;
	enum nvkm_intr_type intr_type = NVKM_INTR_SUBDEV;
	int ret, i, j;

	if (gr->func->oneinit_intr)
		intr = gr->func->oneinit_intr(gr, &intr_type);

	ret = nvkm_inth_add(intr, intr_type, NVKM_INTR_PRIO_NORMAL, &gr->base.engine.subdev,
			    gf100_gr_intr, &gr->base.engine.subdev.inth);
	if (ret)
		return ret;

	nvkm_pmu_pgob(device->pmu, false);

	gr->rop_nr = gr->func->rops(gr);
	gr->gpc_nr = nvkm_rd32(device, 0x409604) & 0x0000001f;
	for (i = 0; i < gr->gpc_nr; i++) {
		gr->tpc_nr[i]  = nvkm_rd32(device, GPC_UNIT(i, 0x2608));
		gr->tpc_max = max(gr->tpc_max, gr->tpc_nr[i]);
		gr->tpc_total += gr->tpc_nr[i];
		for (j = 0; j < gr->func->ppc_nr; j++) {
			gr->ppc_tpc_mask[i][j] =
				nvkm_rd32(device, GPC_UNIT(i, 0x0c30 + (j * 4)));
			if (gr->ppc_tpc_mask[i][j] == 0)
				continue;

			gr->ppc_nr[i]++;

			gr->ppc_mask[i] |= (1 << j);
			gr->ppc_tpc_nr[i][j] = hweight8(gr->ppc_tpc_mask[i][j]);
			if (gr->ppc_tpc_min == 0 ||
			    gr->ppc_tpc_min > gr->ppc_tpc_nr[i][j])
				gr->ppc_tpc_min = gr->ppc_tpc_nr[i][j];
			if (gr->ppc_tpc_max < gr->ppc_tpc_nr[i][j])
				gr->ppc_tpc_max = gr->ppc_tpc_nr[i][j];
		}

		gr->ppc_total += gr->ppc_nr[i];
	}

	/* Allocate global context buffers. */
	ret = nvkm_memory_new(device, NVKM_MEM_TARGET_INST_SR_LOST,
			      gr->func->grctx->pagepool_size, 0x100, false, &gr->pagepool);
	if (ret)
		return ret;

	ret = nvkm_memory_new(device, NVKM_MEM_TARGET_INST_SR_LOST, gr->func->grctx->bundle_size,
			      0x100, false, &gr->bundle_cb);
	if (ret)
		return ret;

	ret = nvkm_memory_new(device, NVKM_MEM_TARGET_INST_SR_LOST,
			      gr->func->grctx->attrib_cb_size(gr), 0x1000, false, &gr->attrib_cb);
	if (ret)
		return ret;

	if (gr->func->grctx->unknown_size) {
		ret = nvkm_memory_new(device, NVKM_MEM_TARGET_INST, gr->func->grctx->unknown_size,
				      0x100, false, &gr->unknown);
		if (ret)
			return ret;
	}

	memset(gr->tile, 0xff, sizeof(gr->tile));
	gr->func->oneinit_tiles(gr);

	return gr->func->oneinit_sm_id(gr);
}

static int
gf100_gr_init_(struct nvkm_gr *base)
{
	struct gf100_gr *gr = gf100_gr(base);
	struct nvkm_subdev *subdev = &base->engine.subdev;
	struct nvkm_device *device = subdev->device;
	bool reset = device->chipset == 0x137 || device->chipset == 0x138;
	int ret;

	/* On certain GP107/GP108 boards, we trigger a weird issue where
	 * GR will stop responding to PRI accesses after we've asked the
	 * SEC2 RTOS to boot the GR falcons.  This happens with far more
	 * frequency when cold-booting a board (ie. returning from D3).
	 *
	 * The root cause for this is not known and has proven difficult
	 * to isolate, with many avenues being dead-ends.
	 *
	 * A workaround was discovered by Karol, whereby putting GR into
	 * reset for an extended period right before initialisation
	 * prevents the problem from occuring.
	 *
	 * XXX: As RM does not require any such workaround, this is more
	 *      of a hack than a true fix.
	 */
	reset = nvkm_boolopt(device->cfgopt, "NvGrResetWar", reset);
	if (reset) {
		nvkm_mask(device, 0x000200, 0x00001000, 0x00000000);
		nvkm_rd32(device, 0x000200);
		msleep(50);
		nvkm_mask(device, 0x000200, 0x00001000, 0x00001000);
		nvkm_rd32(device, 0x000200);
	}

