Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Eric Anholt | 1841 | 88.98% | 6 | 28.57% |
Juan A. Suarez Romero | 84 | 4.06% | 1 | 4.76% |
Luben Tuikov | 35 | 1.69% | 2 | 9.52% |
Jiawei | 30 | 1.45% | 1 | 4.76% |
Andrey Grodzovsky | 19 | 0.92% | 2 | 9.52% |
Melissa Wen | 18 | 0.87% | 1 | 4.76% |
Christian König | 18 | 0.87% | 3 | 14.29% |
Boris Brezillon | 10 | 0.48% | 1 | 4.76% |
Daniel Vetter | 8 | 0.39% | 2 | 9.52% |
Dan Carpenter | 4 | 0.19% | 1 | 4.76% |
Sharat Masetty | 2 | 0.10% | 1 | 4.76% |
Total | 2069 | 21 |
// SPDX-License-Identifier: GPL-2.0+ /* Copyright (C) 2018 Broadcom */ /** * DOC: Broadcom V3D scheduling * * The shared DRM GPU scheduler is used to coordinate submitting jobs * to the hardware. Each DRM fd (roughly a client process) gets its * own scheduler entity, which will process jobs in order. The GPU * scheduler will round-robin between clients to submit the next job. * * For simplicity, and in order to keep latency low for interactive * jobs when bulk background jobs are queued up, we submit a new job * to the HW only when it has completed the last one, instead of * filling up the CT[01]Q FIFOs with jobs. Similarly, we use * drm_sched_job_add_dependency() to manage the dependency between bin and * render, instead of having the clients submit jobs using the HW's * semaphores to interlock between them. */ #include <linux/kthread.h> #include "v3d_drv.h" #include "v3d_regs.h" #include "v3d_trace.h" static struct v3d_job * to_v3d_job(struct drm_sched_job *sched_job) { return container_of(sched_job, struct v3d_job, base); } static struct v3d_bin_job * to_bin_job(struct drm_sched_job *sched_job) { return container_of(sched_job, struct v3d_bin_job, base.base); } static struct v3d_render_job * to_render_job(struct drm_sched_job *sched_job) { return container_of(sched_job, struct v3d_render_job, base.base); } static struct v3d_tfu_job * to_tfu_job(struct drm_sched_job *sched_job) { return container_of(sched_job, struct v3d_tfu_job, base.base); } static struct v3d_csd_job * to_csd_job(struct drm_sched_job *sched_job) { return container_of(sched_job, struct v3d_csd_job, base.base); } static void v3d_sched_job_free(struct drm_sched_job *sched_job) { struct v3d_job *job = to_v3d_job(sched_job); v3d_job_cleanup(job); } static void v3d_switch_perfmon(struct v3d_dev *v3d, struct v3d_job *job) { if (job->perfmon != v3d->active_perfmon) v3d_perfmon_stop(v3d, v3d->active_perfmon, true); if (job->perfmon && v3d->active_perfmon != job->perfmon) v3d_perfmon_start(v3d, job->perfmon); } static struct dma_fence *v3d_bin_job_run(struct drm_sched_job *sched_job) { struct v3d_bin_job *job = to_bin_job(sched_job); struct v3d_dev *v3d = job->base.v3d; struct drm_device *dev = &v3d->drm; struct dma_fence *fence; unsigned long irqflags; if (unlikely(job->base.base.s_fence->finished.error)) return NULL; /* Lock required around bin_job update vs * v3d_overflow_mem_work(). */ spin_lock_irqsave(&v3d->job_lock, irqflags); v3d->bin_job = job; /* Clear out