Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Maxime Ripard | 4892 | 83.72% | 7 | 17.95% |
Konstantin Sudakov | 413 | 7.07% | 1 | 2.56% |
Samuel Holland | 209 | 3.58% | 6 | 15.38% |
Jagan Teki | 161 | 2.76% | 8 | 20.51% |
Kees Cook | 114 | 1.95% | 1 | 2.56% |
Sam Ravnborg | 11 | 0.19% | 2 | 5.13% |
Ondrej Jirman | 10 | 0.17% | 1 | 2.56% |
Boris Brezillon | 7 | 0.12% | 1 | 2.56% |
caihuoqing | 6 | 0.10% | 2 | 5.13% |
Daniel Vetter | 4 | 0.07% | 2 | 5.13% |
Thomas Zimmermann | 4 | 0.07% | 1 | 2.56% |
Icenowy Zheng | 3 | 0.05% | 2 | 5.13% |
Jernej Škrabec | 3 | 0.05% | 1 | 2.56% |
Gustavo A. R. Silva | 2 | 0.03% | 1 | 2.56% |
Uwe Kleine-König | 2 | 0.03% | 1 | 2.56% |
Arnd Bergmann | 1 | 0.02% | 1 | 2.56% |
Rikard Falkeborn | 1 | 0.02% | 1 | 2.56% |
Total | 5843 | 39 |
// SPDX-License-Identifier: GPL-2.0+ /* * Copyright (c) 2016 Allwinnertech Co., Ltd. * Copyright (C) 2017-2018 Bootlin * * Maxime Ripard <maxime.ripard@bootlin.com> */ #include <linux/clk.h> #include <linux/component.h> #include <linux/crc-ccitt.h> #include <linux/module.h> #include <linux/of_address.h> #include <linux/phy/phy-mipi-dphy.h> #include <linux/phy/phy.h> #include <linux/platform_device.h> #include <linux/regmap.h> #include <linux/regulator/consumer.h> #include <linux/reset.h> #include <linux/slab.h> #include <drm/drm_atomic_helper.h> #include <drm/drm_mipi_dsi.h> #include <drm/drm_panel.h> #include <drm/drm_print.h> #include <drm/drm_probe_helper.h> #include <drm/drm_simple_kms_helper.h> #include "sun4i_crtc.h" #include "sun4i_tcon.h" #include "sun6i_mipi_dsi.h" #include <video/mipi_display.h> #define SUN6I_DSI_CTL_REG 0x000 #define SUN6I_DSI_CTL_EN BIT(0) #define SUN6I_DSI_BASIC_CTL_REG 0x00c #define SUN6I_DSI_BASIC_CTL_TRAIL_INV(n) (((n) & 0xf) << 4) #define SUN6I_DSI_BASIC_CTL_TRAIL_FILL BIT(3) #define SUN6I_DSI_BASIC_CTL_HBP_DIS BIT(2) #define SUN6I_DSI_BASIC_CTL_HSA_HSE_DIS BIT(1) #define SUN6I_DSI_BASIC_CTL_VIDEO_BURST BIT(0) #define SUN6I_DSI_BASIC_CTL0_REG 0x010 #define SUN6I_DSI_BASIC_CTL0_HS_EOTP_EN BIT(18) #define SUN6I_DSI_BASIC_CTL0_CRC_EN BIT(17) #define SUN6I_DSI_BASIC_CTL0_ECC_EN BIT(16) #define SUN6I_DSI_BASIC_CTL0_INST_ST BIT(0) #define SUN6I_DSI_BASIC_CTL1_REG 0x014 #define SUN6I_DSI_BASIC_CTL1_VIDEO_ST_DELAY(n) (((n) & 0x1fff) << 4) #define SUN6I_DSI_BASIC_CTL1_VIDEO_FILL BIT(2) #define SUN6I_DSI_BASIC_CTL1_VIDEO_PRECISION BIT(1) #define SUN6I_DSI_BASIC_CTL1_VIDEO_MODE BIT(0) #define SUN6I_DSI_BASIC_SIZE0_REG 0x018 #define SUN6I_DSI_BASIC_SIZE0_VBP(n) (((n) & 0xfff) << 16) #define SUN6I_DSI_BASIC_SIZE0_VSA(n) ((n) & 0xfff) #define SUN6I_DSI_BASIC_SIZE1_REG 0x01c #define SUN6I_DSI_BASIC_SIZE1_VT(n) (((n) & 0xfff) << 16) #define SUN6I_DSI_BASIC_SIZE1_VACT(n) ((n) & 0xfff) #define SUN6I_DSI_INST_FUNC_REG(n) (0x020 + (n) * 0x04) #define SUN6I_DSI_INST_FUNC_INST_MODE(n) (((n) & 0xf) << 28) #define SUN6I_DSI_INST_FUNC_ESCAPE_ENTRY(n) (((n) & 0xf) << 24) #define SUN6I_DSI_INST_FUNC_TRANS_PACKET(n) (((n) & 0xf) << 20) #define SUN6I_DSI_INST_FUNC_LANE_CEN BIT(4) #define SUN6I_DSI_INST_FUNC_LANE_DEN(n) ((n) & 0xf) #define SUN6I_DSI_INST_LOOP_SEL_REG 0x040 #define SUN6I_DSI_INST_LOOP_NUM_REG(n) (0x044 + (n) * 0x10) #define SUN6I_DSI_INST_LOOP_NUM_N1(n) (((n) & 0xfff) << 16) #define SUN6I_DSI_INST_LOOP_NUM_N0(n) ((n) & 0xfff) #define SUN6I_DSI_INST_JUMP_SEL_REG 0x048 #define SUN6I_DSI_INST_JUMP_CFG_REG(n) (0x04c + (n) * 0x04) #define SUN6I_DSI_INST_JUMP_CFG_TO(n) (((n) & 0xf) << 20) #define SUN6I_DSI_INST_JUMP_CFG_POINT(n) (((n) & 0xf) << 16) #define SUN6I_DSI_INST_JUMP_CFG_NUM(n) ((n) & 0xffff) #define SUN6I_DSI_TRANS_START_REG 0x060 #define SUN6I_DSI_TRANS_ZERO_REG 0x078 #define SUN6I_DSI_TCON_DRQ_REG 0x07c #define SUN6I_DSI_TCON_DRQ_ENABLE_MODE BIT(28) #define SUN6I_DSI_TCON_DRQ_SET(n) ((n) & 0x3ff) #define SUN6I_DSI_PIXEL_CTL0_REG 0x080 #define SUN6I_DSI_PIXEL_CTL0_PD_PLUG_DISABLE BIT(16) #define SUN6I_DSI_PIXEL_CTL0_FORMAT(n) ((n) & 0xf) #define SUN6I_DSI_PIXEL_CTL1_REG 0x084 #define SUN6I_DSI_PIXEL_PH_REG 0x090 #define SUN6I_DSI_PIXEL_PH_ECC(n) (((n) & 0xff) << 24) #define SUN6I_DSI_PIXEL_PH_WC(n) (((n) & 0xffff) << 8) #define SUN6I_DSI_PIXEL_PH_VC(n) (((n) & 3) << 6) #define