	nvkm_pmu_pgob(gr->base.engine.subdev.device->pmu, false);

	ret = nvkm_falcon_get(&gr->fecs.falcon, subdev);
	if (ret)
		return ret;

	ret = nvkm_falcon_get(&gr->gpccs.falcon, subdev);
	if (ret)
		return ret;

	ret = gr->func->init(gr);
	if (ret)
		return ret;

	nvkm_inth_allow(&subdev->inth);
	return 0;
}

static int
gf100_gr_fini(struct nvkm_gr *base, bool suspend)
{
	struct gf100_gr *gr = gf100_gr(base);
	struct nvkm_subdev *subdev = &gr->base.engine.subdev;

	nvkm_inth_block(&subdev->inth);

	nvkm_falcon_put(&gr->gpccs.falcon, subdev);
	nvkm_falcon_put(&gr->fecs.falcon, subdev);
	return 0;
}

static void *
gf100_gr_dtor(struct nvkm_gr *base)
{
	struct gf100_gr *gr = gf100_gr(base);

	kfree(gr->data);

	nvkm_memory_unref(&gr->unknown);
	nvkm_memory_unref(&gr->attrib_cb);
	nvkm_memory_unref(&gr->bundle_cb);
	nvkm_memory_unref(&gr->pagepool);

	nvkm_falcon_dtor(&gr->gpccs.falcon);
	nvkm_falcon_dtor(&gr->fecs.falcon);

	nvkm_blob_dtor(&gr->fecs.inst);
	nvkm_blob_dtor(&gr->fecs.data);
	nvkm_blob_dtor(&gr->gpccs.inst);
	nvkm_blob_dtor(&gr->gpccs.data);

	vfree(gr->bundle64);
	vfree(gr->bundle_veid);
	vfree(gr->bundle);
	vfree(gr->method);
	vfree(gr->sw_ctx);
	vfree(gr->sw_nonctx);
	vfree(gr->sw_nonctx1);
	vfree(gr->sw_nonctx2);
	vfree(gr->sw_nonctx3);
	vfree(gr->sw_nonctx4);

	return gr;
}

static const struct nvkm_falcon_func
gf100_gr_flcn = {
	.load_imem = nvkm_falcon_v1_load_imem,
	.load_dmem = nvkm_falcon_v1_load_dmem,
	.start = nvkm_falcon_v1_start,
};

void
gf100_gr_init_num_tpc_per_gpc(struct gf100_gr *gr, bool pd, bool ds)
{
	struct nvkm_device *device = gr->base.engine.subdev.device;
	int gpc, i, j;
	u32 data;

	for (gpc = 0, i = 0; i < 4; i++) {
		for (data = 0, j = 0; j < 8 && gpc < gr->gpc_nr; j++, gpc++)
			data |= gr->tpc_nr[gpc] << (j * 4);
		if (pd)
			nvkm_wr32(device, 0x406028 + (i * 4), data);
		if (ds)
			nvkm_wr32(device, 0x405870 + (i * 4), data);
	}
}

void
gf100_gr_init_400054(struct gf100_gr *gr)
{
	nvkm_wr32(gr->base.engine.subdev.device, 0x400054, 0x34ce3464);
}

void
gf100_gr_init_exception2(struct gf100_gr *gr)
{
	struct nvkm_device *device = gr->base.engine.subdev.device;

	nvkm_wr32(device, 0x40011c, 0xffffffff);
	nvkm_wr32(device, 0x400134, 0xffffffff);
}

void
gf100_gr_init_rop_exceptions(struct gf100_gr *gr)
{
	struct nvkm_device *device = gr->base.engine.subdev.device;
	int rop;

	for (rop = 0; rop < gr->rop_nr; rop++) {
		nvkm_wr32(device, ROP_UNIT(rop, 0x144), 0x40000000);
		nvkm_wr32(device, ROP_UNIT(rop, 0x070), 0x40000000);
		nvkm_wr32(device, ROP_UNIT(rop, 0x204), 0xffffffff);
		nvkm_wr32(device, ROP_UNIT(rop, 0x208), 0xffffffff);
	}
}

void
gf100_gr_init_shader_exceptions(struct gf100_gr *gr, int gpc, int tpc)
{
	struct nvkm_device *device = gr->base.engine.subdev.device;
	nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x644), 0x001ffffe);
	nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x64c), 0x0000000f);
}

