Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Guenter Roeck | 1716 | 44.75% | 9 | 24.32% |
Grant Coady | 998 | 26.02% | 4 | 10.81% |
Chris Packham | 509 | 13.27% | 3 | 8.11% |
Axel Lin | 458 | 11.94% | 3 | 8.11% |
Jean Delvare | 110 | 2.87% | 7 | 18.92% |
Mark M. Hoffman | 21 | 0.55% | 3 | 8.11% |
Laurent Riffard | 5 | 0.13% | 1 | 2.70% |
lily | 4 | 0.10% | 1 | 2.70% |
Ingo Molnar | 4 | 0.10% | 1 | 2.70% |
Julia Lawall | 3 | 0.08% | 1 | 2.70% |
Greg Kroah-Hartman | 3 | 0.08% | 1 | 2.70% |
Thomas Gleixner | 2 | 0.05% | 1 | 2.70% |
Uwe Kleine-König | 1 | 0.03% | 1 | 2.70% |
Krzysztof Kozlowski | 1 | 0.03% | 1 | 2.70% |
Total | 3835 | 37 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * adm9240.c Part of lm_sensors, Linux kernel modules for hardware * monitoring * * Copyright (C) 1999 Frodo Looijaard <frodol@dds.nl> * Philip Edelbrock <phil@netroedge.com> * Copyright (C) 2003 Michiel Rook <michiel@grendelproject.nl> * Copyright (C) 2005 Grant Coady <gcoady.lk@gmail.com> with valuable * guidance from Jean Delvare * * Driver supports Analog Devices ADM9240 * Dallas Semiconductor DS1780 * National Semiconductor LM81 * * ADM9240 is the reference, DS1780 and LM81 are register compatibles * * Voltage Six inputs are scaled by chip, VID also reported * Temperature Chip temperature to 0.5'C, maximum and max_hysteris * Fans 2 fans, low speed alarm, automatic fan clock divider * Alarms 16-bit map of active alarms * Analog Out 0..1250 mV output * * Chassis Intrusion: clear CI latch with 'echo 0 > intrusion0_alarm' * * Test hardware: Intel SE440BX-2 desktop motherboard --Grant * * LM81 extended temp reading not implemented */ #include <linux/bits.h> #include <linux/init.h> #include <linux/module.h> #include <linux/slab.h> #include <linux/i2c.h> #include <linux/hwmon-sysfs.h> #include <linux/hwmon.h> #include <linux/hwmon-vid.h> #include <linux/err.h> #include <linux/mutex.h> #include <linux/regmap.h> /* Addresses to scan */ static const unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, 0x2f, I2C_CLIENT_END }; enum chips { adm9240, ds1780, lm81 }; /* ADM9240 registers */ #define ADM9240_REG_MAN_ID 0x3e #define ADM9240_REG_DIE_REV 0x3f #define ADM9240_REG_CONFIG 0x40 #define ADM9240_REG_IN(nr) (0x20 + (nr)) /* 0..5 */ #define ADM9240_REG_IN_MAX(nr) (0x2b + (nr) * 2) #define ADM9240_REG_IN_MIN(nr) (0x2c + (nr) * 2) #define ADM9240_REG_FAN(nr) (0x28 + (nr)) /* 0..1 */ #define ADM9240_REG_FAN_MIN(nr) (0x3b + (nr)) #define ADM9240_REG_INT(nr) (0x41 + (nr)) #define ADM9240_REG_INT_MASK(nr) (0x43 + (nr)) #define ADM9240_REG_TEMP 0x27 #define ADM9240_REG_TEMP_MAX(nr) (0x39 + (nr)) /* 0, 1 = high, hyst */ #define ADM9240_REG_ANALOG_OUT 0x19 #define ADM9240_REG_CHASSIS_CLEAR 0x46 #define ADM9240_REG_VID_FAN_DIV 0x47 #define ADM9240_REG_I2C_ADDR 0x48 #define ADM9240_REG_VID4 0x49 #define ADM9240_REG_TEMP_CONF 0x4b /* generalised scaling with integer rounding */ static inline int SCALE(long val, int mul, int div) { if (val < 0) return (val * mul - div / 2) / div; else return (val * mul + div / 2) / div; } /* adm9240 internally scales voltage measurements */ static const u16 nom_mv[] = { 2500, 2700, 3300, 5000, 12000, 2700 }; static inline unsigned int IN_FROM_REG(u8 reg, int n) { return SCALE(reg, nom_mv[n], 192); } static