SUN6I_DSI_PIXEL_PH_DT(n) ((n) & 0x3f) #define SUN6I_DSI_PIXEL_PF0_REG 0x098 #define SUN6I_DSI_PIXEL_PF0_CRC_FORCE(n) ((n) & 0xffff) #define SUN6I_DSI_PIXEL_PF1_REG 0x09c #define SUN6I_DSI_PIXEL_PF1_CRC_INIT_LINEN(n) (((n) & 0xffff) << 16) #define SUN6I_DSI_PIXEL_PF1_CRC_INIT_LINE0(n) ((n) & 0xffff) #define SUN6I_DSI_SYNC_HSS_REG 0x0b0 #define SUN6I_DSI_SYNC_HSE_REG 0x0b4 #define SUN6I_DSI_SYNC_VSS_REG 0x0b8 #define SUN6I_DSI_SYNC_VSE_REG 0x0bc #define SUN6I_DSI_BLK_HSA0_REG 0x0c0 #define SUN6I_DSI_BLK_HSA1_REG 0x0c4 #define SUN6I_DSI_BLK_PF(n) (((n) & 0xffff) << 16) #define SUN6I_DSI_BLK_PD(n) ((n) & 0xff) #define SUN6I_DSI_BLK_HBP0_REG 0x0c8 #define SUN6I_DSI_BLK_HBP1_REG 0x0cc #define SUN6I_DSI_BLK_HFP0_REG 0x0d0 #define SUN6I_DSI_BLK_HFP1_REG 0x0d4 #define SUN6I_DSI_BLK_HBLK0_REG 0x0e0 #define SUN6I_DSI_BLK_HBLK1_REG 0x0e4 #define SUN6I_DSI_BLK_VBLK0_REG 0x0e8 #define SUN6I_DSI_BLK_VBLK1_REG 0x0ec #define SUN6I_DSI_BURST_LINE_REG 0x0f0 #define SUN6I_DSI_BURST_LINE_SYNC_POINT(n) (((n) & 0xffff) << 16) #define SUN6I_DSI_BURST_LINE_NUM(n) ((n) & 0xffff) #define SUN6I_DSI_BURST_DRQ_REG 0x0f4 #define SUN6I_DSI_BURST_DRQ_EDGE1(n) (((n) & 0xffff) << 16) #define SUN6I_DSI_BURST_DRQ_EDGE0(n) ((n) & 0xffff) #define SUN6I_DSI_CMD_CTL_REG 0x200 #define SUN6I_DSI_CMD_CTL_RX_OVERFLOW BIT(26) #define SUN6I_DSI_CMD_CTL_RX_FLAG BIT(25) #define SUN6I_DSI_CMD_CTL_TX_FLAG BIT(9) #define SUN6I_DSI_CMD_RX_REG(n) (0x240 + (n) * 0x04) #define SUN6I_DSI_DEBUG_DATA_REG 0x2f8 #define SUN6I_DSI_CMD_TX_REG(n) (0x300 + (n) * 0x04) #define SUN6I_DSI_SYNC_POINT 40 enum sun6i_dsi_start_inst { DSI_START_LPRX, DSI_START_LPTX, DSI_START_HSC, DSI_START_HSD, }; enum sun6i_dsi_inst_id { DSI_INST_ID_LP11 = 0, DSI_INST_ID_TBA, DSI_INST_ID_HSC, DSI_INST_ID_HSD, DSI_INST_ID_LPDT, DSI_INST_ID_HSCEXIT, DSI_INST_ID_NOP, DSI_INST_ID_DLY, DSI_INST_ID_END = 15, }; enum sun6i_dsi_inst_mode { DSI_INST_MODE_STOP = 0, DSI_INST_MODE_TBA, DSI_INST_MODE_HS, DSI_INST_MODE_ESCAPE, DSI_INST_MODE_HSCEXIT, DSI_INST_MODE_NOP, }; enum sun6i_dsi_inst_escape { DSI_INST_ESCA_LPDT = 0, DSI_INST_ESCA_ULPS, DSI_INST_ESCA_UN1, DSI_INST_ESCA_UN2, DSI_INST_ESCA_RESET, DSI_INST_ESCA_UN3, DSI_INST_ESCA_UN4, DSI_INST_ESCA_UN5, }; enum sun6i_dsi_inst_packet { DSI_INST_PACK_PIXEL = 0, DSI_INST_PACK_COMMAND, }; static const u32 sun6i_dsi_ecc_array[] = { [0] = (BIT(0) | BIT(1) | BIT(2) | BIT(4) | BIT(5) | BIT(7) | BIT(10) | BIT(11) | BIT(13) | BIT(16) | BIT(20) | BIT(21) | BIT(22) | BIT(23)), [1] = (BIT(0) | BIT(1) | BIT(3) | BIT(4) | BIT(6) | BIT(8) | BIT(10) | BIT(12) | BIT(14) | BIT(17) | BIT(20) | BIT(21) | BIT(22) | BIT(23)), [2] = (BIT(0) | BIT(2) | BIT(3) | BIT(5) | BIT(6) | BIT(9) | BIT(11) | BIT(12) | BIT(15) | BIT(18) | BIT(20) | BIT(21) | BIT(22)), [3] = (BIT(1) | BIT(2) | BIT(3) | BIT(7) | BIT(8) | BIT(9) | BIT(13) | BIT(14) | BIT(15) | BIT(19) | BIT(20) | BIT(21) | BIT(23)), [4] = (BIT(4) | BIT(5) | BIT(6) | BIT(7) | BIT(8) | BIT(9) | BIT(16) | BIT(17) | BIT(18) | BIT(19) | BIT(20) | BIT(22) | BIT(23)), [5] = (BIT(10) | BIT(11) | BIT(12) | BIT(13) | BIT(14) | BIT(15) | BIT(16) | BIT(17) | BIT(18) | BIT(19) | BIT(21) | BIT(22) | BIT(23)), }; static u32 sun6i_dsi_ecc_compute(unsigned int data) { int i; u8 ecc = 0; for (i = 0; i < ARRAY_SIZE(sun6i_dsi_ecc_array); i++) { u32 field = sun6i_dsi_ecc_array[i]; bool init = false; u8 val = 0; int j; for (j = 0; j < 24; j++) { if (!(BIT(j) & field)) continue; if (!init) { val = (BIT(j) & data) ? 1 : 0; init = true; } else { val ^= (BIT(j) & data) ? 1 : 0; } } ecc |= val << i; } return ecc; } static u16 sun6i_dsi_crc_compute(u8 const *buffer, size_t len) { return crc_ccitt(0xffff, buffer, len); } static u16 sun6i_dsi_crc_repeat(u8 pd, u8 *buffer, size_t len) { memset(buffer, pd, len); return sun6i_dsi_crc_compute(buffer, len); } static u32 sun6i_dsi_build_sync_pkt(u8 dt, u8 vc, u8 d0, u8 d1) { u32 val = dt & 0x3f; val |= (vc & 3) << 6; val |= (d0 & 0xff) << 8; val |= (d1 & 0xff) << 16; val |= sun6i_dsi_ecc_compute(val) << 24; return val; } static u32 sun6i_dsi_build_blk0_pkt(u8 vc, u16 wc) { return sun6i_dsi_build_sync_pkt(MIPI_DSI_BLANKING_PACKET, vc, wc & 0xff, wc >> 8); } static u32 sun6i_dsi_build_blk1_pkt(u16 pd, u8 *buffer, size_t len) { u32 val = SUN6I_DSI_BLK_PD(pd); return val | SUN6I_DSI_BLK_PF(sun6i_dsi_crc_repeat(pd, buffer, len)); } static void sun6i_dsi_inst_abort(struct sun6i_dsi *dsi) { regmap_update_bits(dsi->regs, SUN6I_DSI_BASIC_CTL0_REG, SUN6I_DSI_BASIC_CTL0_INST_ST, 0); } static void sun6i_dsi_inst_commit(struct sun6i_dsi *dsi) { regmap_update_bits(dsi->regs, SUN6I_DSI_BASIC_CTL0_REG, SUN6I_DSI_BASIC_CTL0_INST_ST, SUN6I_DSI_BASIC_CTL0_INST_ST); } static int sun6i_dsi_inst_wait_for_completion(struct sun6i_dsi *dsi) { u32 val; return regmap_read_poll_timeout(dsi->regs, SUN6I_DSI_BASIC_CTL0_REG, val, !