the overflow allocation, so we don't * reuse the overflow attached to a previous job. */ V3D_CORE_WRITE(0, V3D_PTB_BPOS, 0); spin_unlock_irqrestore(&v3d->job_lock, irqflags); v3d_invalidate_caches(v3d); fence = v3d_fence_create(v3d, V3D_BIN); if (IS_ERR(fence)) return NULL; if (job->base.irq_fence) dma_fence_put(job->base.irq_fence); job->base.irq_fence = dma_fence_get(fence); trace_v3d_submit_cl(dev, false, to_v3d_fence(fence)->seqno, job->start, job->end); v3d_switch_perfmon(v3d, &job->base); /* Set the current and end address of the control list. * Writing the end register is what starts the job. */ if (job->qma) { V3D_CORE_WRITE(0, V3D_CLE_CT0QMA, job->qma); V3D_CORE_WRITE(0, V3D_CLE_CT0QMS, job->qms); } if (job->qts) { V3D_CORE_WRITE(0, V3D_CLE_CT0QTS, V3D_CLE_CT0QTS_ENABLE | job->qts); } V3D_CORE_WRITE(0, V3D_CLE_CT0QBA, job->start); V3D_CORE_WRITE(0, V3D_CLE_CT0QEA, job->end); return fence; } static struct dma_fence *v3d_render_job_run(struct drm_sched_job *sched_job) { struct v3d_render_job *job = to_render_job(sched_job); struct v3d_dev *v3d = job->base.v3d; struct drm_device *dev = &v3d->drm; struct dma_fence *fence; if (unlikely(job->base.base.s_fence->finished.error)) return NULL; v3d->render_job = job; /* Can we avoid this flush? We need to be careful of * scheduling, though -- imagine job0 rendering to texture and * job1 reading, and them being executed as bin0, bin1, * render0, render1, so that render1's flush at bin time * wasn't enough. */ v3d_invalidate_caches(v3d); fence = v3d_fence_create(v3d, V3D_RENDER); if (IS_ERR(fence)) return NULL; if (job->base.irq_fence) dma_fence_put(job->base.irq_fence); job->base.irq_fence = dma_fence_get(fence); trace_v3d_submit_cl(dev, true, to_v3d_fence(fence)->seqno, job->start, job->end); v3d_switch_perfmon(v3d, &job->base); /* XXX: Set the QCFG */ /* Set the current and end address of the control list. * Writing the end register is what starts the job. */ V3D_CORE_WRITE(0, V3D_CLE_CT1QBA, job->start); V3D_CORE_WRITE(0, V3D_CLE_CT1QEA, job->end); return fence; } static struct dma_fence * v3d_tfu_job_run(struct drm_sched_job *sched_job) { struct v3d_tfu_job *job = to_tfu_job(sched_job); struct v3d_dev *v3d = job->base.v3d; struct drm_device *dev = &v3d->drm; struct dma_fence *fence; fence = v3d_fence_create(v3d, V3D_TFU); if (IS_ERR(fence)) return NULL; v3d->tfu_job = job; if (job->base.irq_fence) dma_fence_put(job->base.irq_fence); job->base.irq_fence = dma_fence_get(fence); trace_v3d_submit_tfu(dev, to_v3d_fence(fence)->seqno); V3D_WRITE(V3D_TFU_IIA, job->args.iia); V3D_WRITE(V3D_TFU_IIS, job->args.iis); V3D_WRITE(V3D_TFU_ICA, job->args.ica); V3D_WRITE(V3D_TFU_IUA, job->args.iua); V3D_WRITE(V3D_TFU_IOA, job->args.ioa); V3D_WRITE(V3D_TFU_IOS, job->args.ios); V3D_WRITE(V3D_TFU_COEF0, job->args.coef[0]); if (job->args.coef[0] & V3D_TFU_COEF0_USECOEF) { V3D_WRITE(V3D_TFU_COEF1, job->args.coef[1]); V3D_WRITE(V3D_TFU_COEF2, job->args.coef[2]); V3D_WRITE(V3D_TFU_COEF3, job->args.coef[3]); } /* ICFG