void
gf100_gr_init_tex_hww_esr(struct gf100_gr *gr, int gpc, int tpc)
{
	struct nvkm_device *device = gr->base.engine.subdev.device;
	nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x224), 0xc0000000);
}

void
gf100_gr_init_419eb4(struct gf100_gr *gr)
{
	struct nvkm_device *device = gr->base.engine.subdev.device;
	nvkm_mask(device, 0x419eb4, 0x00001000, 0x00001000);
}

void
gf100_gr_init_419cc0(struct gf100_gr *gr)
{
	struct nvkm_device *device = gr->base.engine.subdev.device;
	int gpc, tpc;

	nvkm_mask(device, 0x419cc0, 0x00000008, 0x00000008);

	for (gpc = 0; gpc < gr->gpc_nr; gpc++) {
		for (tpc = 0; tpc < gr->tpc_nr[gpc]; tpc++)
			nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x48c), 0xc0000000);
	}
}

void
gf100_gr_init_40601c(struct gf100_gr *gr)
{
	nvkm_wr32(gr->base.engine.subdev.device, 0x40601c, 0xc0000000);
}

void
gf100_gr_init_fecs_exceptions(struct gf100_gr *gr)
{
	const u32 data = gr->firmware ? 0x000e0000 : 0x000e0001;
	nvkm_wr32(gr->base.engine.subdev.device, 0x409c24, data);
}

void
gf100_gr_init_gpc_mmu(struct gf100_gr *gr)
{
	struct nvkm_device *device = gr->base.engine.subdev.device;
	struct nvkm_fb *fb = device->fb;

	nvkm_wr32(device, 0x418880, nvkm_rd32(device, 0x100c80) & 0x00000001);
	nvkm_wr32(device, 0x4188a4, 0x03000000);
	nvkm_wr32(device, 0x418888, 0x00000000);
	nvkm_wr32(device, 0x41888c, 0x00000000);
	nvkm_wr32(device, 0x418890, 0x00000000);
	nvkm_wr32(device, 0x418894, 0x00000000);
	nvkm_wr32(device, 0x4188b4, nvkm_memory_addr(fb->mmu_wr) >> 8);
	nvkm_wr32(device, 0x4188b8, nvkm_memory_addr(fb->mmu_rd) >> 8);
}

void
gf100_gr_init_num_active_ltcs(struct gf100_gr *gr)
{
	struct nvkm_device *device = gr->base.engine.subdev.device;
	nvkm_wr32(device, GPC_BCAST(0x08ac), nvkm_rd32(device, 0x100800));
}

void
gf100_gr_init_zcull(struct gf100_gr *gr)
{
	struct nvkm_device *device = gr->base.engine.subdev.device;
	const u32 magicgpc918 = DIV_ROUND_UP(0x00800000, gr->tpc_total);
	const u8 tile_nr = ALIGN(gr->tpc_total, 32);
	u8 bank[GPC_MAX] = {}, gpc, i, j;
	u32 data;

	for (i = 0; i < tile_nr; i += 8) {
		for (data = 0, j = 0; j < 8 && i + j < gr->tpc_total; j++) {
			data |= bank[gr->tile[i + j]] << (j * 4);
			bank[gr->tile[i + j]]++;
		}
		nvkm_wr32(device, GPC_BCAST(0x0980 + ((i / 8) * 4)), data);
	}

	for (gpc = 0; gpc < gr->gpc_nr; gpc++) {
		nvkm_wr32(device, GPC_UNIT(gpc, 0x0914),
			  gr->screen_tile_row_offset << 8 | gr->tpc_nr[gpc]);
		nvkm_wr32(device, GPC_UNIT(gpc, 0x0910), 0x00040000 |
							 gr->tpc_total);
		nvkm_wr32(device, GPC_UNIT(gpc, 0x0918), magicgpc918);
	}

	nvkm_wr32(device, GPC_BCAST(0x1bd4), magicgpc918);
}

void
gf100_gr_init_vsc_stream_master(struct gf100_gr *gr)
{
	struct nvkm_device *device = gr->base.engine.subdev.device;
	nvkm_mask(device, TPC_UNIT(0, 0, 0x05c), 0x00000001, 0x00000001);
}

static int
gf100_gr_reset(struct nvkm_gr *base)
{
	struct nvkm_subdev *subdev = &base->engine.subdev;
	struct nvkm_device *device = subdev->device;
	struct gf100_gr *gr = gf100_gr(base);

	nvkm_mask(device, 0x400500, 0x00000001, 0x00000000);