inline u8 IN_TO_REG(unsigned long val, int n) { val = clamp_val(val, 0, nom_mv[n] * 255 / 192); return SCALE(val, 192, nom_mv[n]); } /* temperature range: -40..125, 127 disables temperature alarm */ static inline s8 TEMP_TO_REG(long val) { val = clamp_val(val, -40000, 127000); return SCALE(val, 1, 1000); } /* two fans, each with low fan speed limit */ static inline unsigned int FAN_FROM_REG(u8 reg, u8 div) { if (!reg) /* error */ return -1; if (reg == 255) return 0; return SCALE(1350000, 1, reg * div); } /* analog out 0..1250mV */ static inline u8 AOUT_TO_REG(unsigned long val) { val = clamp_val(val, 0, 1250); return SCALE(val, 255, 1250); } static inline unsigned int AOUT_FROM_REG(u8 reg) { return SCALE(reg, 1250, 255); } /* per client data */ struct adm9240_data { struct device *dev; struct regmap *regmap; struct mutex update_lock; u8 fan_div[2]; /* rw fan1_div, read-only accessor */ u8 vrm; /* -- vrm set on startup, no accessor */ }; /* write new fan div, callers must hold data->update_lock */ static int adm9240_write_fan_div(struct adm9240_data *data, int channel, u8 fan_div) { unsigned int reg, old, shift = (channel + 2) * 2; int err; err = regmap_read(data->regmap, ADM9240_REG_VID_FAN_DIV, ®); if (err < 0) return err; old = (reg >> shift) & 3; reg &= ~(3 << shift); reg |= (fan_div << shift); err = regmap_write(data->regmap, ADM9240_REG_VID_FAN_DIV, reg); if (err < 0) return err; dev_dbg(data->dev, "fan%d clock divider changed from %lu to %lu\n", channel + 1, BIT(old), BIT(fan_div)); return 0; } /* * set fan speed low limit: * * - value is zero: disable fan speed low limit alarm * * - value is below fan speed measurement range: enable fan speed low * limit alarm to be asserted while fan speed too slow to measure * * - otherwise: select fan clock divider to suit fan speed low limit, * measurement code may adjust registers to ensure fan speed reading */ static int adm9240_fan_min_write(struct adm9240_data *data, int channel, long val) { u8 new_div; u8 fan_min; int err; mutex_lock(&data->update_lock); if (!val) { fan_min = 255; new_div = data->fan_div[channel]; dev_dbg(data->dev, "fan%u low limit set disabled\n", channel + 1); } else if (val < 1350000 / (8 * 254)) { new_div = 3; fan_min = 254; dev_dbg(data->dev, "fan%u low limit set minimum %u\n", channel + 1, FAN_FROM_REG(254, BIT(new_div))); } else { unsigned int new_min = 1350000 / val; new_div = 0; while (new_min > 192 && new_div < 3) { new_div++; new_min /= 2; } if (!new_min) /* keep > 0 */ new_min++; fan_min = new_min; dev_dbg(data->dev, "fan%u low limit set fan speed %u\n", channel + 1, FAN_FROM_REG(new_min, BIT(new_div))); } if (new_div != data->fan_div[channel]) { data->fan_div[channel] = new_div; adm9240_write_fan_div(data, channel, new_div); } err = regmap_write(data->regmap, ADM9240_REG_FAN_MIN(channel), fan_min); mutex_unlock(&data->update_lock); return err; } static ssize_t cpu0_vid_show(struct device *dev, struct device_attribute *attr, char *buf) { struct adm9240_data *data = dev_get_drvdata(dev); unsigned int regval; int err; u8 vid; err = regmap_read(data->regmap, ADM9240_REG_VID_FAN_DIV, ®val); if (err < 0) return err; vid = regval & 0x0f; err = regmap_read(data->regmap, ADM9240_REG_VID4, ®val); if (err < 0) return err; vid |= (regval & 1) << 