(val & SUN6I_DSI_BASIC_CTL0_INST_ST), 100, 5000); } static void sun6i_dsi_inst_setup(struct sun6i_dsi *dsi, enum sun6i_dsi_inst_id id, enum sun6i_dsi_inst_mode mode, bool clock, u8 data, enum sun6i_dsi_inst_packet packet, enum sun6i_dsi_inst_escape escape) { regmap_write(dsi->regs, SUN6I_DSI_INST_FUNC_REG(id), SUN6I_DSI_INST_FUNC_INST_MODE(mode) | SUN6I_DSI_INST_FUNC_ESCAPE_ENTRY(escape) | SUN6I_DSI_INST_FUNC_TRANS_PACKET(packet) | (clock ? SUN6I_DSI_INST_FUNC_LANE_CEN : 0) | SUN6I_DSI_INST_FUNC_LANE_DEN(data)); } static void sun6i_dsi_inst_init(struct sun6i_dsi *dsi, struct mipi_dsi_device *device) { u8 lanes_mask = GENMASK(device->lanes - 1, 0); sun6i_dsi_inst_setup(dsi, DSI_INST_ID_LP11, DSI_INST_MODE_STOP, true, lanes_mask, 0, 0); sun6i_dsi_inst_setup(dsi, DSI_INST_ID_TBA, DSI_INST_MODE_TBA, false, 1, 0, 0); sun6i_dsi_inst_setup(dsi, DSI_INST_ID_HSC, DSI_INST_MODE_HS, true, 0, DSI_INST_PACK_PIXEL, 0); sun6i_dsi_inst_setup(dsi, DSI_INST_ID_HSD, DSI_INST_MODE_HS, false, lanes_mask, DSI_INST_PACK_PIXEL, 0); sun6i_dsi_inst_setup(dsi, DSI_INST_ID_LPDT, DSI_INST_MODE_ESCAPE, false, 1, DSI_INST_PACK_COMMAND, DSI_INST_ESCA_LPDT); sun6i_dsi_inst_setup(dsi, DSI_INST_ID_HSCEXIT, DSI_INST_MODE_HSCEXIT, true, 0, 0, 0); sun6i_dsi_inst_setup(dsi, DSI_INST_ID_NOP, DSI_INST_MODE_STOP, false, lanes_mask, 0, 0); sun6i_dsi_inst_setup(dsi, DSI_INST_ID_DLY, DSI_INST_MODE_NOP, true, lanes_mask, 0, 0); regmap_write(dsi->regs, SUN6I_DSI_INST_JUMP_CFG_REG(0), SUN6I_DSI_INST_JUMP_CFG_POINT(DSI_INST_ID_NOP) | SUN6I_DSI_INST_JUMP_CFG_TO(DSI_INST_ID_HSCEXIT) | SUN6I_DSI_INST_JUMP_CFG_NUM(1)); }; static u16 sun6i_dsi_get_video_start_delay(struct sun6i_dsi *dsi, struct drm_display_mode *mode) { u16 delay = mode->vtotal - (mode->vsync_start - mode->vdisplay) + 1; if (delay > mode->vtotal) delay = delay % mode->vtotal; return max_t(u16, delay, 1); } static u16 sun6i_dsi_get_line_num(struct sun6i_dsi *dsi, struct drm_display_mode *mode) { struct mipi_dsi_device *device = dsi->device; unsigned int Bpp = mipi_dsi_pixel_format_to_bpp(device->format) / 8; return mode->htotal * Bpp / device->lanes; } static u16 sun6i_dsi_get_drq_edge0(struct sun6i_dsi *dsi, struct drm_display_mode *mode, u16 line_num, u16 edge1) { u16 edge0 = edge1; edge0 += (mode->hdisplay + 40) * SUN6I_DSI_TCON_DIV / 8; if (edge0 > line_num) return edge0 - line_num; return 1; } static u16 sun6i_dsi_get_drq_edge1(struct sun6i_dsi *dsi, struct drm_display_mode *mode, u16 line_num) { struct mipi_dsi_device *device = dsi->device; unsigned int Bpp = mipi_dsi_pixel_format_to_bpp(device->format) / 8; unsigned int hbp = mode->htotal - mode->hsync_end; u16 edge1; edge1 = SUN6I_DSI_SYNC_POINT; edge1 += (mode->hdisplay + hbp + 20) * Bpp / device->lanes; if (edge1 > line_num) return line_num; return edge1; } static void sun6i_dsi_setup_burst(struct sun6i_dsi *dsi, struct drm_display_mode *mode) { struct mipi_dsi_device *device = dsi->device; u32 val = 0; if (device->mode_flags & MIPI_DSI_MODE_VIDEO_BURST) { u16 line_num = sun6i_dsi_get_line_num(dsi, mode); u16 edge0, edge1; edge1 = sun6i_dsi_get_drq_edge1(dsi, mode, line_num); edge0 = sun6i_dsi_get_drq_edge0(dsi, mode, line_num, edge1); regmap_write(dsi->regs, SUN6I_DSI_BURST_DRQ_REG, SUN6I_DSI_BURST_DRQ_EDGE0(edge0) | SUN6I_DSI_BURST_DRQ_EDGE1(edge1)); regmap_write(dsi->regs, SUN6I_DSI_BURST_LINE_REG, SUN6I_DSI_BURST_LINE_NUM(line_num) | SUN6I_DSI_BURST_LINE_SYNC_POINT(SUN6I_DSI_SYNC_POINT)); val = SUN6I_DSI_TCON_DRQ_ENABLE_MODE; } else if ((mode->hsync_start - mode->hdisplay) > 20) { /* Maaaaaagic */ u16 drq = (mode->hsync_start - mode->hdisplay) - 20; drq *= mipi_dsi_pixel_format_to_bpp(device->format); drq /= 32; val = (SUN6I_DSI_TCON_DRQ_ENABLE_MODE | SUN6I_DSI_TCON_DRQ_SET(drq)); } regmap_write(dsi->regs, SUN6I_DSI_TCON_DRQ_REG, val); } static void sun6i_dsi_setup_inst_loop(struct sun6i_dsi *dsi, struct drm_display_mode *mode) { struct mipi_dsi_device *device = dsi->device; u16 delay = 50 - 1; if (device->mode_flags & MIPI_DSI_MODE_VIDEO_BURST) { u32 hsync_porch = (mode->htotal - mode->hdisplay) * 150; delay = (hsync_porch / ((mode->clock / 1000) * 8)); delay -= 50; } regmap_write(dsi->regs, SUN6I_DSI_INST_LOOP_SEL_REG, 2 << (4 * DSI_INST_ID_LP11) | 3 << (4 * DSI_INST_ID_DLY)); regmap_write(dsi->regs, SUN6I_DSI_INST_LOOP_NUM_REG(0), SUN6I_DSI_INST_LOOP_NUM_N0(50 - 1) | SUN6I_DSI_INST_LOOP_NUM_N1(delay)); regmap_write(dsi->regs, SUN6I_DSI_INST_LOOP_NUM_REG(1), SUN6I_DSI_INST_LOOP_NUM_N0(50 - 1) | SUN6I_DSI_INST_LOOP_NUM_N1(delay)); } static void sun6i_dsi_setup_format(struct sun6i_dsi *dsi, struct drm_display_mode *mode) { struct mipi_dsi_device *device = dsi->device; u32 val = SUN6I_DSI_PIXEL_PH_VC(device->channel); u8 dt, fmt; u16 wc; /* * TODO: The format defines are only valid in video mode and * change in command mode. */ switch (device->format) { case MIPI_DSI_FMT_RGB888: dt = MIPI_DSI_PACKED_PIXEL_STREAM_24; fmt = 8; break; case MIPI_DSI_FMT_RGB666: dt = MIPI_DSI_PIXEL_STREAM_3BYTE_18; fmt = 9; break; case MIPI_DSI_FMT_RGB666_PACKED: dt = MIPI_DSI_PACKED_PIXEL_STREAM_18; fmt = 10; break; case MIPI_DSI_FMT_RGB565: dt = MIPI_DSI_PACKED_PIXEL_STREAM_16; fmt = 11; break; default: return; } val |= SUN6I_DSI_PIXEL_PH_DT(dt); wc = mode->hdisplay * mipi_dsi_pixel_format_to_bpp(device->format) / 8; val |= SUN6I_DSI_PIXEL_PH_WC(wc); val |= SUN6I_DSI_PIXEL_PH_ECC(sun6i_dsi_ecc_compute(val)); regmap_write(dsi->regs, SUN6I_DSI_PIXEL_PH_REG, val); regmap_write(dsi->regs, SUN6I_DSI_PIXEL_PF0_REG, SUN6I_DSI_PIXEL_PF0_CRC_FORCE(0xffff)); regmap_write(dsi->regs, SUN6I_DSI_PIXEL_PF1_REG, SUN6I_DSI_PIXEL_PF1_CRC_INIT_LINE0(0xffff) | SUN6I_DSI_PIXEL_PF1_CRC_INIT_LINEN(0xffff)); regmap_write(dsi->regs, SUN6I_DSI_PIXEL_CTL0_REG, SUN6I_DSI_PIXEL_CTL0_PD_PLUG_DISABLE | SUN6I_DSI_PIXEL_CTL0_FORMAT(fmt)); } static void sun6i_dsi_setup_timings(struct sun6i_dsi *dsi, struct drm_display_mode *mode) { struct mipi_dsi_device *device = dsi->device; int Bpp = mipi_dsi_pixel_format_to_bpp(device->format) / 8; u16 hbp = 0, hfp = 0, hsa = 0, hblk = 0, vblk = 0; u32 basic_ctl = 0; size_t bytes; u8 *buffer; /* Do all timing calculations up front to allocate buffer space */ if (device->mode_flags & MIPI_DSI_MODE_VIDEO_BURST) { hblk = mode->hdisplay * Bpp; basic_ctl = SUN6I_DSI_BASIC_CTL_VIDEO_BURST | SUN6I_DSI_BASIC_CTL_HSA_HSE_DIS | SUN6I_DSI_BASIC_CTL_HBP_DIS; if (device->lanes == 4) basic_ctl |= SUN6I_DSI_BASIC_CTL_TRAIL_FILL | SUN6I_DSI_BASIC_CTL_TRAIL_INV(0xc); } else { /* * A sync period is composed of a blanking packet (4 * bytes + payload + 2 bytes) and a sync event packet * (4 bytes). Its minimal size is therefore 10 bytes */ #define HSA_PACKET_OVERHEAD 10 hsa = max(HSA_PACKET_OVERHEAD, (mode->hsync_end - mode->hsync_start) * Bpp - HSA_PACKET_OVERHEAD); /* * The backporch is set using a blanking packet (4 * bytes + payload + 2 bytes). Its minimal size is * therefore 6 bytes */ #define HBP_PACKET_OVERHEAD 6 hbp = max(HBP_PACKET_OVERHEAD, (mode->htotal - mode->hsync_end) * Bpp - HBP_PACKET_OVERHEAD); /* * The frontporch is set using a sync event (4 bytes) * and two blanking packets (each one is 4 bytes + * payload + 2 bytes). Its minimal size is therefore * 16 bytes */ #define HFP_PACKET_OVERHEAD 16 hfp = max(HFP_PACKET_OVERHEAD, (mode->hsync_start - mode->hdisplay) * Bpp - HFP_PACKET_OVERHEAD); /* * The blanking is set using a sync event (4 bytes) * and a blanking packet (4 bytes + payload + 2 * bytes). Its minimal size is therefore 10 bytes. */ #define HBLK_PACKET_OVERHEAD 10 hblk = max(HBLK_PACKET_OVERHEAD, (mode->htotal - (mode->hsync_end - mode->hsync_start)) * Bpp - HBLK_PACKET_OVERHEAD); /* * And I'm not entirely sure what vblk is about. The driver in * Allwinner BSP is using a rather convoluted