	WARN_ON(gf100_gr_fecs_halt_pipeline(gr));

	subdev->func->fini(subdev, false);
	nvkm_mc_disable(device, subdev->type, subdev->inst);
	if (gr->func->gpccs.reset)
		gr->func->gpccs.reset(gr);

	nvkm_mc_enable(device, subdev->type, subdev->inst);
	return subdev->func->init(subdev);
}

int
gf100_gr_init(struct gf100_gr *gr)
{
	struct nvkm_device *device = gr->base.engine.subdev.device;
	int gpc, tpc;

	nvkm_mask(device, 0x400500, 0x00010001, 0x00000000);

	gr->func->init_gpc_mmu(gr);

	if (gr->sw_nonctx1) {
		gf100_gr_mmio(gr, gr->sw_nonctx1);
		gf100_gr_mmio(gr, gr->sw_nonctx2);
		gf100_gr_mmio(gr, gr->sw_nonctx3);
		gf100_gr_mmio(gr, gr->sw_nonctx4);
	} else
	if (gr->sw_nonctx) {
		gf100_gr_mmio(gr, gr->sw_nonctx);
	} else {
		gf100_gr_mmio(gr, gr->func->mmio);
	}

	gf100_gr_wait_idle(gr);

	if (gr->func->init_r405a14)
		gr->func->init_r405a14(gr);

	if (gr->func->clkgate_pack)
		nvkm_therm_clkgate_init(device->therm, gr->func->clkgate_pack);

	if (gr->func->init_bios)
		gr->func->init_bios(gr);

	gr->func->init_vsc_stream_master(gr);
	gr->func->init_zcull(gr);
	gr->func->init_num_active_ltcs(gr);
	if (gr->func->init_rop_active_fbps)
		gr->func->init_rop_active_fbps(gr);
	if (gr->func->init_bios_2)
		gr->func->init_bios_2(gr);
	if (gr->func->init_swdx_pes_mask)
		gr->func->init_swdx_pes_mask(gr);
	if (gr->func->init_fs)
		gr->func->init_fs(gr);

	nvkm_wr32(device, 0x400500, 0x00010001);

	nvkm_wr32(device, 0x400100, 0xffffffff);
	nvkm_wr32(device, 0x40013c, 0xffffffff);
	nvkm_wr32(device, 0x400124, 0x00000002);

	gr->func->init_fecs_exceptions(gr);

	if (gr->func->init_40a790)
		gr->func->init_40a790(gr);

	if (gr->func->init_ds_hww_esr_2)
		gr->func->init_ds_hww_esr_2(gr);

	nvkm_wr32(device, 0x404000, 0xc0000000);
	nvkm_wr32(device, 0x404600, 0xc0000000);
	nvkm_wr32(device, 0x408030, 0xc0000000);

	if (gr->func->init_40601c)
		gr->func->init_40601c(gr);

	nvkm_wr32(device, 0x406018, 0xc0000000);
	nvkm_wr32(device, 0x404490, 0xc0000000);

	if (gr->func->init_sked_hww_esr)
		gr->func->init_sked_hww_esr(gr);

	nvkm_wr32(device, 0x405840, 0xc0000000);
	nvkm_wr32(device, 0x405844, 0x00ffffff);

	if (gr->func->init_419cc0)
		gr->func->init_419cc0(gr);
	if (gr->func->init_419eb4)
		gr->func->init_419eb4(gr);
	if (gr->func->init_419c9c)
		gr->func->init_419c9c(gr);

	if (gr->func->init_ppc_exceptions)
		gr->func->init_ppc_exceptions(gr);

	for (gpc = 0; gpc < gr->gpc_nr; gpc++) {
		nvkm_wr32(device, GPC_UNIT(gpc, 0x0420), 0xc0000000);
		nvkm_wr32(device, GPC_UNIT(gpc, 0x0900), 0xc0000000);
		nvkm_wr32(device, GPC_UNIT(gpc, 0x1028), 0xc0000000);
		nvkm_wr32(device, GPC_UNIT(gpc, 0x0824), 0xc0000000);
		for (tpc = 0; tpc < gr->tpc_nr[gpc]; tpc++) {
			nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x508), 0xffffffff);
			nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x50c), 0xffffffff);
			if (gr->func->init_tex_hww_esr)
				gr->func->init_tex_hww_esr(gr, gpc, tpc);
			nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x084), 0xc0000000);
			if (gr->func->init_504430)
				gr->func->init_504430(gr, gpc, tpc);
			gr->func->init_shader_exceptions(gr, gpc, tpc);
		}
		nvkm_wr32(device, GPC_UNIT(gpc, 0x2c90), 0xffffffff);
		nvkm_wr32(device, GPC_UNIT(gpc, 0x2c94), 0xffffffff);
	}