4; return sprintf(buf, "%d\n", vid_from_reg(vid, data->vrm)); } static DEVICE_ATTR_RO(cpu0_vid); static ssize_t aout_output_show(struct device *dev, struct device_attribute *attr, char *buf) { struct adm9240_data *data = dev_get_drvdata(dev); unsigned int regval; int err; err = regmap_read(data->regmap, ADM9240_REG_ANALOG_OUT, ®val); if (err) return err; return sprintf(buf, "%d\n", AOUT_FROM_REG(regval)); } static ssize_t aout_output_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct adm9240_data *data = dev_get_drvdata(dev); long val; int err; err = kstrtol(buf, 10, &val); if (err) return err; err = regmap_write(data->regmap, ADM9240_REG_ANALOG_OUT, AOUT_TO_REG(val)); return err < 0 ? err : count; } static DEVICE_ATTR_RW(aout_output); static struct attribute *adm9240_attrs[] = { &dev_attr_aout_output.attr, &dev_attr_cpu0_vid.attr, NULL }; ATTRIBUTE_GROUPS(adm9240); /*** sensor chip detect and driver install ***/ /* Return 0 if detection is successful, -ENODEV otherwise */ static int adm9240_detect(struct i2c_client *new_client, struct i2c_board_info *info) { struct i2c_adapter *adapter = new_client->adapter; const char *name = ""; int address = new_client->addr; u8 man_id, die_rev; if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) return -ENODEV; /* verify chip: reg address should match i2c address */ if (i2c_smbus_read_byte_data(new_client, ADM9240_REG_I2C_ADDR) != address) return -ENODEV; /* check known chip manufacturer */ man_id = i2c_smbus_read_byte_data(new_client, ADM9240_REG_MAN_ID); if (man_id == 0x23) name = "adm9240"; else if (man_id == 0xda) name = "ds1780"; else if (man_id == 0x01) name = "lm81"; else return -ENODEV; /* successful detect, print chip info */ die_rev = i2c_smbus_read_byte_data(new_client, ADM9240_REG_DIE_REV); dev_info(&adapter->dev, "found %s revision %u\n", man_id == 0x23 ? "ADM9240" : man_id == 0xda ? "DS1780" : "LM81", die_rev); strscpy(info->type, name, I2C_NAME_SIZE); return 0; } static int adm9240_init_client(struct adm9240_data *data) { unsigned int regval; u8 conf, mode; int err; err = regmap_raw_read(data->regmap, ADM9240_REG_CONFIG, &conf, 1); if (err < 0) return err; err = regmap_raw_read(data->regmap, ADM9240_REG_TEMP_CONF, &mode, 1); if (err < 0) return err; mode &= 3; data->vrm = vid_which_vrm(); /* need this to report vid as mV */ dev_info(data->dev, "Using VRM: %d.%d\n", data->vrm / 10, data->vrm % 10); if (conf & 1) { /* measurement cycle running: report state */ dev_info(data->dev, "status: config 0x%02x mode %u\n", conf, mode); } else { /* cold start: open limits before starting chip */ int i; for (i = 0; i < 6; i++) { err = regmap_write(data->regmap, ADM9240_REG_IN_MIN(i), 0); if (err < 0) return err; err = regmap_write(data->regmap, ADM9240_REG_IN_MAX(i), 255); if (err < 0) return err; } for (i = 0; i < 2; i++) { err = regmap_write(data->regmap, ADM9240_REG_FAN_MIN(i), 255); if (err < 0) return err; } for (i = 0; i < 2; i++) { err = regmap_write(data->regmap, ADM9240_REG_TEMP_MAX(i), 127); if (err < 0) return err; } /* start measurement cycle */ err = regmap_write(data->regmap, ADM9240_REG_CONFIG, 1); if (err < 0) return err; dev_info(data->dev, "cold start: config was 0x%02x mode %u\n", conf, mode); } /* read fan divs */ err = regmap_read(data->regmap, ADM9240_REG_VID_FAN_DIV, ®val); if (err < 0) return err; data->fan_div[0] = (regval >> 4) & 3; data->fan_div[1] = (regval >> 6) & 3; return 0; } static int adm9240_chip_read(struct device *dev, u32 attr, long *val) { struct adm9240_data *data = dev_get_drvdata(dev); u8 regs[2]; int err; switch (attr) { case hwmon_chip_alarms: err = regmap_bulk_read(data->regmap, ADM9240_REG_INT(0), ®s, 2); if (err < 0) return err; *val = regs[0] | regs[1] << 8; break; default: return -EOPNOTSUPP; } return 0; } static int adm9240_intrusion_read(struct device *dev, u32 attr, long *val) { struct adm9240_data *data = dev_get_drvdata(dev); unsigned int regval; int err; switch (attr) { case hwmon_intrusion_alarm: err = regmap_read(data->regmap, ADM9240_REG_INT(1), ®val); if (err < 0) return err; *val = !!(regval & BIT(4)); break; default: return -EOPNOTSUPP; } return 0; } static int adm9240_intrusion_write(struct device *dev, u32 attr, long val) { struct adm9240_data *data = dev_get_drvdata(dev); int err; switch (attr) { case hwmon_intrusion_alarm: if (val) return -EINVAL; err = regmap_write(data->regmap, ADM9240_REG_CHASSIS_CLEAR, 0x80); if (err < 0) return err; dev_dbg(data->dev, "chassis intrusion latch cleared\n"); break; default: return -EOPNOTSUPP; } return 0; } static int adm9240_in_read(struct device *dev, u32 attr, int channel, long *val) { struct adm9240_data *data = dev_get_drvdata(dev); unsigned int regval; int reg; int err; switch (attr) { case hwmon_in_input: reg = ADM9240_REG_IN(channel); break; case hwmon_in_min: reg = ADM9240_REG_IN_MIN(channel); break; case hwmon_in_max: reg = ADM9240_REG_IN_MAX(channel); break; case hwmon_in_alarm: if (channel < 4) { reg = ADM9240_REG_INT(0); } else { reg = ADM9240_REG_INT(1); channel -= 4; } err = regmap_read(data->regmap, reg, ®val); if (err < 0) return err; *val = !!(regval & BIT(channel)); return 0; default: return -EOPNOTSUPP; } err = regmap_read(data->regmap, reg, ®val); if (err < 0) return err; *val = IN_FROM_REG(regval, channel); return 0; } static int adm9240_in_write(struct device *dev, u32 attr, int channel, long val) { struct adm9240_data *data = dev_get_drvdata(dev); int reg; switch (attr) { case hwmon_in_min: reg = ADM9240_REG_IN_MIN(channel); break; case hwmon_in_max: reg = ADM9240_REG_IN_MAX(channel); break; default: return -EOPNOTSUPP; } return regmap_write(data->regmap, reg, IN_TO_REG(val, channel)); } static int adm9240_fan_read(struct device *dev, u32 attr, int channel, long *val) { struct adm9240_data *data = dev_get_drvdata(dev); unsigned int regval; int err; switch (attr) { case hwmon_fan_input: mutex_lock(&data->update_lock); err = regmap_read(data->regmap, ADM9240_REG_FAN(channel), ®val); if (err < 0) { mutex_unlock(&data->update_lock); return err; } if (regval == 255 && data->fan_div[channel] < 3) { /* adjust fan clock divider on overflow */ err = adm9240_write_fan_div(data, channel, ++data->fan_div[channel]); if (err) { mutex_unlock(&data->update_lock); return err; } } *val = FAN_FROM_REG(regval, BIT(data->fan_div[channel])); mutex_unlock(&data->update_lock); break; case hwmon_fan_div: *val = BIT(data->fan_div[channel]); break; case hwmon_fan_min: err = regmap_read(data->regmap, ADM9240_REG_FAN_MIN(channel), ®val); if (err < 0) return err; *val = FAN_FROM_REG(regval, BIT(data->fan_div[channel])); break; case hwmon_fan_alarm: err = regmap_read(data->regmap, ADM9240_REG_INT(0), ®val); if (err < 0) return err; *val = !!