calculation * there only for 4 lanes. However, using 0 (the !4 lanes * case) even with a 4 lanes screen seems to work... */ vblk = 0; } /* How many bytes do we need to send all payloads? */ bytes = max_t(size_t, max(max(hfp, hblk), max(hsa, hbp)), vblk); buffer = kmalloc(bytes, GFP_KERNEL); if (WARN_ON(!buffer)) return; regmap_write(dsi->regs, SUN6I_DSI_BASIC_CTL_REG, basic_ctl); regmap_write(dsi->regs, SUN6I_DSI_SYNC_HSS_REG, sun6i_dsi_build_sync_pkt(MIPI_DSI_H_SYNC_START, device->channel, 0, 0)); regmap_write(dsi->regs, SUN6I_DSI_SYNC_HSE_REG, sun6i_dsi_build_sync_pkt(MIPI_DSI_H_SYNC_END, device->channel, 0, 0)); regmap_write(dsi->regs, SUN6I_DSI_SYNC_VSS_REG, sun6i_dsi_build_sync_pkt(MIPI_DSI_V_SYNC_START, device->channel, 0, 0)); regmap_write(dsi->regs, SUN6I_DSI_SYNC_VSE_REG, sun6i_dsi_build_sync_pkt(MIPI_DSI_V_SYNC_END, device->channel, 0, 0)); regmap_write(dsi->regs, SUN6I_DSI_BASIC_SIZE0_REG, SUN6I_DSI_BASIC_SIZE0_VSA(mode->vsync_end - mode->vsync_start) | SUN6I_DSI_BASIC_SIZE0_VBP(mode->vtotal - mode->vsync_end)); regmap_write(dsi->regs, SUN6I_DSI_BASIC_SIZE1_REG, SUN6I_DSI_BASIC_SIZE1_VACT(mode->vdisplay) | SUN6I_DSI_BASIC_SIZE1_VT(mode->vtotal)); /* sync */ regmap_write(dsi->regs, SUN6I_DSI_BLK_HSA0_REG, sun6i_dsi_build_blk0_pkt(device->channel, hsa)); regmap_write(dsi->regs, SUN6I_DSI_BLK_HSA1_REG, sun6i_dsi_build_blk1_pkt(0, buffer, hsa)); /* backporch */ regmap_write(dsi->regs, SUN6I_DSI_BLK_HBP0_REG, sun6i_dsi_build_blk0_pkt(device->channel, hbp)); regmap_write(dsi->regs, SUN6I_DSI_BLK_HBP1_REG, sun6i_dsi_build_blk1_pkt(0, buffer, hbp)); /* frontporch */ regmap_write(dsi->regs, SUN6I_DSI_BLK_HFP0_REG, sun6i_dsi_build_blk0_pkt(device->channel, hfp)); regmap_write(dsi->regs, SUN6I_DSI_BLK_HFP1_REG, sun6i_dsi_build_blk1_pkt(0, buffer, hfp)); /* hblk */ regmap_write(dsi->regs, SUN6I_DSI_BLK_HBLK0_REG, sun6i_dsi_build_blk0_pkt(device->channel, hblk)); regmap_write(dsi->regs, SUN6I_DSI_BLK_HBLK1_REG, sun6i_dsi_build_blk1_pkt(0, buffer, hblk)); /* vblk */ regmap_write(dsi->regs, SUN6I_DSI_BLK_VBLK0_REG, sun6i_dsi_build_blk0_pkt(device->channel, vblk)); regmap_write(dsi->regs, SUN6I_DSI_BLK_VBLK1_REG, sun6i_dsi_build_blk1_pkt(0, buffer, vblk)); kfree(buffer); } static int sun6i_dsi_start(struct sun6i_dsi *dsi, enum sun6i_dsi_start_inst func) { switch (func) { case DSI_START_LPTX: regmap_write(dsi->regs, SUN6I_DSI_INST_JUMP_SEL_REG, DSI_INST_ID_LPDT << (4 * DSI_INST_ID_LP11) | DSI_INST_ID_END << (4 * DSI_INST_ID_LPDT)); break; case DSI_START_LPRX: regmap_write(dsi->regs, SUN6I_DSI_INST_JUMP_SEL_REG, DSI_INST_ID_LPDT << (4 * DSI_INST_ID_LP11) | DSI_INST_ID_DLY << (4 * DSI_INST_ID_LPDT) | DSI_INST_ID_TBA << (4 * DSI_INST_ID_DLY) | DSI_INST_ID_END << (4 * DSI_INST_ID_TBA)); break; case DSI_START_HSC: regmap_write(dsi->regs, SUN6I_DSI_INST_JUMP_SEL_REG, DSI_INST_ID_HSC << (4 * DSI_INST_ID_LP11) | DSI_INST_ID_END << (4 * DSI_INST_ID_HSC)); break; case DSI_START_HSD: regmap_write(dsi->regs, SUN6I_DSI_INST_JUMP_SEL_REG, DSI_INST_ID_NOP << (4 * DSI_INST_ID_LP11) | DSI_INST_ID_HSD << (4 * DSI_INST_ID_NOP) | DSI_INST_ID_DLY << (4 * DSI_INST_ID_HSD) | DSI_INST_ID_NOP << (4 * DSI_INST_ID_DLY) | DSI_INST_ID_END << (4 * DSI_INST_ID_HSCEXIT)); break; default: regmap_write(dsi->regs, SUN6I_DSI_INST_JUMP_SEL_REG, DSI_INST_ID_END << (4 * DSI_INST_ID_LP11)); break; } sun6i_dsi_inst_abort(dsi); sun6i_dsi_inst_commit(dsi); if (func == DSI_START_HSC) regmap_write_bits(dsi->regs, SUN6I_DSI_INST_FUNC_REG(DSI_INST_ID_LP11), SUN6I_DSI_INST_FUNC_LANE_CEN, 0); return 0; } static void sun6i_dsi_encoder_enable(struct drm_encoder *encoder) { struct drm_display_mode *mode = &encoder->crtc->state->adjusted_mode; struct sun6i_dsi *dsi = encoder_to_sun6i_dsi(encoder); struct mipi_dsi_device *device = dsi->device; union phy_configure_opts opts = { }; struct phy_configure_opts_mipi_dphy *cfg = &opts.mipi_dphy; u16 delay; int err; DRM_DEBUG_DRIVER("Enabling DSI output\n"); err = regulator_enable(dsi->regulator); if (err) dev_warn(dsi->dev, "failed to enable VCC-DSI supply: %d\n", err); reset_control_deassert(dsi->reset); clk_prepare_enable(dsi->mod_clk); /* * Enable the DSI block. */ regmap_write(dsi->regs, SUN6I_DSI_CTL_REG, SUN6I_DSI_CTL_EN); regmap_write(dsi->regs, SUN6I_DSI_BASIC_CTL0_REG, SUN6I_DSI_BASIC_CTL0_ECC_EN | SUN6I_DSI_BASIC_CTL0_CRC_EN); regmap_write(dsi->regs, SUN6I_DSI_TRANS_START_REG, 10); regmap_write(dsi->regs, SUN6I_DSI_TRANS_ZERO_REG, 0); sun6i_dsi_inst_init(dsi, dsi->device); regmap_write(dsi->regs, SUN6I_DSI_DEBUG_DATA_REG, 0xff); delay = sun6i_dsi_get_video_start_delay(dsi, mode); regmap_write(dsi->regs, SUN6I_DSI_BASIC_CTL1_REG, SUN6I_DSI_BASIC_CTL1_VIDEO_ST_DELAY(delay) | SUN6I_DSI_BASIC_CTL1_VIDEO_FILL | SUN6I_DSI_BASIC_CTL1_VIDEO_PRECISION | SUN6I_DSI_BASIC_CTL1_VIDEO_MODE); sun6i_dsi_setup_burst(dsi, mode); sun6i_dsi_setup_inst_loop(dsi, mode); sun6i_dsi_setup_format(dsi, mode); sun6i_dsi_setup_timings(dsi, mode); phy_init(dsi->dphy); phy_mipi_dphy_get_default_config(mode->clock * 1000, mipi_dsi_pixel_format_to_bpp(device->format), device->lanes, cfg); phy_set_mode(dsi->dphy, PHY_MODE_MIPI_DPHY); phy_configure(dsi->dphy, &opts); phy_power_on(dsi->dphy); if (dsi->panel) drm_panel_prepare(dsi->panel); /* * FIXME: This should be moved after the switch to HS mode. * * Unfortunately, once in HS mode, it seems like we're not * able to send DCS commands anymore, which would prevent any * panel to send any DCS command as part as their enable * method, which is quite common. * * I haven't seen any artifact due to that sub-optimal * ordering on the panels I've tested it with, so I guess this * will do for now, until that IP is better understood. */ if (dsi->panel) drm_panel_enable(dsi->panel); sun6i_dsi_start(dsi, DSI_START_HSC); udelay(1000); sun6i_dsi_start(dsi, DSI_START_HSD); } static void sun6i_dsi_encoder_disable(struct drm_encoder *encoder) { struct sun6i_dsi *dsi = encoder_to_sun6i_dsi(encoder); DRM_DEBUG_DRIVER("Disabling DSI output\n"); if (dsi->panel) { drm_panel_disable(dsi->panel); drm_panel_unprepare(dsi->panel); } phy_power_off(dsi->dphy); phy_exit(dsi->dphy); clk_disable_unprepare(dsi->mod_clk); reset_control_assert(dsi->reset); regulator_disable(dsi->regulator); } static int sun6i_dsi_get_modes(struct drm_connector *connector) { struct sun6i_dsi *dsi = connector_to_sun6i_dsi(connector); return drm_panel_get_modes(dsi->panel, connector); } static const struct drm_connector_helper_funcs sun6i_dsi_connector_helper_funcs = { .get_modes = sun6i_dsi_get_modes, }; static enum drm_connector_status sun6i_dsi_connector_detect(struct drm_connector *connector, bool force) { struct sun6i_dsi *dsi = connector_to_sun6i_dsi(connector); return dsi->panel ? connector_status_connected : connector_status_disconnected; } static const struct drm_connector_funcs sun6i_dsi_connector_funcs = { .detect = sun6i_dsi_connector_detect, .fill_modes = drm_helper_probe_single_connector_modes, .destroy = drm_connector_cleanup, .reset = drm_atomic_helper_connector_reset, .atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state, .atomic_destroy_state = drm_atomic_helper_connector_destroy_state, }; static const struct drm_encoder_helper_funcs sun6i_dsi_enc_helper_funcs = { .disable = sun6i_dsi_encoder_disable, .enable = sun6i_dsi_encoder_enable, }; static u32 sun6i_dsi_dcs_build_pkt_hdr(struct sun6i_dsi *dsi, const struct mipi_dsi_msg *msg) { u32 pkt = msg->type; if (msg->type == MIPI_DSI_DCS_LONG_WRITE) { pkt |= ((msg->tx_len) & 0xffff) << 8; pkt |= (((msg->tx_len) >> 8) & 0xffff) << 16; } else { pkt |= (((u8 *)msg->tx_buf)[0] << 8); if (msg->tx_len > 1) pkt |= (((u8 *)msg->tx_buf)[1] << 16); } pkt |= sun6i_dsi_ecc_compute(pkt) << 24; return pkt; } static int sun6i_dsi_dcs_write_short(struct sun6i_dsi *dsi, const struct mipi_dsi_msg *msg) { regmap_write(dsi->regs, SUN6I_DSI_CMD_TX_REG(0), sun6i_dsi_dcs_build_pkt_hdr(dsi, msg)); regmap_write_bits(dsi->regs, SUN6I_DSI_CMD_CTL_REG, 0xff, (4 - 1)); sun6i_dsi_start(dsi, DSI_START_LPTX); return msg->tx_len; } static int sun6i_dsi_dcs_write_long(struct sun6i_dsi *dsi, const struct mipi_dsi_msg *msg) { int ret, len = 0; u8 *bounce; u16 crc; regmap_write(dsi->regs, SUN6I_DSI_CMD_TX_REG(0), sun6i_dsi_dcs_build_pkt_hdr(dsi, msg)); bounce = kzalloc(ALIGN(msg->tx_len + sizeof(crc), 4), GFP_KERNEL); if (!bounce) return -ENOMEM; memcpy(bounce, msg->tx_buf, msg->tx_len); len += msg->tx_len; crc = sun6i_dsi_crc_compute(bounce, msg->tx_len); memcpy((u8 *)bounce + msg->tx_len, &crc, sizeof(crc)); len += sizeof(crc); regmap_bulk_write(dsi->regs, SUN6I_DSI_CMD_TX_REG(1), bounce, DIV_ROUND_UP(len, 4)); regmap_write(dsi->regs, SUN6I_DSI_CMD_CTL_REG, len + 4 - 1); kfree(bounce); sun6i_dsi_start(dsi, DSI_START_LPTX); ret = sun6i_dsi_inst_wait_for_completion(dsi); if (ret < 0) { sun6i_dsi_inst_abort(dsi); return ret; } /* * TODO: There's some bits (reg 0x200, bits 8/9) that * apparently can be used to check whether the data have been * sent, but I couldn't get it to work reliably. */ return msg->tx_len; } static int sun6i_dsi_dcs_read(struct sun6i_dsi *dsi, const struct mipi_dsi_msg *msg) { u32 val; int ret; u8 byte0; regmap_write(dsi->regs, SUN6I_DSI_CMD_TX_REG(0), sun6i_dsi_dcs_build_pkt_hdr(dsi, msg)); regmap_write(dsi->regs, SUN6I_DSI_CMD_CTL_REG, (4 - 1)); sun6i_dsi_start(dsi, DSI_START_LPRX); ret = sun6i_dsi_inst_wait_for_completion(dsi); if (ret < 0) { sun6i_dsi_inst_abort(dsi); return ret; } /* * TODO: There's some bits (reg 0x200, bits 24/25) that * apparently can be used to check whether the data have been * received, but I couldn't get it to work reliably. */ regmap_read(dsi->regs, SUN6I_DSI_CMD_CTL_REG, &val); if (val & SUN6I_DSI_CMD_CTL_RX_OVERFLOW) return -EIO; regmap_read(dsi->regs, SUN6I_DSI_CMD_RX_REG(0), &val); byte0 = val & 0xff; if (byte0 == MIPI_DSI_RX_ACKNOWLEDGE_AND_ERROR_REPORT) return -EIO; ((u8 *)msg->rx_buf)[0] = (val >> 8); return 1; } static int sun6i_dsi_attach(struct mipi_dsi_host *host, struct mipi_dsi_device *device) { struct sun6i_dsi *dsi = host_to_sun6i_dsi(host); struct drm_panel *panel = of_drm_find_panel(device->dev.of_node); if (IS_ERR(panel)) return PTR_ERR(panel); if (!dsi->drm || !dsi->drm->registered) return -EPROBE_DEFER; dsi->panel = panel; dsi->device = device; drm_kms_helper_hotplug_event(dsi->drm); dev_info(host->dev, "Attached device %s\n", device->name); return 0; } static int sun6i_dsi_detach(struct mipi_dsi_host *host, struct mipi_dsi_device *device) { struct sun6i_dsi *dsi = host_to_sun6i_dsi(host); dsi->panel = NULL; dsi->device = NULL; drm_kms_helper_hotplug_event(dsi->drm); return 0; } static ssize_t sun6i_dsi_transfer(struct mipi_dsi_host *host, const struct mipi_dsi_msg *msg) { struct sun6i_dsi *dsi = host_to_sun6i_dsi(host); int ret; ret = sun6i_dsi_inst_wait_for_completion(dsi); if (ret < 0) sun6i_dsi_inst_abort(dsi); regmap_write(dsi->regs, SUN6I_DSI_CMD_CTL_REG, SUN6I_DSI_CMD_CTL_RX_OVERFLOW | SUN6I_DSI_CMD_CTL_RX_FLAG | SUN6I_DSI_CMD_CTL_TX_FLAG); switch (msg->type) { case MIPI_DSI_DCS_SHORT_WRITE: case MIPI_DSI_DCS_SHORT_WRITE_PARAM: case MIPI_DSI_GENERIC_SHORT_WRITE_2_PARAM: ret = sun6i_dsi_dcs_write_short(dsi, msg); break; case MIPI_DSI_DCS_LONG_WRITE: ret = sun6i_dsi_dcs_write_long(dsi, msg); break; case MIPI_DSI_DCS_READ: if (msg->rx_len == 1) { ret = sun6i_dsi_dcs_read(dsi, msg); break; } fallthrough; default: ret = -EINVAL; } return ret; } static const struct mipi_dsi_host_ops sun6i_dsi_host_ops = { .attach = sun6i_dsi_attach, .detach = sun6i_dsi_detach, .transfer = sun6i_dsi_transfer, }; static const struct regmap_config sun6i_dsi_regmap_config = { .reg_bits = 32, .val_bits = 32, .reg_stride = 4, .max_register = SUN6I_DSI_CMD_TX_REG(255), .name = "mipi-dsi", }; static int sun6i_dsi_bind(struct device *dev, struct device *master, void *data) { struct drm_device *drm = data; struct sun6i_dsi *dsi = dev_get_drvdata(dev); int ret; drm_encoder_helper_add(&dsi->encoder, &sun6i_dsi_enc_helper_funcs); ret = drm_simple_encoder_init(drm, &dsi->encoder, DRM_MODE_ENCODER_DSI); if (ret) { dev_err(dsi->dev, "Couldn't initialise the DSI encoder\n"); return ret; } dsi->encoder.possible_crtcs = BIT(0); drm_connector_helper_add(&dsi->connector, &sun6i_dsi_connector_helper_funcs); ret = drm_connector_init(drm, &dsi->connector, &sun6i_dsi_connector_funcs, DRM_MODE_CONNECTOR_DSI); if (ret) { dev_err(dsi->dev, "Couldn't initialise the DSI connector\n"); goto err_cleanup_connector; } drm_connector_attach_encoder(&dsi->connector, &dsi->encoder); dsi->drm = drm; return 