	gr->func->init_rop_exceptions(gr);

	nvkm_wr32(device, 0x400108, 0xffffffff);
	nvkm_wr32(device, 0x400138, 0xffffffff);
	nvkm_wr32(device, 0x400118, 0xffffffff);
	nvkm_wr32(device, 0x400130, 0xffffffff);
	if (gr->func->init_exception2)
		gr->func->init_exception2(gr);

	if (gr->func->init_400054)
		gr->func->init_400054(gr);

	gf100_gr_zbc_init(gr);

	if (gr->func->init_4188a4)
		gr->func->init_4188a4(gr);

	return gf100_gr_init_ctxctl(gr);
}

void
gf100_gr_fecs_reset(struct gf100_gr *gr)
{
	struct nvkm_device *device = gr->base.engine.subdev.device;

	nvkm_wr32(device, 0x409614, 0x00000070);
	nvkm_usec(device, 10, NVKM_DELAY);
	nvkm_mask(device, 0x409614, 0x00000700, 0x00000700);
	nvkm_usec(device, 10, NVKM_DELAY);
	nvkm_rd32(device, 0x409614);
}

#include "fuc/hubgf100.fuc3.h"

struct gf100_gr_ucode
gf100_gr_fecs_ucode = {
	.code.data = gf100_grhub_code,
	.code.size = sizeof(gf100_grhub_code),
	.data.data = gf100_grhub_data,
	.data.size = sizeof(gf100_grhub_data),
};

#include "fuc/gpcgf100.fuc3.h"

struct gf100_gr_ucode
gf100_gr_gpccs_ucode = {
	.code.data = gf100_grgpc_code,
	.code.size = sizeof(gf100_grgpc_code),
	.data.data = gf100_grgpc_data,
	.data.size = sizeof(gf100_grgpc_data),
};

static int
gf100_gr_nonstall(struct nvkm_gr *base)
{
	struct gf100_gr *gr = gf100_gr(base);

	if (gr->func->nonstall)
		return gr->func->nonstall(gr);

	return -EINVAL;
}

static const struct nvkm_gr_func
gf100_gr_ = {
	.dtor = gf100_gr_dtor,
	.oneinit = gf100_gr_oneinit,
	.init = gf100_gr_init_,
	.fini = gf100_gr_fini,
	.nonstall = gf100_gr_nonstall,
	.reset = gf100_gr_reset,
	.units = gf100_gr_units,
	.chan_new = gf100_gr_chan_new,
	.object_get = gf100_gr_object_get,
	.chsw_load = gf100_gr_chsw_load,
	.ctxsw.pause = gf100_gr_fecs_stop_ctxsw,
	.ctxsw.resume = gf100_gr_fecs_start_ctxsw,
	.ctxsw.inst = gf100_gr_ctxsw_inst,
};

static const struct gf100_gr_func
gf100_gr = {
	.oneinit_tiles = gf100_gr_oneinit_tiles,
	.oneinit_sm_id = gf100_gr_oneinit_sm_id,
	.init = gf100_gr_init,
	.init_gpc_mmu = gf100_gr_init_gpc_mmu,
	.init_vsc_stream_master = gf100_gr_init_vsc_stream_master,
	.init_zcull = gf100_gr_init_zcull,
	.init_num_active_ltcs = gf100_gr_init_num_active_ltcs,
	.init_fecs_exceptions = gf100_gr_init_fecs_exceptions,
	.init_40601c = gf100_gr_init_40601c,
	.init_419cc0 = gf100_gr_init_419cc0,
	.init_419eb4 = gf100_gr_init_419eb4,
	.init_tex_hww_esr = gf100_gr_init_tex_hww_esr,
	.init_shader_exceptions = gf100_gr_init_shader_exceptions,
	.init_rop_exceptions = gf100_gr_init_rop_exceptions,
	.init_exception2 = gf100_gr_init_exception2,
	.init_400054 = gf100_gr_init_400054,
	.trap_mp = gf100_gr_trap_mp,
	.mmio = gf100_gr_pack_mmio,
	.fecs.ucode = &gf100_gr_fecs_ucode,
	.fecs.reset = gf100_gr_fecs_reset,
	.gpccs.ucode = &gf100_gr_gpccs_ucode,
	.rops = gf100_gr_rops,
	.grctx = &gf100_grctx,
	.zbc = &gf100_gr_zbc,
	.sclass = {
		{ -1, -1, FERMI_TWOD_A },
		{ -1, -1, FERMI_MEMORY_TO_MEMORY_FORMAT_A },
		{ -1, -1, FERMI_A, &gf100_fermi },
		{ -1, -1, FERMI_COMPUTE_A },
		{}
	}
};