(regval & BIT(channel + 6)); break; default: return -EOPNOTSUPP; } return 0; } static int adm9240_fan_write(struct device *dev, u32 attr, int channel, long val) { struct adm9240_data *data = dev_get_drvdata(dev); int err; switch (attr) { case hwmon_fan_min: err = adm9240_fan_min_write(data, channel, val); if (err < 0) return err; break; default: return -EOPNOTSUPP; } return 0; } static int adm9240_temp_read(struct device *dev, u32 attr, int channel, long *val) { struct adm9240_data *data = dev_get_drvdata(dev); unsigned int regval; int err, temp; switch (attr) { case hwmon_temp_input: err = regmap_read(data->regmap, ADM9240_REG_TEMP, ®val); if (err < 0) return err; temp = regval << 1; err = regmap_read(data->regmap, ADM9240_REG_TEMP_CONF, ®val); if (err < 0) return err; temp |= regval >> 7; *val = sign_extend32(temp, 8) * 500; break; case hwmon_temp_max: err = regmap_read(data->regmap, ADM9240_REG_TEMP_MAX(0), ®val); if (err < 0) return err; *val = (s8)regval * 1000; break; case hwmon_temp_max_hyst: err = regmap_read(data->regmap, ADM9240_REG_TEMP_MAX(1), ®val); if (err < 0) return err; *val = (s8)regval * 1000; break; case hwmon_temp_alarm: err = regmap_read(data->regmap, ADM9240_REG_INT(0), ®val); if (err < 0) return err; *val = !!(regval & BIT(4)); break; default: return -EOPNOTSUPP; } return 0; } static int adm9240_temp_write(struct device *dev, u32 attr, int channel, long val) { struct adm9240_data *data = dev_get_drvdata(dev); int reg; switch (attr) { case hwmon_temp_max: reg = ADM9240_REG_TEMP_MAX(0); break; case hwmon_temp_max_hyst: reg = ADM9240_REG_TEMP_MAX(1); break; default: return -EOPNOTSUPP; } return regmap_write(data->regmap, reg, TEMP_TO_REG(val)); } static int adm9240_read(struct device *dev, enum hwmon_sensor_types type, u32 attr, int channel, long *val) { switch (type) { case hwmon_chip: return adm9240_chip_read(dev, attr, val); case hwmon_intrusion: return adm9240_intrusion_read(dev, attr, val); case hwmon_in: return adm9240_in_read(dev, attr, channel, val); case hwmon_fan: return adm9240_fan_read(dev, attr, channel, val); case hwmon_temp: return adm9240_temp_read(dev, attr, channel, val); default: return -EOPNOTSUPP; } } static int adm9240_write(struct device *dev, enum hwmon_sensor_types type, u32 attr, int channel, long val) { switch (type) { case hwmon_intrusion: return adm9240_intrusion_write(dev, attr, val); case hwmon_in: return adm9240_in_write(dev, attr, channel, val); case hwmon_fan: return adm9240_fan_write(dev, attr, channel, val); case hwmon_temp: return adm9240_temp_write(dev, attr, channel, val); default: return -EOPNOTSUPP; } } static umode_t adm9240_is_visible(const void *_data, enum hwmon_sensor_types type, u32 attr, int channel) { umode_t mode = 0; switch (type) { case hwmon_chip: switch (attr) { case hwmon_chip_alarms: mode = 0444; break; default: break; } break; case hwmon_intrusion: switch (attr) { case hwmon_intrusion_alarm: mode = 0644; break; default: break; } break; case hwmon_temp: switch (attr) { case hwmon_temp: case hwmon_temp_alarm: mode = 0444; break; case hwmon_temp_max: case hwmon_temp_max_hyst: mode = 0644; break; default: break; } break; case hwmon_fan: switch (attr) { case hwmon_fan_input: case hwmon_fan_div: case hwmon_fan_alarm: mode = 0444; break; case hwmon_fan_min: mode = 0644; break; default: break; } break; case hwmon_in: switch (attr) { case hwmon_in_input: case hwmon_in_alarm: mode = 0444; break; case hwmon_in_min: case hwmon_in_max: mode = 0644; break; default: break; } break; default: break; } return mode; } static const struct hwmon_ops adm9240_hwmon_ops = { .is_visible = adm9240_is_visible, .read = adm9240_read, .write = adm9240_write, }; static const struct hwmon_channel_info * const adm9240_info[] = { HWMON_CHANNEL_INFO(chip, HWMON_C_ALARMS), HWMON_CHANNEL_INFO(intrusion, HWMON_INTRUSION_ALARM), HWMON_CHANNEL_INFO(temp, HWMON_T_INPUT | HWMON_T_MAX | HWMON_T_MAX_HYST | HWMON_T_ALARM), HWMON_CHANNEL_INFO(in, HWMON_I_INPUT | HWMON_I_MIN | HWMON_I_MAX | HWMON_I_ALARM, HWMON_I_INPUT | HWMON_I_MIN | HWMON_I_MAX | HWMON_I_ALARM, HWMON_I_INPUT | HWMON_I_MIN | HWMON_I_MAX | HWMON_I_ALARM, HWMON_I_INPUT | HWMON_I_MIN | HWMON_I_MAX | HWMON_I_ALARM, HWMON_I_INPUT | HWMON_I_MIN | HWMON_I_MAX | HWMON_I_ALARM, HWMON_I_INPUT | HWMON_I_MIN | HWMON_I_MAX | HWMON_I_ALARM), HWMON_CHANNEL_INFO(fan, HWMON_F_INPUT | HWMON_F_MIN | HWMON_F_DIV | HWMON_F_ALARM, HWMON_F_INPUT | HWMON_F_MIN | HWMON_F_DIV | HWMON_F_ALARM), NULL }; static const struct hwmon_chip_info adm9240_chip_info = { .ops = &adm9240_hwmon_ops, .info = adm9240_info, }; static bool adm9240_volatile_reg(struct device *dev, unsigned int reg) { switch (reg) { case ADM9240_REG_IN(0) ... ADM9240_REG_IN(5): case ADM9240_REG_FAN(0) ... ADM9240_REG_FAN(1): case ADM9240_REG_INT(0) ... ADM9240_REG_INT(1): case ADM9240_REG_TEMP: case ADM9240_REG_TEMP_CONF: case ADM9240_REG_VID_FAN_DIV: case ADM9240_REG_VID4: case ADM9240_REG_ANALOG_OUT: return true; default: return false; } } static const struct regmap_config adm9240_regmap_config = { .reg_bits = 8, .val_bits = 8, .use_single_read = true, .use_single_write = true, .volatile_reg = adm9240_volatile_reg, }; static int adm9240_probe(struct i2c_client *client) { struct device *dev = &client->dev; struct device *hwmon_dev; struct adm9240_data *data; int err; data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL); if (!data) return -ENOMEM; data->dev = dev; mutex_init(&data->update_lock); data->regmap = devm_regmap_init_i2c(client, &adm9240_regmap_config); if (IS_ERR(data->regmap)) return PTR_ERR(data->regmap); err = adm9240_init_client(data); if (err < 0) return err; hwmon_dev = devm_hwmon_device_register_with_info(dev, client->name, data, &adm9240_chip_info, adm9240_groups); return PTR_ERR_OR_ZERO(hwmon_dev); } static const struct i2c_device_id adm9240_id[] = { { "adm9240", adm9240 }, { "ds1780", ds1780 }, { "lm81", lm81 }, { } }; MODULE_DEVICE_TABLE(i2c, adm9240_id); static struct i2c_driver adm9240_driver = { .class = I2C_CLASS_HWMON, .driver = { .name = "adm9240", }, .probe = adm9240_probe, .id_table = adm9240_id, .detect = adm9240_detect, .address_list = normal_i2c, }; module_i2c_driver(adm9240_driver); MODULE_AUTHOR("Michiel Rook <michiel@grendelproject.nl>, " "Grant Coady <gcoady.lk@gmail.com> and others"); MODULE_DESCRIPTION("ADM9240/DS1780/LM81 driver"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1