0; err_cleanup_connector: drm_encoder_cleanup(&dsi->encoder); return ret; } static void sun6i_dsi_unbind(struct device *dev, struct device *master, void *data) { struct sun6i_dsi *dsi = dev_get_drvdata(dev); dsi->drm = NULL; } static const struct component_ops sun6i_dsi_ops = { .bind = sun6i_dsi_bind, .unbind = sun6i_dsi_unbind, }; static int sun6i_dsi_probe(struct platform_device *pdev) { const struct sun6i_dsi_variant *variant; struct device *dev = &pdev->dev; struct sun6i_dsi *dsi; void __iomem *base; int ret; variant = device_get_match_data(dev); if (!variant) return -EINVAL; dsi = devm_kzalloc(dev, sizeof(*dsi), GFP_KERNEL); if (!dsi) return -ENOMEM; dev_set_drvdata(dev, dsi); dsi->dev = dev; dsi->host.ops = &sun6i_dsi_host_ops; dsi->host.dev = dev; dsi->variant = variant; base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(base)) { dev_err(dev, "Couldn't map the DSI encoder registers\n"); return PTR_ERR(base); } dsi->regulator = devm_regulator_get(dev, "vcc-dsi"); if (IS_ERR(dsi->regulator)) return dev_err_probe(dev, PTR_ERR(dsi->regulator), "Couldn't get VCC-DSI supply\n"); dsi->reset = devm_reset_control_get_shared(dev, NULL); if (IS_ERR(dsi->reset)) { dev_err(dev, "Couldn't get our reset line\n"); return PTR_ERR(dsi->reset); } dsi->regs = devm_regmap_init_mmio(dev, base, &sun6i_dsi_regmap_config); if (IS_ERR(dsi->regs)) { dev_err(dev, "Couldn't init regmap\n"); return PTR_ERR(dsi->regs); } dsi->bus_clk = devm_clk_get(dev, variant->has_mod_clk ? "bus" : NULL); if (IS_ERR(dsi->bus_clk)) return dev_err_probe(dev, PTR_ERR(dsi->bus_clk), "Couldn't get the DSI bus clock\n"); ret = regmap_mmio_attach_clk(dsi->regs, dsi->bus_clk); if (ret) return ret; if (variant->has_mod_clk) { dsi->mod_clk = devm_clk_get(dev, "mod"); if (IS_ERR(dsi->mod_clk)) { dev_err(dev, "Couldn't get the DSI mod clock\n"); ret = PTR_ERR(dsi->mod_clk); goto err_attach_clk; } /* * In order to operate properly, the module clock on the * A31 variant always seems to be set to 297MHz. */ if (variant->set_mod_clk) clk_set_rate_exclusive(dsi->mod_clk, 297000000); } dsi->dphy = devm_phy_get(dev, "dphy"); if (IS_ERR(dsi->dphy)) { dev_err(dev, "Couldn't get the MIPI D-PHY\n"); ret = PTR_ERR(dsi->dphy); goto err_unprotect_clk; } ret = mipi_dsi_host_register(&dsi->host); if (ret) { dev_err(dev, "Couldn't register MIPI-DSI host\n"); goto err_unprotect_clk; } ret = component_add(&pdev->dev, &sun6i_dsi_ops); if (ret) { dev_err(dev, "Couldn't register our component\n"); goto err_remove_dsi_host; } return 0; err_remove_dsi_host: mipi_dsi_host_unregister(&dsi->host); err_unprotect_clk: if (dsi->variant->has_mod_clk && dsi->variant->set_mod_clk) clk_rate_exclusive_put(dsi->mod_clk); err_attach_clk: regmap_mmio_detach_clk(dsi->regs); return ret; } static void sun6i_dsi_remove(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct sun6i_dsi *dsi = dev_get_drvdata(dev); component_del(&pdev->dev, &sun6i_dsi_ops); mipi_dsi_host_unregister(&dsi->host); if (dsi->variant->has_mod_clk && dsi->variant->set_mod_clk) clk_rate_exclusive_put(dsi->mod_clk); regmap_mmio_detach_clk(dsi->regs); } static const struct sun6i_dsi_variant sun6i_a31_mipi_dsi_variant = { .has_mod_clk = true, .set_mod_clk = true, }; static const struct sun6i_dsi_variant sun50i_a64_mipi_dsi_variant = { }; static const struct sun6i_dsi_variant sun50i_a100_mipi_dsi_variant = { .has_mod_clk = true, }; static const struct of_device_id sun6i_dsi_of_table[] = { { .compatible = "allwinner,sun6i-a31-mipi-dsi", .data = &sun6i_a31_mipi_dsi_variant, }, { .compatible = "allwinner,sun50i-a64-mipi-dsi", .data = &sun50i_a64_mipi_dsi_variant, }, { .compatible = "allwinner,sun50i-a100-mipi-dsi", .data = &sun50i_a100_mipi_dsi_variant, }, { } }; MODULE_DEVICE_TABLE(of, sun6i_dsi_of_table); static struct platform_driver sun6i_dsi_platform_driver = { .probe = sun6i_dsi_probe, .remove_new = sun6i_dsi_remove, .driver = { .name = "sun6i-mipi-dsi", .of_match_table = sun6i_dsi_of_table, }, }; module_platform_driver(sun6i_dsi_platform_driver); MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com>"); MODULE_DESCRIPTION("Allwinner A31 DSI Driver"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1