int
gf100_gr_nofw(struct gf100_gr *gr, int ver, const struct gf100_gr_fwif *fwif)
{
	gr->firmware = false;
	return 0;
}

static int
gf100_gr_load_fw(struct gf100_gr *gr, const char *name,
		 struct nvkm_blob *blob)
{
	struct nvkm_subdev *subdev = &gr->base.engine.subdev;
	struct nvkm_device *device = subdev->device;
	const struct firmware *fw;
	char f[32];
	int ret;

	snprintf(f, sizeof(f), "nouveau/nv%02x_%s", device->chipset, name);
	ret = request_firmware(&fw, f, device->dev);
	if (ret) {
		snprintf(f, sizeof(f), "nouveau/%s", name);
		ret = request_firmware(&fw, f, device->dev);
		if (ret) {
			nvkm_error(subdev, "failed to load %s\n", name);
			return ret;
		}
	}

	blob->size = fw->size;
	blob->data = kmemdup(fw->data, blob->size, GFP_KERNEL);
	release_firmware(fw);
	return (blob->data != NULL) ? 0 : -ENOMEM;
}

int
gf100_gr_load(struct gf100_gr *gr, int ver, const struct gf100_gr_fwif *fwif)
{
	struct nvkm_device *device = gr->base.engine.subdev.device;

	if (!nvkm_boolopt(device->cfgopt, "NvGrUseFW", false))
		return -EINVAL;

	if (gf100_gr_load_fw(gr, "fuc409c", &gr->fecs.inst) ||
	    gf100_gr_load_fw(gr, "fuc409d", &gr->fecs.data) ||
	    gf100_gr_load_fw(gr, "fuc41ac", &gr->gpccs.inst) ||
	    gf100_gr_load_fw(gr, "fuc41ad", &gr->gpccs.data))
		return -ENOENT;

	gr->firmware = true;
	return 0;
}

static const struct gf100_gr_fwif
gf100_gr_fwif[] = {
	{ -1, gf100_gr_load, &gf100_gr },
	{ -1, gf100_gr_nofw, &gf100_gr },
	{}
};

int
gf100_gr_new_(const struct gf100_gr_fwif *fwif, struct nvkm_device *device,
	      enum nvkm_subdev_type type, int inst, struct nvkm_gr **pgr)
{
	struct gf100_gr *gr;
	int ret;

	if (!(gr = kzalloc(sizeof(*gr), GFP_KERNEL)))
		return -ENOMEM;
	*pgr = &gr->base;

	ret = nvkm_gr_ctor(&gf100_gr_, device, type, inst, true, &gr->base);
	if (ret)
		return ret;

	fwif = nvkm_firmware_load(&gr->base.engine.subdev, fwif, "Gr", gr);
	if (IS_ERR(fwif))
		return PTR_ERR(fwif);

	gr->func = fwif->func;

	ret = nvkm_falcon_ctor(&gf100_gr_flcn, &gr->base.engine.subdev,
			       "fecs", 0x409000, &gr->fecs.falcon);
	if (ret)
		return ret;

	mutex_init(&gr->fecs.mutex);

	ret = nvkm_falcon_ctor(&gf100_gr_flcn, &gr->base.engine.subdev,
			       "gpccs", 0x41a000, &gr->gpccs.falcon);
	if (ret)
		return ret;

	return 0;
}

int
gf100_gr_new(struct nvkm_device *device, enum nvkm_subdev_type type, int inst, struct nvkm_gr **pgr)
{
	return gf100_gr_new_(gf100_gr_fwif, device, type, inst, pgr);
}