kicks off the job. */ V3D_WRITE(V3D_TFU_ICFG, job->args.icfg | V3D_TFU_ICFG_IOC); return fence; } static struct dma_fence * v3d_csd_job_run(struct drm_sched_job *sched_job) { struct v3d_csd_job *job = to_csd_job(sched_job); struct v3d_dev *v3d = job->base.v3d; struct drm_device *dev = &v3d->drm; struct dma_fence *fence; int i; v3d->csd_job = job; v3d_invalidate_caches(v3d); fence = v3d_fence_create(v3d, V3D_CSD); if (IS_ERR(fence)) return NULL; if (job->base.irq_fence) dma_fence_put(job->base.irq_fence); job->base.irq_fence = dma_fence_get(fence); trace_v3d_submit_csd(dev, to_v3d_fence(fence)->seqno); v3d_switch_perfmon(v3d, &job->base); for (i = 1; i <= 6; i++) V3D_CORE_WRITE(0, V3D_CSD_QUEUED_CFG0 + 4 * i, job->args.cfg[i]); /* CFG0 write kicks off the job. */ V3D_CORE_WRITE(0, V3D_CSD_QUEUED_CFG0, job->args.cfg[0]); return fence; } static struct dma_fence * v3d_cache_clean_job_run(struct drm_sched_job *sched_job) { struct v3d_job *job = to_v3d_job(sched_job); struct v3d_dev *v3d = job->v3d; v3d_clean_caches(v3d); return NULL; } static enum drm_gpu_sched_stat v3d_gpu_reset_for_timeout(struct v3d_dev *v3d, struct drm_sched_job *sched_job) { enum v3d_queue q; mutex_lock(&v3d->reset_lock); /* block scheduler */ for (q = 0; q < V3D_MAX_QUEUES; q++) drm_sched_stop(&v3d->queue[q].sched, sched_job); if (sched_job) drm_sched_increase_karma(sched_job); /* get the GPU back into the init state */ v3d_reset(v3d); for (q = 0; q < V3D_MAX_QUEUES; q++) drm_sched_resubmit_jobs(&v3d->queue[q].sched); /* Unblock schedulers and restart their jobs. */ for (q = 0; q < V3D_MAX_QUEUES; q++) { drm_sched_start(&v3d->queue[q].sched, true); } mutex_unlock(&v3d->reset_lock); return DRM_GPU_SCHED_STAT_NOMINAL; } /* If the current address or return address have changed, then the GPU * has probably made progress and we should delay the reset. This * could fail if the GPU got in an infinite loop in the CL, but that * is pretty unlikely outside of an i-g-t testcase. */ static enum drm_gpu_sched_stat v3d_cl_job_timedout(struct drm_sched_job *sched_job, enum v3d_queue q, u32 *timedout_ctca, u32 *timedout_ctra) { struct v3d_job *job = to_v3d_job(sched_job); struct v3d_dev *v3d = job->v3d; u32 ctca = V3D_CORE_READ(0, V3D_CLE_CTNCA(q)); u32 ctra = V3D_CORE_READ(0, V3D_CLE_CTNRA(q)); if (*timedout_ctca != ctca || *timedout_ctra != ctra) { *timedout_ctca = ctca; *timedout_ctra = ctra; return DRM_GPU_SCHED_STAT_NOMINAL; } return v3d_gpu_reset_for_timeout(v3d, sched_job); } static enum drm_gpu_sched_stat v3d_bin_job_timedout(struct drm_sched_job *sched_job) { struct v3d_bin_job *job = to_bin_job(sched_job); return v3d_cl_job_timedout(sched_job, V3D_BIN, &job->timedout_ctca, &job->timedout_ctra); } static enum drm_gpu_sched_stat v3d_render_job_timedout(struct drm_sched_job *sched_job) { struct v3d_render_job *job = to_render_job(sched_job); return v3d_cl_job_timedout(sched_job, V3D_RENDER, &job->timedout_ctca, &job->timedout_ctra); } static enum drm_gpu_sched_stat v3d_generic_job_timedout(struct drm_sched_job *sched_job) { struct v3d_job *job = to_v3d_job(sched_job); return v3d_gpu_reset_for_timeout(job->v3d, sched_job); } static enum drm_gpu_sched_stat v3d_csd_job_timedout(struct drm_sched_job *sched_job) { struct v3d_csd_job *job = to_csd_job(sched_job); struct v3d_dev *v3d = job->base.v3d; u32 batches = V3D_CORE_READ(0, V3D_CSD_CURRENT_CFG4); /* If we've made progress, skip reset and let the timer get * rearmed. */ if (job->timedout_batches != batches) { job->timedout_batches = batches; return DRM_GPU_SCHED_STAT_NOMINAL; } return v3d_gpu_reset_for_timeout(v3d, sched_job); } static const struct drm_sched_backend_ops v3d_bin_sched_ops = { .run_job = v3d_bin_job_run, .timedout_job = v3d_bin_job_timedout, .free_job = v3d_sched_job_free, }; static const struct drm_sched_backend_ops v3d_render_sched_ops = { .run_job = v3d_render_job_run, .timedout_job = v3d_render_job_timedout, .free_job = v3d_sched_job_free, }; static const struct drm_sched_backend_ops v3d_tfu_sched_ops = { .run_job = v3d_tfu_job_run, .timedout_job = v3d_generic_job_timedout, .free_job = v3d_sched_job_free, }; static const struct drm_sched_backend_ops v3d_csd_sched_ops = { .run_job = v3d_csd_job_run, .timedout_job = v3d_csd_job_timedout, .free_job = v3d_sched_job_free }; static const struct drm_sched_backend_ops v3d_cache_clean_sched_ops = { .run_job = v3d_cache_clean_job_run, .timedout_job = v3d_generic_job_timedout, .free_job = v3d_sched_job_free }; int v3d_sched_init(struct v3d_dev *v3d) { int hw_jobs_limit = 1; int job_hang_limit = 0; int hang_limit_ms = 500; int ret; ret = drm_sched_init(&v3d->queue[V3D_BIN].sched, &v3d_bin_sched_ops, DRM_SCHED_PRIORITY_COUNT, hw_jobs_limit, job_hang_limit, msecs_to_jiffies(hang_limit_ms), NULL, NULL, "v3d_bin", v3d->drm.dev); if (ret) return ret; ret = drm_sched_init(&v3d->queue[V3D_RENDER].sched, &v3d_render_sched_ops, DRM_SCHED_PRIORITY_COUNT, hw_jobs_limit, job_hang_limit, msecs_to_jiffies(hang_limit_ms), NULL, NULL, "v3d_render", v3d->drm.dev); if (ret) goto fail; ret = drm_sched_init(&v3d->queue[V3D_TFU].sched, &v3d_tfu_sched_ops, DRM_SCHED_PRIORITY_COUNT, hw_jobs_limit, job_hang_limit, msecs_to_jiffies(hang_limit_ms), NULL, NULL, "v3d_tfu", v3d->drm.dev); if (ret) goto fail; if (v3d_has_csd(v3d)) { ret = drm_sched_init(&v3d->queue[V3D_CSD].sched, &v3d_csd_sched_ops, DRM_SCHED_PRIORITY_COUNT, hw_jobs_limit, job_hang_limit, msecs_to_jiffies(hang_limit_ms), NULL, NULL, "v3d_csd", v3d->drm.dev); if (ret) goto fail; ret = drm_sched_init(&v3d->queue[V3D_CACHE_CLEAN].sched, &v3d_cache_clean_sched_ops, DRM_SCHED_PRIORITY_COUNT, hw_jobs_limit, job_hang_limit, msecs_to_jiffies(hang_limit_ms), NULL, NULL, "v3d_cache_clean", v3d->drm.dev); if (ret) goto fail; } return 0; fail: v3d_sched_fini(v3d); return ret; } void v3d_sched_fini(struct v3d_dev *v3d) { enum v3d_queue q; for (q = 0; q < V3D_MAX_QUEUES; q++) { if (v3d->queue[q].sched.ready) drm_sched_fini(&v3d->queue[q].sched); } }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1